Type of a tableau，definition and properties

François Viard

ICJ
Mars 2014

Plan

(1) Introduction
(2) Type of a tableau
(3) Link between types and reduced decompositions
(4) A brief summary of the results

Reduced decompositions in the symmetric group

- It is well known that the symmetric groups S_{n} is generated by the simple transpositions $s_{i}=(i, i+1), i \in \mathbb{N}$.

Reduced decompositions in the symmetric group

－It is well known that the symmetric groups S_{n} is generated by the simple transpositions $s_{i}=(i, i+1), i \in \mathbb{N}$ ．
－Set $\sigma \in S_{n}$ ，we define $\ell(\sigma)$ the minimal integer such that $\sigma=s_{i_{1}} \cdots s_{i_{\ell(\sigma)}}$ ．Such a product is called a reduced decomposition．

Reduced decompositions in the symmetric group

- It is well known that the symmetric groups S_{n} is generated by the simple transpositions $s_{i}=(i, i+1), i \in \mathbb{N}$.
- Set $\sigma \in S_{n}$, we define $\ell(\sigma)$ the minimal integer such that $\sigma=s_{i_{1}} \cdots s_{i_{\ell(\sigma)}}$. Such a product is called a reduced decomposition.
- It is classical that $\ell(\sigma)=|\operatorname{Inv}(\sigma)|$, where

$$
\operatorname{Inv}(\sigma)=\left\{(p, q) \mid p<q \text { and } \sigma^{-1}(p)>\sigma^{-1}(q)\right\}
$$

Partitions and standard tableaux

Definition

A partition of the integer n is a non-increasing sequence of non-negative integers $\lambda_{1} \geq \lambda_{2} \geq \ldots$ such that $\sum_{i} \lambda_{i}=n$.

Partitions and standard tableaux

Definition

A partition of the integer n is a non-increasing sequence of non-negative integers $\lambda_{1} \geq \lambda_{2} \geq \ldots$ such that $\sum_{i} \lambda_{i}=n$.

Ferrers diagram of the partition $\lambda=(4,3,3,1,1)$.

Partitions and standard tableaux

Definition

A partition of the integer n is a non-increasing sequence of non-negative integers $\lambda_{1} \geq \lambda_{2} \geq \ldots$ such that $\sum_{i} \lambda_{i}=n$.

The hook based on $(1,2)$, denoted $H_{(1,2)}(\lambda)$.

Partitions and standard tableaux

Definition

A partition of the integer n is a non－increasing sequence of non－negative integers $\lambda_{1} \geq \lambda_{2} \geq \ldots$ such that $\sum_{i} \lambda_{i}=n$ ．

Arm based on $(1,2)$ ．

Partitions and standard tableaux

Definition Standard Tableaux

A standard Young Tableau of shape λ is a filling of λ with all the integers from 1 to n such that the integers are increasing from left to right and from top to bottom. The set of all such tableaux is denoted $\operatorname{SYT}(\lambda)$ and $f^{\lambda}=|S Y T(\lambda)|$.

1	2	5	10
3	7	9	
4	8	11	
6			
12			

A Standard Young Tableau of shape (4, 3, 3, 1, 1).

Enumeration of reduced decompositions

$$
\text { Set } \omega_{0}=[n, n-1, \ldots, 1] \in S_{n} \text { and } \lambda_{n}=(n-1, n-2, \ldots, 1) \text {. }
$$

Theorem（Stanley，1984）

$$
\operatorname{red}\left(\omega_{0}\right)=f^{\lambda_{n}}=\frac{\binom{n}{2}!}{1^{n-1} 3^{n-2} 5^{n-3} \cdots(2 n-3)^{1}}
$$

Enumeration of reduced decompositions

$$
\text { Set } \omega_{0}=[n, n-1, \ldots, 1] \in S_{n} \text { and } \lambda_{n}=(n-1, n-2, \ldots, 1)
$$

Theorem (Stanley, 1984)

$$
\operatorname{red}\left(\omega_{0}\right)=f^{\lambda_{n}}=\frac{\binom{n}{2}!}{1^{n-1} 3^{n-2} 5^{n-3} \cdots(2 n-3)^{1}}
$$

- The proof is not bijective and is based on the study of a symmetric function.

