
Type of a tableau, definition and properties

François Viard

ICJ

Mars 2014

Plan

1 Introduction

2 Type of a tableau

3 Link between types and reduced decompositions

4 A brief summary of the results

Reduced decompositions in the symmetric group

It is well known that the symmetric groups Sn is generated by the
simple transpositions si = (i , i + 1), i ∈ N.

Set σ ∈ Sn, we define `(σ) the minimal integer such that
σ = si1 · · · si`(σ) . Such a product is called a reduced decomposition.

It is classical that `(σ) = |Inv(σ)|, where

Inv(σ) = {(p, q) | p < q and σ−1(p) > σ−1(q)}

Reduced decompositions in the symmetric group

It is well known that the symmetric groups Sn is generated by the
simple transpositions si = (i , i + 1), i ∈ N.

Set σ ∈ Sn, we define `(σ) the minimal integer such that
σ = si1 · · · si`(σ) . Such a product is called a reduced decomposition.

It is classical that `(σ) = |Inv(σ)|, where

Inv(σ) = {(p, q) | p < q and σ−1(p) > σ−1(q)}

Reduced decompositions in the symmetric group

It is well known that the symmetric groups Sn is generated by the
simple transpositions si = (i , i + 1), i ∈ N.

Set σ ∈ Sn, we define `(σ) the minimal integer such that
σ = si1 · · · si`(σ) . Such a product is called a reduced decomposition.

It is classical that `(σ) = |Inv(σ)|, where

Inv(σ) = {(p, q) | p < q and σ−1(p) > σ−1(q)}

Partitions and standard tableaux

Definition

A partition of the integer n is a non-increasing sequence of non-negative
integers λ1 ≥ λ2 ≥ . . . such that

∑
i λi = n.

Ferrers diagram of the partition λ = (4, 3, 3, 1, 1).

Partitions and standard tableaux

Definition

A partition of the integer n is a non-increasing sequence of non-negative
integers λ1 ≥ λ2 ≥ . . . such that

∑
i λi = n.

Ferrers diagram of the partition λ = (4, 3, 3, 1, 1).

Partitions and standard tableaux

Definition

A partition of the integer n is a non-increasing sequence of non-negative
integers λ1 ≥ λ2 ≥ . . . such that

∑
i λi = n.

The hook based on (1, 2), denoted H(1,2)(λ).

Partitions and standard tableaux

Definition

A partition of the integer n is a non-increasing sequence of non-negative
integers λ1 ≥ λ2 ≥ . . . such that

∑
i λi = n.

Arm based on (1, 2).

Partitions and standard tableaux

Definition Standard Tableaux

A standard Young Tableau of shape λ is a filling of λ with all the integers
from 1 to n such that the integers are increasing from left to right and
from top to bottom. The set of all such tableaux is denoted SYT (λ) and
f λ = |SYT (λ)|.

1 2

3

4

5

6

7

8

9

10

11

12

A Standard Young Tableau of shape (4, 3, 3, 1, 1).

Enumeration of reduced decompositions

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Stanley, 1984)

red(ω0) = f λn =

(n
2

)
!

1n−13n−25n−3 · · · (2n − 3)1

The proof is not bijective and is based on the study of a symmetric
function.

Stanley also conjectured that for all σ ∈ Sn,

red(σ) =
∑
λ

aλf
λ

where the sum is over the partitions of `(σ) and aλ ≥ 0.

Enumeration of reduced decompositions

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Stanley, 1984)

red(ω0) = f λn =

(n
2

)
!

1n−13n−25n−3 · · · (2n − 3)1

The proof is not bijective and is based on the study of a symmetric
function.

Stanley also conjectured that for all σ ∈ Sn,

red(σ) =
∑
λ

aλf
λ

where the sum is over the partitions of `(σ) and aλ ≥ 0.

Enumeration of reduced decompositions

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Stanley, 1984)

red(ω0) = f λn =

(n
2

)
!

