Type of a tableau, definition and properties

François Viard

ICJ

Mars 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- 2 Type of a tableau
- 3 Link between types and reduced decompositions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

4 A brief summary of the results

Reduced decompositions in the symmetric group

• It is well known that the symmetric groups S_n is generated by the simple transpositions $s_i = (i, i + 1), i \in \mathbb{N}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- It is well known that the symmetric groups S_n is generated by the simple transpositions $s_i = (i, i + 1), i \in \mathbb{N}$.
- Set $\sigma \in S_n$, we define $\ell(\sigma)$ the minimal integer such that $\sigma = s_{i_1} \cdots s_{i_{\ell(\sigma)}}$. Such a product is called a **reduced decomposition**.

- It is well known that the symmetric groups S_n is generated by the simple transpositions $s_i = (i, i + 1), i \in \mathbb{N}$.
- Set $\sigma \in S_n$, we define $\ell(\sigma)$ the minimal integer such that $\sigma = s_{i_1} \cdots s_{i_{\ell(\sigma)}}$. Such a product is called a **reduced decomposition**.
- It is classical that $\ell(\sigma) = |\operatorname{Inv}(\sigma)|$, where

$$\operatorname{Inv}(\sigma) = \{(p,q) \mid p < q \text{ and } \sigma^{-1}(p) > \sigma^{-1}(q)\}$$

A partition of the integer *n* is a non-increasing sequence of non-negative integers $\lambda_1 \ge \lambda_2 \ge \ldots$ such that $\sum_i \lambda_i = n$.

A partition of the integer *n* is a non-increasing sequence of non-negative integers $\lambda_1 \ge \lambda_2 \ge \ldots$ such that $\sum_i \lambda_i = n$.

Ferrers diagram of the partition $\lambda = (4, 3, 3, 1, 1)$.

A partition of the integer *n* is a non-increasing sequence of non-negative integers $\lambda_1 \ge \lambda_2 \ge \ldots$ such that $\sum_i \lambda_i = n$.

The hook based on (1,2), denoted $H_{(1,2)}(\lambda)$.

A partition of the integer *n* is a non-increasing sequence of non-negative integers $\lambda_1 \ge \lambda_2 \ge \ldots$ such that $\sum_i \lambda_i = n$.

Arm based on (1, 2).

Definition Standard Tableaux

A standard Young Tableau of shape λ is a filling of λ with all the integers from 1 to *n* such that the integers are increasing from left to right and from top to bottom. The set of all such tableaux is denoted $SYT(\lambda)$ and $f^{\lambda} = |SYT(\lambda)|$.

1	2	5	10
3	7	9	
4	8	11	
6			
12			

A Standard Young Tableau of shape (4, 3, 3, 1, 1).

Enumeration of reduced decompositions

Set
$$\omega_0 = [n, n-1, ..., 1] \in S_n$$
 and $\lambda_n = (n-1, n-2, ..., 1)$.

Theorem (Stanley, 1984)

$$\operatorname{red}(\omega_0) = f^{\lambda_n} = \frac{\binom{n}{2}!}{1^{n-1}3^{n-2}5^{n-3}\cdots(2n-3)^1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Enumeration of reduced decompositions

Set
$$\omega_0 = [n, n-1, ..., 1] \in S_n$$
 and $\lambda_n = (n-1, n-2, ..., 1)$.

Theorem (Stanley, 1984)

$$\operatorname{red}(\omega_0) = f^{\lambda_n} = \frac{\binom{n}{2}!}{1^{n-1}3^{n-2}5^{n-3}\cdots(2n-3)^1}$$

• The proof is not bijective and is based on the study of a symmetric function.

Enumeration of reduced decompositions

Set
$$\omega_0 = [n, n-1, ..., 1] \in S_n$$
 and $\lambda_n = (n-1, n-2, ..., 1)$.

Theorem (Stanley, 1984)

$$\operatorname{red}(\omega_0) = f^{\lambda_n} = \frac{\binom{n}{2}!}{1^{n-1}3^{n-2}5^{n-3}\cdots(2n-3)^1}$$

- The proof is not bijective and is based on the study of a symmetric function.
- Stanley also conjectured that for all $\sigma \in S_n$,

$$\operatorname{red}(\sigma) = \sum_{\lambda} a_{\lambda} f^{\lambda}$$

where the sum is over the partitions of $\ell(\sigma)$ and $a_{\lambda} \geq 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Theorem (Edelman-Greene / Lascoux-Schützenberger, 1987) Set $\sigma \in S_n$. There exists a sequence of non-negative integers a_λ such that $\operatorname{red}(\sigma) = \sum_{\lambda \vdash \ell(\sigma)} a_\lambda f^\lambda$