Enumeration of reduced decompositions

$$
\text { Set } \omega_{0}=[n, n-1, \ldots, 1] \in S_{n} \text { and } \lambda_{n}=(n-1, n-2, \ldots, 1)
$$

Theorem (Stanley, 1984)

$$
\operatorname{red}\left(\omega_{0}\right)=f^{\lambda_{n}}=\frac{\binom{n}{2}!}{1^{n-1} 3^{n-2} 5^{n-3} \cdots(2 n-3)^{1}}
$$

- The proof is not bijective and is based on the study of a symmetric function.
- Stanley also conjectured that for all $\sigma \in S_{n}$,

$$
\operatorname{red}(\sigma)=\sum_{\lambda} a_{\lambda} f^{\lambda}
$$

where the sum is over the partitions of $\ell(\sigma)$ and $a_{\lambda} \geq 0$.

Enumeration of reduced decomposition

Theorem (Edelman-Greene / Lascoux-Schützenberger, 1987)
Set $\sigma \in S_{n}$. There exists a sequence of non-negative integers a_{λ} such that

$$
\operatorname{red}(\sigma)=\sum_{\lambda \vdash \ell(\sigma)} a_{\lambda} f^{\lambda}
$$

Enumeration of reduced decomposition

Theorem（Edelman－Greene／Lascoux－Schützenberger，1987）
Set $\sigma \in S_{n}$ ．There exists a sequence of non－negative integers a_{λ} such that

$$
\operatorname{red}(\sigma)=\sum_{\lambda \vdash \ell(\sigma)} a_{\lambda} f^{\lambda}
$$

－LS：the proof is based on the study of Schubert polynomials（with this point of view $a_{\lambda}=\#\{$ leafs of type λ in the LS－Tree $\}$ ）．

Enumeration of reduced decomposition

Theorem (Edelman-Greene / Lascoux-Schützenberger, 1987)

Set $\sigma \in S_{n}$. There exists a sequence of non-negative integers a_{λ} such that

$$
\operatorname{red}(\sigma)=\sum_{\lambda \vdash \ell(\sigma)} a_{\lambda} f^{\lambda}
$$

- LS: the proof is based on the study of Schubert polynomials (with this point of view $a_{\lambda}=\#\{$ leafs of type λ in the LS-Tree $\}$).
- The proof of Edelman and Greene is purely bijective and is based on a RSK-like insertion (here $a_{\lambda}=\#\{$ EG-tableaux of shape $\lambda\}$).

Balanced tableaux

Where they come from

In their first attempt to find a combinatorial proof of the Stanley's theorem, Edelman and Greene introduced a new set of tableaux $\operatorname{Bal}(\lambda)$ of shape λ called balanced tableaux.

Balanced tableaux

Where they come from

In their first attempt to find a combinatorial proof of the Stanley's theorem, Edelman and Greene introduced a new set of tableaux $\operatorname{Bal}(\lambda)$ of shape λ called balanced tableaux.

Recall : $\omega_{0}=[n, n-1, \ldots, 1] \in S_{n}$ and $\lambda_{n}=(n-1, n-2, \ldots, 1)$ the staircase partition.

Balanced tableaux

Theorem (Edelman-Greene, 1987)

For any partition λ, we have that $|\operatorname{SYT}(\lambda)|=|\operatorname{Bal}(\lambda)|$.

Balanced tableaux

Theorem（Edelman－Greene，1987）

For any partition λ ，we have that $|\operatorname{SYT}(\lambda)|=|\operatorname{Bal}(\lambda)|$ ．

Balanced tableaux

Theorem（Edelman－Greene，1987）

For any partition λ ，we have that $|\operatorname{SYT}(\lambda)|=|\operatorname{Bal}(\lambda)|$ ．

Balanced tableaux

Definition of balanced tableaux

Set $T=\left(t_{c}\right)_{c \in \lambda}$ a tableau of shape λ. T is a balanced tableau if and only if for all boxes $c \in \lambda$ we have $\left|\left\{z \in H_{c}(\lambda) \mid t_{z}>t_{c}\right\}\right|=a_{c}$.

7	6	9	2
10	8	12	
4	3	5	
11			
1			

Balanced tableaux

Definition of balanced tableaux

Set $T=\left(t_{c}\right)_{c \in \lambda}$ a tableau of shape λ. T is a balanced tableau if and only if for all boxes $c \in \lambda$ we have $\left|\left\{z \in H_{c}(\lambda) \mid t_{z}>t_{c}\right\}\right|=a_{c}$.