1n−13n−25n−3 · · · (2n − 3)1

The proof is not bijective and is based on the study of a symmetric
function.

Stanley also conjectured that for all σ ∈ Sn,

red(σ) =
∑
λ

aλf
λ

where the sum is over the partitions of `(σ) and aλ ≥ 0.

Enumeration of reduced decomposition

Theorem (Edelman-Greene / Lascoux-Schützenberger, 1987)

Set σ ∈ Sn. There exists a sequence of non-negative integers aλ such that

red(σ) =
∑
λ``(σ)

aλf
λ

LS : the proof is based on the study of Schubert polynomials (with
this point of view aλ = #{leafs of type λ in the LS-Tree}).

The proof of Edelman and Greene is purely bijective and is based on a
RSK-like insertion (here aλ = #{EG-tableaux of shape λ}).

Enumeration of reduced decomposition

Theorem (Edelman-Greene / Lascoux-Schützenberger, 1987)

Set σ ∈ Sn. There exists a sequence of non-negative integers aλ such that

red(σ) =
∑
λ``(σ)

aλf
λ

LS : the proof is based on the study of Schubert polynomials (with
this point of view aλ = #{leafs of type λ in the LS-Tree}).

The proof of Edelman and Greene is purely bijective and is based on a
RSK-like insertion (here aλ = #{EG-tableaux of shape λ}).

Enumeration of reduced decomposition

Theorem (Edelman-Greene / Lascoux-Schützenberger, 1987)

Set σ ∈ Sn. There exists a sequence of non-negative integers aλ such that

red(σ) =
∑
λ``(σ)

aλf
λ

LS : the proof is based on the study of Schubert polynomials (with
this point of view aλ = #{leafs of type λ in the LS-Tree}).

The proof of Edelman and Greene is purely bijective and is based on a
RSK-like insertion (here aλ = #{EG-tableaux of shape λ}).

Balanced tableaux

Where they come from

In their first attempt to find a combinatorial proof of the Stanley’s
theorem, Edelman and Greene introduced a new set of tableaux Bal(λ) of
shape λ called balanced tableaux.

Recall : ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1) the
staircase partition.

Bal(λn) SYT(λn)

Red(ω0)

No direct bijection

1:1 1:1

E-G E-G

Balanced tableaux

Where they come from

In their first attempt to find a combinatorial proof of the Stanley’s
theorem, Edelman and Greene introduced a new set of tableaux Bal(λ) of
shape λ called balanced tableaux.

Recall : ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1) the
staircase partition.

Bal(λn) SYT(λn)

Red(ω0)

No direct bijection

1:1 1:1

E-G E-G

Balanced tableaux

Theorem (Edelman-Greene, 1987)

For any partition λ, we have that |SYT(λ)| = |Bal(λ)|.

Bal(λ) SYT(λ)

Bal(λn) Red(ω0) SYT(λn)

Sketch of the Edelman-Green’s proof

Balanced tableaux

Theorem (Edelman-Greene, 1987)

For any partition λ, we have that |SYT(λ)| = |Bal(λ)|.

Bal(λ) SYT(λ)

Bal(λn) Red(ω0) SYT(λn)

Sketch of the Edelman-Green’s proof

Balanced tableaux

Theorem (Edelman-Greene, 1987)

For any partition λ, we have that |SYT(λ)| = |Bal(λ)|.

Bal(λ) SYT(λ)

Bal(λn) Red(ω0) SYT(λn)

Sketch of the Edelman-Green’s proof

Red(σλ)

Stanley(V, 2014)

1:1 1:1

Balanced tableaux

Definition of balanced tableaux

Set T = (tc)c∈λ a tableau of shape λ. T is a balanced tableau if and only
if for all boxes c ∈ λ we have |{z ∈ Hc(λ) | tz > tc}| = ac .