Theorem (Edelman-Greene / Lascoux-Schützenberger, 1987) Set $\sigma \in S_n$. There exists a sequence of non-negative integers a_λ such that $\operatorname{red}(\sigma) = \sum_{\lambda \vdash \ell(\sigma)} a_\lambda f^\lambda$

• LS : the proof is based on the study of Schubert polynomials (with this point of view $a_{\lambda} = \#\{\text{leafs of type } \lambda \text{ in the LS-Tree}\}$).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem (Edelman-Greene / Lascoux-Schützenberger, 1987) Set $\sigma \in S_n$. There exists a sequence of non-negative integers a_λ such that $\operatorname{red}(\sigma) = \sum_{\lambda \vdash \ell(\sigma)} a_\lambda f^\lambda$

- LS : the proof is based on the study of Schubert polynomials (with this point of view a_λ = #{leafs of type λ in the LS-Tree}).
- The proof of Edelman and Greene is purely bijective and is based on a RSK-like insertion (here $a_{\lambda} = \#\{\text{EG-tableaux of shape } \lambda\}$).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Where they come from

In their first attempt to find a combinatorial proof of the Stanley's theorem, Edelman and Greene introduced a new set of tableaux $Bal(\lambda)$ of shape λ called **balanced tableaux**.

Where they come from

In their first attempt to find a combinatorial proof of the Stanley's theorem, Edelman and Greene introduced a new set of tableaux $Bal(\lambda)$ of shape λ called **balanced tableaux**.

Recall : $\omega_0 = [n, n-1, \dots, 1] \in S_n$ and $\lambda_n = (n-1, n-2, \dots, 1)$ the staircase partition.

Theorem (Edelman-Greene, 1987)

For any partition λ , we have that $|SYT(\lambda)| = |Bal(\lambda)|$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem (Edelman-Greene, 1987)

For any partition λ , we have that $|SYT(\lambda)| = |Bal(\lambda)|$.

Theorem (Edelman-Greene, 1987)

For any partition λ , we have that $|SYT(\lambda)| = |Bal(\lambda)|$.

Definition of balanced tableaux

Set $T = (t_c)_{c \in \lambda}$ a tableau of shape λ . T is a balanced tableau if and only if for all boxes $c \in \lambda$ we have $|\{z \in H_c(\lambda) \mid t_z > t_c\}| = a_c$.

Definition of balanced tableaux

Set $T = (t_c)_{c \in \lambda}$ a tableau of shape λ . T is a balanced tableau if and only if for all boxes $c \in \lambda$ we have $|\{z \in H_c(\lambda) \mid t_z > t_c\}| = a_c$.

Definition of balanced tableaux

Set $T = (t_c)_{c \in \lambda}$ a tableau of shape λ . T is a balanced tableau if and only if for all boxes $c \in \lambda$ we have $|\{z \in H_c(\lambda) \mid t_z > t_c\}| = a_c$.

Now we will introduce a new combinatorial object associated to each tableau, in order to classify ALL of them (even if they are not standard and not balanced).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Now we will introduce a new combinatorial object associated to each tableau, in order to classify ALL of them (even if they are not standard and not balanced).

Definition

Set λ a partition of n.

• Set $T = (t_c)_{c \in \lambda}$ a tableau of shape λ . The **type** of T is the filling of λ with the integers $\theta_c = |\{z \in H_c(\lambda) \mid t_z > t_c\}|$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Now we will introduce a new combinatorial object associated to each tableau, in order to classify ALL of them (even if they are not standard and not balanced).

Definition

Set λ a partition of n.

• Set $T = (t_c)_{c \in \lambda}$ a tableau of shape λ . The **type** of T is the filling of λ with the integers $\theta_c = |\{z \in H_c(\lambda) \mid t_z > t_c\}|$.

6	10	5	3
7	12	9	
11	2	4	•
8			
1			

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ▼ のへの

Now we will introduce a new combinatorial object associated to each tableau, in order to classify ALL of them (even if they are not standard and not balanced).

Definition

Set λ a partition of n.

• Set $T = (t_c)_{c \in \lambda}$ a tableau of shape λ . The **type** of T is the filling of λ with the integers $\theta_c = |\{z \in H_c(\lambda) \mid t_z > t_c\}|$.

Now we will introduce a new combinatorial object associated to each tableau, in order to classify ALL of them (even if they are not standard and not balanced).

Definition

Set λ a partition of n.