7	6	9	2
10	8	12	
4	3	5	
11			
1			

Arm length $=2$

Balanced tableaux

Definition of balanced tableaux

Set $T=\left(t_{c}\right)_{c \in \lambda}$ a tableau of shape λ. T is a balanced tableau if and only if for all boxes $c \in \lambda$ we have $\left|\left\{z \in H_{c}(\lambda) \mid t_{z}>t_{c}\right\}\right|=a_{c}$.

7	6	9	2
10	8	12	
4	3	5	
11			
1			

$$
\begin{gathered}
\text { Arm length }=2 \\
\left|\left\{z \in H_{c}(\lambda) \mid t_{z}>t_{c}\right\}\right|=2
\end{gathered}
$$

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each tableau，in order to classify ALL of them（even if they are not standard and not balanced）．

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each tableau, in order to classify ALL of them (even if they are not standard and not balanced).

Definition

Set λ a partition of n.

- Set $T=\left(t_{c}\right)_{c \in \lambda}$ a tableau of shape λ. The type of T is the filling of λ with the integers $\theta_{c}=\left|\left\{z \in H_{c}(\lambda) \mid t_{z}>t_{c}\right\}\right|$.

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each tableau, in order to classify ALL of them (even if they are not standard and not balanced).

Definition

Set λ a partition of n.

- Set $T=\left(t_{c}\right)_{c \in \lambda}$ a tableau of shape λ. The type of T is the filling of λ with the integers $\theta_{c}=\left|\left\{z \in H_{c}(\lambda) \mid t_{z}>t_{c}\right\}\right|$.

6	10	5	3
7	12	9	
11	2	4	
8			
1			

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each tableau, in order to classify ALL of them (even if they are not standard and not balanced).

Definition

Set λ a partition of n.

- Set $T=\left(t_{c}\right)_{c \in \lambda}$ a tableau of shape λ. The type of T is the filling of λ with the integers $\theta_{c}=\left|\left\{z \in H_{c}(\lambda) \mid t_{z}>t_{c}\right\}\right|$.

6	10	5	3
7	12	9	
11	2	4	
8			
1			

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each tableau, in order to classify ALL of them (even if they are not standard and not balanced).

Definition

Set λ a partition of n.

- Set $T=\left(t_{c}\right)_{c \in \lambda}$ a tableau of shape λ. The type of T is the filling of λ with the integers $\theta_{c}=\left|\left\{z \in H_{c}(\lambda) \mid t_{z}>t_{c}\right\}\right|$.

6	(10)	5	3
(7)	12	9	
11	2	4	
8			
1			

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each tableau, in order to classify ALL of them (even if they are not standard and not balanced).

Definition

Set λ a partition of n.

- Set $T=\left(t_{c}\right)_{c \in \lambda}$ a tableau of shape λ. The type of T is the filling of λ with the integers $\theta_{c}=\left|\left\{z \in H_{c}(\lambda) \mid t_{z}>t_{c}\right\}\right|$.

6	10	5	3
7	12	9	
11	2	4	
8			
1			

4	1	1	0
4	0	0	
0	1	0	
0			
0			

Classification of all tableaux using their types

Definition

The set of all the tableaux which are of type \mathcal{T} is denoted $\operatorname{Tab}(\mathcal{T})$ ．

Classification of all tableaux using their types

Definition

The set of all the tableaux which are of type \mathcal{T} is denoted $\operatorname{Tab}(\mathcal{T})$.

Type		Type		
3				0
1				

Classification of all tableaux using their types

Definition

The set of all the tableaux which are of type \mathcal{T} is denoted $\operatorname{Tab}(\mathcal{T})$.

Type							Type		
		3	2	0			2	1	0
		1	0				1	0	
Standard Young Tableaux									
		1	2	3					
		4	5						
1	2	4		1	2	5			
3	5			3	4				
1	3	4		1	3	5			
2	5			2	4				

Classification of all tableaux using their types

Definition

The set of all the tableaux which are of type \mathcal{T} is denoted $\operatorname{Tab}(\mathcal{T})$.

A natural question

Lemma

Set λ a partition.

- Set $\mathcal{S} t_{\lambda}=\left(h_{c}-1\right)_{c \in \lambda}$, then $\operatorname{Tab}\left(\mathcal{S} t_{\lambda}\right)=\operatorname{SYT}(\lambda)$.
- Set $\mathcal{B}_{\lambda}=\left(a_{c}\right)_{c \in \lambda}$, then $\operatorname{Tab}\left(\mathcal{B}_{\lambda}\right)=\operatorname{Bal}(\lambda)$.