12

11

10

9

8

7 6

54 3

2

1

Balanced tableaux

Definition of balanced tableaux

Set T = (tc)c∈λ a tableau of shape λ. T is a balanced tableau if and only
if for all boxes c ∈ λ we have |{z ∈ Hc(λ) | tz > tc}| = ac .

12

11

10

9

8

7 6

54 3

2

1

Arm length = 2

Balanced tableaux

Definition of balanced tableaux

Set T = (tc)c∈λ a tableau of shape λ. T is a balanced tableau if and only
if for all boxes c ∈ λ we have |{z ∈ Hc(λ) | tz > tc}| = ac .

12

11

10

9

8

7 6

54 3

2

1

Arm length = 2

|{z ∈ Hc(λ) | tz > tc}| = 2

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each
tableau, in order to classify ALL of them (even if they are not standard
and not balanced).

Definition

Set λ a partition of n.

Set T = (tc)c∈λ a tableau of shape λ. The type of T is the filling of
λ with the integers θc = |{z ∈ Hc(λ) | tz > tc}|.

6 10 5 3

7 12 9

11 2 4

8

1

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each
tableau, in order to classify ALL of them (even if they are not standard
and not balanced).

Definition

Set λ a partition of n.

Set T = (tc)c∈λ a tableau of shape λ. The type of T is the filling of
λ with the integers θc = |{z ∈ Hc(λ) | tz > tc}|.

6 10 5 3

7 12 9

11 2 4

8

1

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each
tableau, in order to classify ALL of them (even if they are not standard
and not balanced).

Definition

Set λ a partition of n.

Set T = (tc)c∈λ a tableau of shape λ. The type of T is the filling of
λ with the integers θc = |{z ∈ Hc(λ) | tz > tc}|.

6 10 5 3

7 12 9

11 2 4

8

1

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each
tableau, in order to classify ALL of them (even if they are not standard
and not balanced).

Definition

Set λ a partition of n.

Set T = (tc)c∈λ a tableau of shape λ. The type of T is the filling of
λ with the integers θc = |{z ∈ Hc(λ) | tz > tc}|.

6 10 5 3

7 12 9

11 2 4

8

1

4

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each
tableau, in order to classify ALL of them (even if they are not standard
and not balanced).

Definition

Set λ a partition of n.

Set T = (tc)c∈λ a tableau of shape λ. The type of T is the filling of
λ with the integers θc = |{z ∈ Hc(λ) | tz > tc}|.

6 10 5 3

7 12 9

11 2 4

8

1

4

4

Definition of the type of a tableau

Now we will introduce a new combinatorial object associated to each
tableau, in order to classify ALL of them (even if they are not standard
and not balanced).

Definition

Set λ a partition of n.

Set T = (tc)c∈λ a tableau of shape λ. The type of T is the filling of
λ with the integers θc = |{z ∈ Hc(λ) | tz > tc}|.

6 10 5 3

7 12 9

11 2 4

8

1

4

4 1 1 0

0

0

0

0 1

0 0

Classification of all tableaux using their types

Definition

The set of all the tableaux which are of type T is denoted Tab(T).

Type Type

02

01

3

0

01

1

2

Classification of all tableaux using their types

Definition

The set of all the tableaux which are of type T is denoted Tab(T).

Type Type

02

01

3

0

01

1

2

Classification of all tableaux using their types

Definition

The set of all the tableaux which are of type T is denoted Tab(T).

Type Type

02

01

3

0

01

1

2

1 2 3

4 5

1 2

3

4

5

1 2

3 4

5

1

2

3 4

5

1

2

3

4

5

Standard Young Tableaux

Classification of all tableaux using their types

Definition

The set of all the tableaux which are of type T is denoted Tab(T).

Type Type

02

01

3

0

01

1

2

1 2 3

4 5

1 2

3

4

5

1 2

3 4

5

1

2

3 4

5

1

2

3

4

5

Standard Young Tableaux

543

21

54

3

2

1 5

5 5

4

4

4

3

3

32 1

2

1

2 1

Balanced tableaux

A natural question

Lemma

Set λ a partition.