• Set $T = (t_c)_{c \in \lambda}$ a tableau of shape λ . The **type** of T is the filling of λ with the integers $\theta_c = |\{z \in H_c(\lambda) \mid t_z > t_c\}|$.

《曰》 《聞》 《理》 《理》 三世

Now we will introduce a new combinatorial object associated to each tableau, in order to classify ALL of them (even if they are not standard and not balanced).

Definition

Set λ a partition of n.

• Set $T = (t_c)_{c \in \lambda}$ a tableau of shape λ . The **type** of T is the filling of λ with the integers $\theta_c = |\{z \in H_c(\lambda) \mid t_z > t_c\}|$.

6	10	5	3
7	12	9	
11	2	4	•
8			
1			

4	1	1	0
4	0	0	
0	1	0	
0			
0			

Definition

The set of all the tableaux which are of type \mathcal{T} is denoted $\operatorname{Tab}(\mathcal{T})$.

Definition

The set of all the tableaux which are of type \mathcal{T} is denoted $\operatorname{Tab}(\mathcal{T})$.

Definition

The set of all the tableaux which are of type \mathcal{T} is denoted $\operatorname{Tab}(\mathcal{T})$.

Definition

The set of all the tableaux which are of type \mathcal{T} is denoted $\operatorname{Tab}(\mathcal{T})$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

A natural question

Lemma

Set λ a partition.

• Set $St_{\lambda} = (h_c - 1)_{c \in \lambda}$, then $\operatorname{Tab}(St_{\lambda}) = \operatorname{SYT}(\lambda)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Set $\mathcal{B}_{\lambda} = (a_c)_{c \in \lambda}$, then $\operatorname{Tab}(\mathcal{B}_{\lambda}) = \operatorname{Bal}(\lambda)$.

A natural question

Lemma

Set λ a partition.

• Set
$$St_{\lambda} = (h_c - 1)_{c \in \lambda}$$
, then $\operatorname{Tab}(St_{\lambda}) = \operatorname{SYT}(\lambda)$.

• Set $\mathcal{B}_{\lambda} = (a_c)_{c \in \lambda}$, then $\operatorname{Tab}(\mathcal{B}_{\lambda}) = \operatorname{Bal}(\lambda)$.

With the Edelman-Greene's Theorem, we have that

$$|\operatorname{Tab}(\mathcal{B}_{\lambda})| = |\operatorname{Tab}(\mathcal{S}t_{\lambda})| = f^{\lambda}.$$
A natural question

Lemma

Set λ a partition.

• Set
$$St_{\lambda} = (h_c - 1)_{c \in \lambda}$$
, then $\operatorname{Tab}(St_{\lambda}) = \operatorname{SYT}(\lambda)$.

• Set $\mathcal{B}_{\lambda} = (a_c)_{c \in \lambda}$, then $\operatorname{Tab}(\mathcal{B}_{\lambda}) = \operatorname{Bal}(\lambda)$.

With the Edelman-Greene's Theorem, we have that

$$|\operatorname{Tab}(\mathcal{B}_{\lambda})| = |\operatorname{Tab}(\mathcal{S}t_{\lambda})| = f^{\lambda}.$$

(日) (월) (분) (분)

æ

Problem

Fix \mathcal{T} a type. Can we find a formula for $|\mathrm{Tab}(\mathcal{T})|$?

A natural question

Lemma

Set λ a partition.

• Set
$$St_{\lambda} = (h_c - 1)_{c \in \lambda}$$
, then $\operatorname{Tab}(St_{\lambda}) = \operatorname{SYT}(\lambda)$.

• Set $\mathcal{B}_{\lambda} = (a_c)_{c \in \lambda}$, then $\operatorname{Tab}(\mathcal{B}_{\lambda}) = \operatorname{Bal}(\lambda)$.

With the Edelman-Greene's Theorem, we have that

$$|\operatorname{Tab}(\mathcal{B}_{\lambda})| = |\operatorname{Tab}(\mathcal{S}t_{\lambda})| = f^{\lambda}.$$

Problem

Fix \mathcal{T} a type. Can we find a formula for $|\mathrm{Tab}(\mathcal{T})|$?

- In some cases yes.
- In general, the problem is open.

A natural question

Lemma

Set λ a partition.

• Set
$$St_{\lambda} = (h_c - 1)_{c \in \lambda}$$
, then $\operatorname{Tab}(St_{\lambda}) = \operatorname{SYT}(\lambda)$.

• Set $\mathcal{B}_{\lambda} = (a_c)_{c \in \lambda}$, then $\operatorname{Tab}(\mathcal{B}_{\lambda}) = \operatorname{Bal}(\lambda)$.