A natural question

Lemma

Set λ a partition.

- Set $\mathcal{S} t_{\lambda}=\left(h_{c}-1\right)_{c \in \lambda}$, then $\operatorname{Tab}\left(\mathcal{S} t_{\lambda}\right)=\operatorname{SYT}(\lambda)$.
- Set $\mathcal{B}_{\lambda}=\left(a_{c}\right)_{c \in \lambda}$, then $\operatorname{Tab}\left(\mathcal{B}_{\lambda}\right)=\operatorname{Bal}(\lambda)$.

With the Edelman-Greene's Theorem, we have that

$$
\left|\operatorname{Tab}\left(\mathcal{B}_{\lambda}\right)\right|=\left|\operatorname{Tab}\left(\mathcal{S} t_{\lambda}\right)\right|=f^{\lambda} .
$$

A natural question

Lemma

Set λ a partition.

- Set $\mathcal{S} t_{\lambda}=\left(h_{c}-1\right)_{c \in \lambda}$, then $\operatorname{Tab}\left(\mathcal{S} t_{\lambda}\right)=\operatorname{SYT}(\lambda)$.
- Set $\mathcal{B}_{\lambda}=\left(a_{c}\right)_{c \in \lambda}$, then $\operatorname{Tab}\left(\mathcal{B}_{\lambda}\right)=\operatorname{Bal}(\lambda)$.

With the Edelman-Greene's Theorem, we have that

$$
\left|\operatorname{Tab}\left(\mathcal{B}_{\lambda}\right)\right|=\left|\operatorname{Tab}\left(\mathcal{S} t_{\lambda}\right)\right|=f^{\lambda} .
$$

Problem

Fix \mathcal{T} a type. Can we find a formula for $|\operatorname{Tab}(\mathcal{T})|$?

A natural question

Lemma

Set λ a partition.

- Set $\mathcal{S} t_{\lambda}=\left(h_{c}-1\right)_{c \in \lambda}$, then $\operatorname{Tab}\left(\mathcal{S} t_{\lambda}\right)=\operatorname{SYT}(\lambda)$.
- Set $\mathcal{B}_{\lambda}=\left(a_{c}\right)_{c \in \lambda}$, then $\operatorname{Tab}\left(\mathcal{B}_{\lambda}\right)=\operatorname{Bal}(\lambda)$.

With the Edelman-Greene's Theorem, we have that

$$
\left|\operatorname{Tab}\left(\mathcal{B}_{\lambda}\right)\right|=\left|\operatorname{Tab}\left(\mathcal{S} t_{\lambda}\right)\right|=f^{\lambda} .
$$

Problem

Fix \mathcal{T} a type. Can we find a formula for $|\operatorname{Tab}(\mathcal{T})|$?

- In some cases yes.
- In general, the problem is open.

A natural question

Lemma

Set λ a partition.

- Set $\mathcal{S} t_{\lambda}=\left(h_{c}-1\right)_{c \in \lambda}$, then $\operatorname{Tab}\left(\mathcal{S} t_{\lambda}\right)=\operatorname{SYT}(\lambda)$.
- Set $\mathcal{B}_{\lambda}=\left(a_{c}\right)_{c \in \lambda}$, then $\operatorname{Tab}\left(\mathcal{B}_{\lambda}\right)=\operatorname{Bal}(\lambda)$.

With the Edelman-Greene's Theorem, we have that

$$
\left|\operatorname{Tab}\left(\mathcal{B}_{\lambda}\right)\right|=\left|\operatorname{Tab}\left(\mathcal{S} t_{\lambda}\right)\right|=f^{\lambda} .
$$

Problem

Fix \mathcal{T} a type. Can we find a formula for $|\operatorname{Tab}(\mathcal{T})|$?

- In some cases yes.
- In general, the problem is open.
- We have a probabilistic result : the expected value for $|\operatorname{Tab}(\mathcal{T})|$, when we uniformly pick a type \mathcal{T}, is f^{λ}.

The Filling algorithm（V，2014）

Question

Can we find an algorithm in order to construct all the tableaux of a given type？

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

3	2	1	0
2	1	0	
2	1	0	
0			
0			

Remaining boxes : 12

$$
L=
$$

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

Remaining boxes : 12

$$
L=
$$

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

Remaining boxes : 12
$L=$

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

3	2	1	(0)
2	1	(0)	
2	1	0	
(0)			
0			

Remaining boxes : 12

$$
L=
$$

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

3	2	1	0
2	1	0	
2	1	0	
0			
0			

Remaining boxes : 12

$$
L=
$$

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type?