Set Stλ = (hc − 1)c∈λ, then Tab(Stλ) = SYT(λ).

Set Bλ = (ac)c∈λ, then Tab(Bλ) = Bal(λ).

With the Edelman-Greene’s Theorem, we have that

|Tab(Bλ)| = |Tab(Stλ)| = f λ.

Problem

Fix T a type. Can we find a formula for |Tab(T)| ?

In some cases yes.

In general, the problem is open.

We have a probabilistic result : the expected value for |Tab(T)|,
when we uniformly pick a type T , is f λ.

A natural question

Lemma

Set λ a partition.

Set Stλ = (hc − 1)c∈λ, then Tab(Stλ) = SYT(λ).

Set Bλ = (ac)c∈λ, then Tab(Bλ) = Bal(λ).

With the Edelman-Greene’s Theorem, we have that

|Tab(Bλ)| = |Tab(Stλ)| = f λ.

Problem

Fix T a type. Can we find a formula for |Tab(T)| ?

In some cases yes.

In general, the problem is open.

We have a probabilistic result : the expected value for |Tab(T)|,
when we uniformly pick a type T , is f λ.

A natural question

Lemma

Set λ a partition.

Set Stλ = (hc − 1)c∈λ, then Tab(Stλ) = SYT(λ).

Set Bλ = (ac)c∈λ, then Tab(Bλ) = Bal(λ).

With the Edelman-Greene’s Theorem, we have that

|Tab(Bλ)| = |Tab(Stλ)| = f λ.

Problem

Fix T a type. Can we find a formula for |Tab(T)| ?

In some cases yes.

In general, the problem is open.

We have a probabilistic result : the expected value for |Tab(T)|,
when we uniformly pick a type T , is f λ.

A natural question

Lemma

Set λ a partition.

Set Stλ = (hc − 1)c∈λ, then Tab(Stλ) = SYT(λ).

Set Bλ = (ac)c∈λ, then Tab(Bλ) = Bal(λ).

With the Edelman-Greene’s Theorem, we have that

|Tab(Bλ)| = |Tab(Stλ)| = f λ.

Problem

Fix T a type. Can we find a formula for |Tab(T)| ?

In some cases yes.

In general, the problem is open.

We have a probabilistic result : the expected value for |Tab(T)|,
when we uniformly pick a type T , is f λ.

A natural question

Lemma

Set λ a partition.

Set Stλ = (hc − 1)c∈λ, then Tab(Stλ) = SYT(λ).

Set Bλ = (ac)c∈λ, then Tab(Bλ) = Bal(λ).

With the Edelman-Greene’s Theorem, we have that

|Tab(Bλ)| = |Tab(Stλ)| = f λ.

Problem

Fix T a type. Can we find a formula for |Tab(T)| ?

In some cases yes.

In general, the problem is open.

We have a probabilistic result : the expected value for |Tab(T)|,
when we uniformly pick a type T , is f λ.

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 12

0

0

0

0

01

1

12

2

23

L =

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 12

0

0

0

0

01

1

12

2

23

L =

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 12

0

0

0

0

01

1

12

2

23

L =

no zero

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 12

0

0

0

0

01

1

12

2

23

L =

no zero

no zero

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 12

0

0

0

0

01

1

12

2

23

L =

no zero

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 12

0

0

0

0

01

1

12

2

23

L =

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 12

0

0

0

0

01

1

12

2

23

L =

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 12

0

0

0

0

01

1

12

2

23

L =

1212

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 12

0

0

0

0

01

1

12

2

23

L = [(2, 3)]

1212

Column 3

Line 2

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 11

0

0

0

01

1

12

2

23

L = [(2, 3)]

1212

-1

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 11

0

0

0

01

1

12

2

23

L = [(2, 3)]