With the Edelman-Greene's Theorem, we have that

$$|\operatorname{Tab}(\mathcal{B}_{\lambda})| = |\operatorname{Tab}(\mathcal{S}t_{\lambda})| = f^{\lambda}.$$

Problem

Fix \mathcal{T} a type. Can we find a formula for $|\mathrm{Tab}(\mathcal{T})|$?

- In some cases yes.
- In general, the problem is open.
- We have a probabilistic result : the expected value for $|Tab(\mathcal{T})|$, when we uniformly pick a type \mathcal{T} , is f^{λ} .

Question

Can we find an algorithm in order to construct all the tableaux of a given type $? \end{tabular}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Question

Can we find an algorithm in order to construct all the tableaux of a given type ?

Definition

Set \mathcal{T} a type.

• A sequence *L* which come from the algorithm is called a **filling sequence** of *T*.

• We define $\operatorname{Fil}(\mathcal{T}) = \{ \operatorname{Filling sequences of } \mathcal{T} \}.$

Definition

Set \mathcal{T} a type.

- A sequence *L* which come from the algorithm is called a **filling sequence** of *T*.
- We define $\operatorname{Fil}(\mathcal{T}) = \{ \operatorname{Filling sequences of } \mathcal{T} \}.$
- To each filling sequence $L = [c_1, c_2, ..., c_n]$ we associate the tableau $T_L = (t_c)_{c \in \lambda}$ such that $t_{c_k} = n + 1 k$.

Definition

Set \mathcal{T} a type.

- A sequence *L* which come from the algorithm is called a **filling sequence** of *T*.
- We define $\operatorname{Fil}(\mathcal{T}) = \{ \operatorname{Filling sequences of } \mathcal{T} \}.$
- To each filling sequence $L = [c_1, c_2, ..., c_n]$ we associate the tableau $T_L = (t_c)_{c \in \lambda}$ such that $t_{c_k} = n + 1 k$.

Theorem (V., 2014)

• For any filling sequence L of \mathcal{T} , $\mathcal{T}_L \in \operatorname{Tab}(\mathcal{T})$.

Definition

Set \mathcal{T} a type.

- A sequence *L* which come from the algorithm is called a **filling sequence** of *T*.
- We define $\operatorname{Fil}(\mathcal{T}) = \{ \operatorname{Filling sequences of } \mathcal{T} \}.$
- To each filling sequence $L = [c_1, c_2, ..., c_n]$ we associate the tableau $T_L = (t_c)_{c \in \lambda}$ such that $t_{c_k} = n + 1 k$.

Theorem (V., 2014)

- For any filling sequence L of \mathcal{T} , $\mathcal{T}_L \in \operatorname{Tab}(\mathcal{T})$.
- The application $L \rightarrow T_L$ is a bijection.

Motivation

In the sequence, we will show how some types are connected to the theory of reduced decompositions in the symmetric group.

<ロト <四ト <注入 <注下 <注下 <

Motivation

In the sequence, we will show how some types are connected to the theory of reduced decompositions in the symmetric group.

<ロト <四ト <注入 <注下 <注下 <

Set
$$\omega_0 = [n, n-1, ..., 1] \in S_n$$
 and $\lambda_n = (n-1, n-2, ..., 1)$.

Theorem (Edelman-Greene, 1987)

Set
$$\omega_0 = [n, n-1, ..., 1] \in S_n$$
 and $\lambda_n = (n-1, n-2, ..., 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}(\mathcal{B}_{\lambda_n})$ and $\operatorname{Red}(\omega_0)$.

Reformulation of the theorem

Set
$$\omega_0 = [n, n - 1, ..., 1] \in S_n$$
 and $\lambda_n = (n - 1, n - 2, ..., 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}(\mathcal{B}_{\lambda_n})$ and $\operatorname{Red}(\omega_0)$.

Reformulation of the theorem

Set
$$\omega_0 = [n, n - 1, ..., 1] \in S_n$$
 and $\lambda_n = (n - 1, n - 2, ..., 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}(\mathcal{B}_{\lambda_n})$ and $\operatorname{Red}(\omega_0)$.

Reformulation of the theorem

Set
$$\omega_0 = [n, n - 1, ..., 1] \in S_n$$
 and $\lambda_n = (n - 1, n - 2, ..., 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}(\mathcal{B}_{\lambda_n})$ and $\operatorname{Red}(\omega_0)$.

Reformulation of the theorem

Set
$$\omega_0 = [n, n - 1, ..., 1] \in S_n$$
 and $\lambda_n = (n - 1, n - 2, ..., 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}(\mathcal{B}_{\lambda_n})$ and $\operatorname{Red}(\omega_0)$.