- Yes! The Filling algorithm.

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

-1
Remaining boxes: 11

$$
L=[(2,3)]
$$

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

Remaining boxes: 11

$$
L=[(2,3)]
$$

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

-1
Remaining boxes : 10

$$
L=[(2,3),(1,3)]
$$

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

Remaining boxes: 9

$$
L=[(2,3),(1,3),(4,1)]
$$

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

- Yes! The Filling algorithm.

Remaining boxes: 8

$$
L=[(2,3),(1,3),(4,1),(3,3)]
$$

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given type?

- Yes! The Filling algorithm.

7	6	11	8
5	3	12	
4	1	9	
10			
2			

Remaining boxes : 0
Filling sequence

$$
L=[(2,3),(1,3),(4,1),(3,3),(1,4),(1,1), \ldots,(3,2)]
$$

The Filling algorithm

Definition

Set \mathcal{T} a type.

- A sequence L which come from the algorithm is called a filling sequence of \mathcal{T}.
- We define $\operatorname{Fil}(\mathcal{T})=\{$ Filling sequences of $\mathcal{T}\}$.

The Filling algorithm

Definition

Set \mathcal{T} a type.

- A sequence L which come from the algorithm is called a filling sequence of \mathcal{T}.
- We define $\operatorname{Fil}(\mathcal{T})=\{$ Filling sequences of $\mathcal{T}\}$.
- To each filling sequence $L=\left[c_{1}, c_{2}, \ldots, c_{n}\right]$ we associate the tableau $T_{L}=\left(t_{c}\right)_{c \in \lambda}$ such that $t_{c_{k}}=n+1-k$.

The Filling algorithm

Definition

Set \mathcal{T} a type.

- A sequence L which come from the algorithm is called a filling sequence of \mathcal{T}.
- We define $\operatorname{Fil}(\mathcal{T})=\{$ Filling sequences of $\mathcal{T}\}$.
- To each filling sequence $L=\left[c_{1}, c_{2}, \ldots, c_{n}\right]$ we associate the tableau $T_{L}=\left(t_{c}\right)_{c \in \lambda}$ such that $t_{c_{k}}=n+1-k$.

Theorem (V., 2014)

- For any filling sequence L of $\mathcal{T}, T_{L} \in \operatorname{Tab}(\mathcal{T})$.

The Filling algorithm

Definition

Set \mathcal{T} a type.

- A sequence L which come from the algorithm is called a filling sequence of \mathcal{T}.
- We define $\operatorname{Fil}(\mathcal{T})=\{$ Filling sequences of $\mathcal{T}\}$.
- To each filling sequence $L=\left[c_{1}, c_{2}, \ldots, c_{n}\right]$ we associate the tableau $T_{L}=\left(t_{c}\right)_{c \in \lambda}$ such that $t_{c_{k}}=n+1-k$.

Theorem (V., 2014)

- For any filling sequence L of $\mathcal{T}, T_{L} \in \operatorname{Tab}(\mathcal{T})$.
- The application $L \rightarrow T_{L}$ is a bijection.

$$
\begin{array}{rl}
\operatorname{Fil}(\mathcal{T}) & 1: 1 \\
L & \mathrm{Tab}(\mathcal{T}) \\
L & T_{L}
\end{array}
$$

Reformulation of Edelman－Greene＇s theorem using types

Motivation

In the sequence，we will show how some types are connected to the theory of reduced decompositions in the symmetric group．

Reformulation of Edelman-Greene's theorem using types

Motivation

In the sequence, we will show how some types are connected to the theory of reduced decompositions in the symmetric group.