1212

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 11

0

0

0

00

0

12

1

23

L = [(2, 3)]

1212

-1

-1

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 11

0

0

0

00

0

12

1

23

L = [(2, 3), (1, 3)]

1212

no zero 11

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 10

0

0

0

0

0

12

1

12

L = [(2, 3), (1, 3)]

1212

11-1

-1

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 9

0

0

0

0

11

0

11

L = [(2, 3), (1, 3), (4, 1)]

1212

11

10

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 8

0

0

0

00

0

11

L = [(2, 3), (1, 3), (4, 1), (3, 3)]

1212

11

10

9

The Filling algorithm (V, 2014)

Question

Can we find an algorithm in order to construct all the tableaux of a given
type ?

Yes ! The Filling algorithm.

Remaining boxes : 0

L = [(2, 3), (1, 3), (4, 1), (3, 3), (1, 4), (1, 1), . . . , (3, 2)]

1212

11

10

9

87 6

5

4

3

2

1

Filling sequence

The Filling algorithm

Definition

Set T a type.

A sequence L which come from the algorithm is called a filling
sequence of T .

We define Fil(T) = {Filling sequences of T }.

To each filling sequence L = [c1, c2, . . . , cn] we associate the tableau
TL = (tc)c∈λ such that tck = n + 1− k .

Theorem (V., 2014)

For any filling sequence L of T , TL ∈ Tab(T).

The application L→ TL is a bijection.

Fil(T) Tab(T)
1:1

L TL

The Filling algorithm

Definition

Set T a type.

A sequence L which come from the algorithm is called a filling
sequence of T .

We define Fil(T) = {Filling sequences of T }.
To each filling sequence L = [c1, c2, . . . , cn] we associate the tableau
TL = (tc)c∈λ such that tck = n + 1− k .

Theorem (V., 2014)

For any filling sequence L of T , TL ∈ Tab(T).

The application L→ TL is a bijection.

Fil(T) Tab(T)
1:1

L TL

The Filling algorithm

Definition

Set T a type.

A sequence L which come from the algorithm is called a filling
sequence of T .

We define Fil(T) = {Filling sequences of T }.
To each filling sequence L = [c1, c2, . . . , cn] we associate the tableau
TL = (tc)c∈λ such that tck = n + 1− k .

Theorem (V., 2014)

For any filling sequence L of T , TL ∈ Tab(T).

The application L→ TL is a bijection.

Fil(T) Tab(T)
1:1

L TL

The Filling algorithm

Definition

Set T a type.

A sequence L which come from the algorithm is called a filling
sequence of T .

We define Fil(T) = {Filling sequences of T }.
To each filling sequence L = [c1, c2, . . . , cn] we associate the tableau
TL = (tc)c∈λ such that tck = n + 1− k .

Theorem (V., 2014)

For any filling sequence L of T , TL ∈ Tab(T).

The application L→ TL is a bijection.

Fil(T) Tab(T)
1:1

L TL

Reformulation of Edelman-Greene’s theorem using types

Motivation

In the sequence, we will show how some types are connected to the theory
of reduced decompositions in the symmetric group.

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Edelman-Greene, 1987)

There exists a bijection between Tab(Bλn) and Red(ω0).

Reformulation of Edelman-Greene’s theorem using types

Motivation

In the sequence, we will show how some types are connected to the theory
of reduced decompositions in the symmetric group.

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Edelman-Greene, 1987)

There exists a bijection between Tab(Bλn) and Red(ω0).

Reformulation of Edelman-Greene’s theorem using types

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Edelman-Greene, 1987)

There exists a bijection between Tab(Bλn) and Red(ω0).

Reformulation of the theorem

There exists a bijection between Fil(Bλn) and Red(ω0).

0

0

0

1

12 1

2

3

4

[1, 2, 3, 4]

Id

Reformulation of Edelman-Greene’s theorem using types

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Edelman-Greene, 1987)

There exists a bijection between Tab(Bλn) and Red(ω0).

Reformulation of the theorem

There exists a bijection between Fil(Bλn) and Red(ω0).

0

0

0

1

12 1

2

3

4

[1, 2, 3, 4]

Id

Reformulation of Edelman-Greene’s theorem using types

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Edelman-Greene, 1987)

There exists a bijection between Tab(Bλn) and Red(ω0).

Reformulation of the theorem

There exists a bijection between Fil(Bλn) and Red(ω0).

0

0

0

02 1

2

3

4

[1, 2, 3, 4]

[1, 3, 2, 4]

Id s2

Reformulation of Edelman-Greene’s theorem using types

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Edelman-Greene, 1987)

There exists a bijection between Tab(Bλn) and Red(ω0).

Reformulation of the theorem

There exists a bijection between Fil(Bλn) and Red(ω0).

0

0

0

1 1

2

3

4

[1, 2, 3, 4]

[1, 3, 2, 4]

[3, 1, 2, 4]

Id s2 s2s1

Reformulation of Edelman-Greene’s theorem using types

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Edelman-Greene, 1987)

There exists a bijection between Tab(Bλn) and Red(ω0).

Reformulation of the theorem

There exists a bijection between Fil(Bλn) and Red(ω0).

0

0

0 1

2

3

4

[1, 2, 3, 4]

[1, 3, 2, 4]

[3, 1, 2, 4]

[3, 1, 4, 2]

Id s2 s2s1 s2s1s3

Reformulation of Edelman-Greene’s theorem using types

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Edelman-Greene, 1987)

There exists a bijection between Tab(Bλn) and Red(ω0).

Reformulation of the theorem

There exists a bijection between Fil(Bλn) and Red(ω0).

0

0

1

2

3

4

[1, 2, 3, 4]

[1, 3, 2, 4]

[3, 1, 2, 4]

[3, 1, 4, 2]

[3, 4, 1, 2]

Id s2 s2s1 s2s1s3 s2s1s3s2

Reformulation of Edelman-Greene’s theorem using types

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Edelman-Greene, 1987)

There exists a bijection between Tab(Bλn) and Red(ω0).

Reformulation of the theorem

There exists a bijection between Fil(Bλn) and Red(ω0).

0 1

2

3

4

[1, 2, 3, 4]

[1, 3, 2, 4]

[3, 1, 2, 4]

[3, 1, 4, 2]

[3, 4, 1, 2]

[4, 3, 1, 2]

Id s2 s2s1 s2s1s3 s2s1s3s2 s2s1s3s2s1

Reformulation of Edelman-Greene’s theorem using types

Set ω0 = [n, n − 1, . . . , 1] ∈ Sn and λn = (n − 1, n − 2, . . . , 1).

Theorem (Edelman-Greene, 1987)

There exists a bijection between Tab(Bλn) and Red(ω0).

Reformulation of the theorem

There exists a bijection between Fil(Bλn) and Red(ω0).

1

2

3

4

[1, 2, 3, 4]

[1, 3, 2, 4]

[3, 1, 2, 4]

[3, 1, 4, 2]

[3, 4, 1, 2]

[4, 3, 1, 2]

[4, 3, 2, 1]

Id s2 s2s1 s2s1s3 s2s1s3s2 s2s1s3s2s1 s2s1s3s2s1s3

How to obtain all the reduced decompositions of any
permutation with the Filling algorithm

1

2

3

4

0

0

0

1

12

σ = [3, 1, 4, 2] Inv(σ) = { (2, 3) , (2, 4) , (1, 3) }

1

2

3

4

0

0

0

1

12

[1, 2, 3, 4]

[1, 2, 3, 4]

Red(σ)

Id

Id

How to obtain all the reduced decompositions of any
permutation with the Filling algorithm