Set $\omega_{0}=[n, n-1, \ldots, 1] \in S_{n}$ and $\lambda_{n}=(n-1, n-2, \ldots, 1)$.
Theorem (Edelman-Greene, 1987)
There exists a bijection between $\operatorname{Tab}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of Edelman-Greene's theorem using types

Set $\omega_{0}=[n, n-1, \ldots, 1] \in S_{n}$ and $\lambda_{n}=(n-1, n-2, \ldots, 1)$.
Theorem (Edelman-Greene, 1987)
There exists a bijection between $\operatorname{Tab}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of the theorem

There exists a bijection between $\operatorname{Fil}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of Edelman-Greene's theorem using types

Set $\omega_{0}=[n, n-1, \ldots, 1] \in S_{n}$ and $\lambda_{n}=(n-1, n-2, \ldots, 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of the theorem

There exists a bijection between $\operatorname{Fil}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of Edelman-Greene's theorem using types

Set $\omega_{0}=[n, n-1, \ldots, 1] \in S_{n}$ and $\lambda_{n}=(n-1, n-2, \ldots, 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of the theorem

There exists a bijection between $\operatorname{Fil}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

2 0 0 (1)	[1,2,3,4]
0 Х(2)	[1,3,2, 4]
0 (3)	
(4)	
${ }_{\text {Id }} s_{2}$	

Reformulation of Edelman-Greene's theorem using types

Set $\omega_{0}=[n, n-1, \ldots, 1] \in S_{n}$ and $\lambda_{n}=(n-1, n-2, \ldots, 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of the theorem

There exists a bijection between $\operatorname{Fil}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

${ }^{1} \nmid 011$	[1, 2, 3, 4]
0 (2)	[1,3,2, 4]
0 (3)	[3, 1, 2, 4]
(4)	

Reformulation of Edelman-Greene's theorem using types

Set $\omega_{0}=[n, n-1, \ldots, 1] \in S_{n}$ and $\lambda_{n}=(n-1, n-2, \ldots, 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of the theorem

There exists a bijection between $\operatorname{Fil}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

${ }^{0} \times 0{ }^{1}$	[1, 2, 3, 4]
- ${ }^{2}$	[1, 3, 2, 4]
0 (3)	[3, 1, 2, 4]
(4)	[3, 1, 4, 2]

Reformulation of Edelman-Greene's theorem using types

Set $\omega_{0}=[n, n-1, \ldots, 1] \in S_{n}$ and $\lambda_{n}=(n-1, n-2, \ldots, 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of the theorem

There exists a bijection between $\operatorname{Fil}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

- ${ }^{1}$	[1,2, 3, 4]	[3, 4, 1, 2]
- 2	[1,3,2, 4]	
0 (3)	[3, 1, 2, 4]	
(4)	[3, 1, 4, 2]	
	${ }_{1 / S_{3} s_{2}}$	

Reformulation of Edelman-Greene's theorem using types

Set $\omega_{0}=[n, n-1, \ldots, 1] \in S_{n}$ and $\lambda_{n}=(n-1, n-2, \ldots, 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of the theorem

There exists a bijection between $\operatorname{Fil}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of Edelman-Greene's theorem using types

Set $\omega_{0}=[n, n-1, \ldots, 1] \in S_{n}$ and $\lambda_{n}=(n-1, n-2, \ldots, 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

Reformulation of the theorem

There exists a bijection between $\operatorname{Fil}\left(\mathcal{B}_{\lambda_{n}}\right)$ and $\operatorname{Red}\left(\omega_{0}\right)$.

	$[1,2,3,4]$	$[3,4,1,2]$	
$1 d$	$[1,3,2,4]$	$[4,3,1,2]$	
$1 d$	s_{2}	$s_{2} s_{1}$	$s_{2} s_{1} s_{3}$
	$s_{2} s_{1} s_{3} s_{2}$	$s_{2} s_{1} s_{3} s_{2} s_{1}$	$s_{2} s_{1} s_{3} s_{2} s_{1} s_{3}$

How to obtain all the reduced decompositions of any permutation with the Filling algorithm

How to obtain all the reduced decompositions of any permutation with the Filling algorithm

How to obtain all the reduced decompositions of any permutation with the Filling algorithm

How to obtain all the reduced decompositions of any permutation with the Filling algorithm

How to obtain all the reduced decompositions of any permutation with the Filling algorithm

How to obtain all the reduced decompositions of any permutation with the Filling algorithm

How to obtain all the reduced decompositions of any permutation with the Filling algorithm

How to obtain all the reduced decompositions of any permutation with the Filling algorithm

Subtype of $\mathcal{B}_{\lambda_{n}}$

Definition

Let \mathcal{A} be a diagram contained in $\mathcal{B}_{\lambda_{n}}$. We call \mathcal{A} a sub-type of $\mathcal{B}_{\lambda_{n}}$ if and only if by using the filling algorithm we can fill it with crosses without putting any cross outside \mathcal{A}. The set of all the subtypes is denoted $\operatorname{Sub}\left(\mathcal{B}_{\lambda_{n}}\right)$.