1

2

3

4

0

0

0

1

12

σ = [3, 1, 4, 2] Inv(σ) = { (2, 3) , (2, 4) , (1, 3) }

1

2

3

4

0

0

0

1

12

[1, 2, 3, 4]

[1, 2, 3, 4]

Red(σ)

Id

Id

How to obtain all the reduced decompositions of any
permutation with the Filling algorithm

1

2

3

4

0

0

0

1

12

σ = [3, 1, 4, 2] Inv(σ) = { (2, 3) , (2, 4) , (1, 3) }

1

2

3

4

0

0

0

1

12

[1, 2, 3, 4]

[1, 2, 3, 4]

Red(σ)

Id

Id

How to obtain all the reduced decompositions of any
permutation with the Filling algorithm

1

2

3

4

0

0

0

1

12

σ = [3, 1, 4, 2] Inv(σ) = { (2, 3) , (2, 4) , (1, 3) }

1

2

3

4

0

0

0

1

12

[1, 2, 3, 4]

[1, 2, 3, 4]

Red(σ)

Id

Id

How to obtain all the reduced decompositions of any
permutation with the Filling algorithm

1

2

3

4

0

0

0

1

12

σ = [3, 1, 4, 2] Inv(σ) = { (2, 3) , (2, 4) , (1, 3) }

1

2

3

4

0

0

0

1

12

[1, 2, 3, 4]

[1, 2, 3, 4]

Red(σ)

Id

Id

How to obtain all the reduced decompositions of any
permutation with the Filling algorithm

1

2

3

4

0

0

0

02

σ = [3, 1, 4, 2] Inv(σ) = { (2, 3) , (2, 4) , (1, 3) }

1

2

3

4

0

0

0

02

[1, 2, 3, 4]

[1, 3, 2, 4]

[1, 2, 3, 4]

[1, 3, 2, 4]

Red(σ)

s2Id

s2Id

How to obtain all the reduced decompositions of any
permutation with the Filling algorithm

1

2

3

4

0

001

σ = [3, 1, 4, 2] Inv(σ) = { (2, 3) , (2, 4) , (1, 3) }

1

2

3

4

0

0

0

1

[1, 2, 3, 4]

[1, 3, 2, 4]

[1, 3, 4, 2]

[1, 2, 3, 4]

[1, 3, 2, 4]

[3, 1, 4, 2]

Red(σ)

s2 s2s3Id

s2 s2s1Id

How to obtain all the reduced decompositions of any
permutation with the Filling algorithm

1

2

3

4

0

00

σ = [3, 1, 4, 2] Inv(σ) = { (2, 3) , (2, 4) , (1, 3) }

1

2

3

4

0

00

[1, 2, 3, 4]

[1, 3, 2, 4]

[1, 3, 4, 2]

[3, 1, 4, 2]

[1, 2, 3, 4]

[1, 3, 2, 4]

[3, 1, 4, 2]

[3, 1, 4, 2]

Red(σ)

s2 s2s3 s2s3s1Id

s2 s2s1 s2s1s3Id

s2s3s1

s2s1s3

Subtype of Bλn
Definition

Let A be a diagram contained in Bλn . We call A a sub-type of Bλn if and
only if by using the filling algorithm we can fill it with crosses without
putting any cross outside A. The set of all the subtypes is denoted
Sub(Bλn).

Theorem (V, 2014)

Set φ : σ → Inv(σ) (seen as a subset of boxes of Bλn). Then we have the
following situation.

Sn Sub(Bλn)
φ

σ φ(σ)
1:1

Red(σ) Fil(φ(σ))
1:1

Subtype of Bλn
Definition

Let A be a diagram contained in Bλn . We call A a sub-type of Bλn if and
only if by using the filling algorithm we can fill it with crosses without
putting any cross outside A. The set of all the subtypes is denoted
Sub(Bλn).

Theorem (V, 2014)

Set φ : σ → Inv(σ) (seen as a subset of boxes of Bλn). Then we have the
following situation.

Sn Sub(Bλn)
φ

σ φ(σ)
1:1

Red(σ) Fil(φ(σ))
1:1

Link with balanced tableaux ?

Definition

Set σ ∈ Sn. The permutation σ is called vexillary if and only if σ is
2143-avoiding.

Theorem (Stanley, 1984)

If σ is vexillary, then there exists a partition λ(σ) of the integer `(σ) such
that red(σ) = f λ(σ).

Definition

We denote
Vex(λ) = {σ | σ vexillary and λ(σ) = λ }

(It is an infinite set, the permutations are taken in ALL symmetric groups)

Link with balanced tableaux ?

Definition

Set σ ∈ Sn. The permutation σ is called vexillary if and only if σ is
2143-avoiding.

Theorem (Stanley, 1984)

If σ is vexillary, then there exists a partition λ(σ) of the integer `(σ) such
that red(σ) = f λ(σ).

Definition

We denote
Vex(λ) = {σ | σ vexillary and λ(σ) = λ }

(It is an infinite set, the permutations are taken in ALL symmetric groups)

Link with balanced tableaux ?

Definition

Set σ ∈ Sn. The permutation σ is called vexillary if and only if σ is
2143-avoiding.

Theorem (Stanley, 1984)

If σ is vexillary, then there exists a partition λ(σ) of the integer `(σ) such
that red(σ) = f λ(σ).

Definition

We denote
Vex(λ) = {σ | σ vexillary and λ(σ) = λ }

(It is an infinite set, the permutations are taken in ALL symmetric groups)

Link with balanced tableaux ?

Theorem (V, 2014)

Using φ and one more combinatorial tool, we can explicitly construct an
application Ψ from Vex(λ) to Typ(λ) (the set of the types of shape λ)
such that:

for all σ ∈ Vex(λ), |Tab(Ψ(σ))| = red(σ) = f λ.

We can construct σλ such that Ψ(σλ) = Bλ (recall: Bλ is the type
associated with balanced tableaux of shape λ).

Corollary

We have that |Bal(λ)| = f λ = |SYT(λ)|.

Link with balanced tableaux ?

Theorem (V, 2014)

Using φ and one more combinatorial tool, we can explicitly construct an
application Ψ from Vex(λ) to Typ(λ) (the set of the types of shape λ)
such that:

for all σ ∈ Vex(λ), |Tab(Ψ(σ))| = red(σ) = f λ.

We can construct σλ such that Ψ(σλ) = Bλ (recall: Bλ is the type
associated with balanced tableaux of shape λ).

Corollary

We have that |Bal(λ)| = f λ = |SYT(λ)|.

Link with balanced tableaux ?

Theorem (V, 2014)

Using φ and one more combinatorial tool, we can explicitly construct an
application Ψ from Vex(λ) to Typ(λ) (the set of the types of shape λ)
such that:

for all σ ∈ Vex(λ), |Tab(Ψ(σ))| = red(σ) = f λ.

We can construct σλ such that Ψ(σλ) = Bλ (recall: Bλ is the type
associated with balanced tableaux of shape λ).

Corollary

We have that |Bal(λ)| = f λ = |SYT(λ)|.

Link with balanced tableaux ?

Theorem (V, 2014)

Using φ and one more combinatorial tool, we can explicitly construct an
application Ψ from Vex(λ) to Typ(λ) (the set of the types of shape λ)
such that:

for all σ ∈ Vex(λ), |Tab(Ψ(σ))| = red(σ) = f λ.

We can construct σλ such that Ψ(σλ) = Bλ (recall: Bλ is the type
associated with balanced tableaux of shape λ).

Corollary

We have that |Bal(λ)| = f λ = |SYT(λ)|.

Thank you for your attention.

	Introduction
	Type of a tableau
	Link between types and reduced decompositions
	A brief summary of the results