Subtype of $\mathcal{B}_{\lambda_{n}}$

Definition

Let \mathcal{A} be a diagram contained in $\mathcal{B}_{\lambda_{n}}$. We call \mathcal{A} a sub-type of $\mathcal{B}_{\lambda_{n}}$ if and only if by using the filling algorithm we can fill it with crosses without putting any cross outside \mathcal{A}. The set of all the subtypes is denoted $\operatorname{Sub}\left(\mathcal{B}_{\lambda_{n}}\right)$.

Theorem (V, 2014)

Set $\phi: \sigma \rightarrow \operatorname{Inv}(\sigma)$ (seen as a subset of boxes of $\mathcal{B}_{\lambda_{n}}$). Then we have the following situation.

Link with balanced tableaux ？

Definition

Set $\sigma \in S_{n}$ ．The permutation σ is called vexillary if and only if σ is 2143－avoiding．

Link with balanced tableaux ?

Definition

Set $\sigma \in S_{n}$. The permutation σ is called vexillary if and only if σ is 2143-avoiding.

Theorem (Stanley, 1984)

If σ is vexillary, then there exists a partition $\lambda(\sigma)$ of the integer $\ell(\sigma)$ such that $\operatorname{red}(\sigma)=f^{\lambda(\sigma)}$.

Link with balanced tableaux ?

Definition

Set $\sigma \in S_{n}$. The permutation σ is called vexillary if and only if σ is 2143-avoiding.

Theorem (Stanley, 1984)

If σ is vexillary, then there exists a partition $\lambda(\sigma)$ of the integer $\ell(\sigma)$ such that $\operatorname{red}(\sigma)=f^{\lambda(\sigma)}$.

Definition

We denote

$$
\operatorname{Vex}(\lambda)=\{\sigma \mid \sigma \text { vexillary and } \lambda(\sigma)=\lambda\}
$$

(It is an infinite set, the permutations are taken in ALL symmetric groups)

Link with balanced tableaux ?

Theorem (V, 2014)

Using ϕ and one more combinatorial tool, we can explicitly construct an application Ψ from $\operatorname{Vex}(\lambda)$ to $\operatorname{Typ}(\lambda)$ (the set of the types of shape λ) such that:

Link with balanced tableaux ？

Theorem（V，2014）

Using ϕ and one more combinatorial tool，we can explicitly construct an application Ψ from $\operatorname{Vex}(\lambda)$ to $\operatorname{Typ}(\lambda)$（the set of the types of shape λ ） such that：
－for all $\sigma \in \operatorname{Vex}(\lambda),|\operatorname{Tab}(\Psi(\sigma))|=\operatorname{red}(\sigma)=f^{\lambda}$ ．

Link with balanced tableaux ?

Theorem (V, 2014)

Using ϕ and one more combinatorial tool, we can explicitly construct an application Ψ from $\operatorname{Vex}(\lambda)$ to $\operatorname{Typ}(\lambda)$ (the set of the types of shape λ) such that:

- for all $\sigma \in \operatorname{Vex}(\lambda),|\operatorname{Tab}(\Psi(\sigma))|=\operatorname{red}(\sigma)=f^{\lambda}$.
- We can construct σ_{λ} such that $\Psi\left(\sigma_{\lambda}\right)=\mathcal{B}_{\lambda}$ (recall: \mathcal{B}_{λ} is the type associated with balanced tableaux of shape λ).

Link with balanced tableaux ?

Theorem (V, 2014)

Using ϕ and one more combinatorial tool, we can explicitly construct an application Ψ from $\operatorname{Vex}(\lambda)$ to $\operatorname{Typ}(\lambda)$ (the set of the types of shape λ) such that:

- for all $\sigma \in \operatorname{Vex}(\lambda),|\operatorname{Tab}(\Psi(\sigma))|=\operatorname{red}(\sigma)=f^{\lambda}$.
- We can construct σ_{λ} such that $\Psi\left(\sigma_{\lambda}\right)=\mathcal{B}_{\lambda}$ (recall: \mathcal{B}_{λ} is the type associated with balanced tableaux of shape λ).

Corollary

We have that $|\operatorname{Bal}(\lambda)|=f^{\lambda}=|\operatorname{SYT}(\lambda)|$.

Thank you for your attention.