Reformulation of the theorem

Set
$$\omega_0 = [n, n - 1, ..., 1] \in S_n$$
 and $\lambda_n = (n - 1, n - 2, ..., 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}(\mathcal{B}_{\lambda_n})$ and $\operatorname{Red}(\omega_0)$.

Reformulation of the theorem

Set
$$\omega_0 = [n, n - 1, ..., 1] \in S_n$$
 and $\lambda_n = (n - 1, n - 2, ..., 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}(\mathcal{B}_{\lambda_n})$ and $\operatorname{Red}(\omega_0)$.

Reformulation of the theorem

Set
$$\omega_0 = [n, n - 1, ..., 1] \in S_n$$
 and $\lambda_n = (n - 1, n - 2, ..., 1)$.

Theorem (Edelman-Greene, 1987)

There exists a bijection between $\operatorname{Tab}(\mathcal{B}_{\lambda_n})$ and $\operatorname{Red}(\omega_0)$.

Reformulation of the theorem

How to obtain all the reduced decompositions of any permutation with the Filling algorithm

$\sigma = [3, 1, 4, 2]$	Inv $(\sigma) = \{ (2,3), (2,4), (1,3) \}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left[1,2,3,4\right]$	$\operatorname{Red}(\sigma)$
Id		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1, 2, 3, 4]	
Id		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

How to obtain all the reduced decompositions of any permutation with the Filling algorithm

$\sigma = [3, 1, 4, 2]$	Inv $(\sigma) = \{ (2,3), (2,4), (1,3) \}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1, 2, 3, 4]	$\operatorname{Red}(\sigma)$
Id		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1, 2, 3, 4]	
Id		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで
$\sigma = [3, 1, 4, 2]$	$\operatorname{Inv}(\sigma) = \{ (2,3) , $	$(2,4)$, $(1,3)$ }
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1, 2, 3, 4]	$\operatorname{Red}(\sigma)$
Id		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1, 2, 3, 4]	
Id		

$\sigma = [3, 1, 4, 2]$	$Inv(\sigma) = \{ (2,3), (2,4), (1,3) \}$	
$ \begin{array}{c} 2 \\ 1 \\ 0 \\ 0 \\ 4 \end{array} $	[1, 2, 3, 4]	$\operatorname{Red}(\sigma)$
Id		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[1, 2, 3, 4]	
Id		

$\sigma = [3, 1, 4, 2]$	Inv $(\sigma) = \{ (2,3), (2,4), (1,3) \}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1, 2, 3, 4]	$\operatorname{Red}(\sigma)$
Id		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1, 2, 3, 4]	
Id		-

$\sigma = [3, 1, 4, 2]$	Inv $(\sigma) = \{ (2,3), (2,4), (1,3) \}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1, 2, 3, 4] [1, 3, 2, 4]	$\operatorname{Red}(\sigma)$
$Id \longrightarrow s_2$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1, 2, 3, 4] [1, 3, 2, 4]	
$Id \longrightarrow s_2$		•

$\sigma = [3, 1, 4, 2]$	Inv $(\sigma) = \{ (2,3), (2,4), (1,3) \}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} [1,2,3,4] \ [1,3,2,4] \ [1,3,4,2] \end{array}$	$\operatorname{Red}(\sigma)$
$Id \longrightarrow s_2 \longrightarrow s_2 s_3$		
	[1, 2, 3, 4] [1, 3, 2, 4] [3, 1, 4, 2]	
$Id \longrightarrow s_2$	► s ₂ s ₁	

◆□▶ ◆□▶ ◆三≯ ◆三≯ 三目 - のへで

Subtype of \mathcal{B}_{λ_n}

Definition

Let \mathcal{A} be a diagram contained in \mathcal{B}_{λ_n} . We call \mathcal{A} a *sub-type* of \mathcal{B}_{λ_n} if and only if by using the filling algorithm we can fill it with crosses without putting any cross outside \mathcal{A} . The set of all the subtypes is denoted $\operatorname{Sub}(\mathcal{B}_{\lambda_n})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Subtype of \mathcal{B}_{λ_n}

Definition

Let \mathcal{A} be a diagram contained in \mathcal{B}_{λ_n} . We call \mathcal{A} a *sub-type* of \mathcal{B}_{λ_n} if and only if by using the filling algorithm we can fill it with crosses without putting any cross outside \mathcal{A} . The set of all the subtypes is denoted $\operatorname{Sub}(\mathcal{B}_{\lambda_n})$.

Theorem (V, 2014)

Set $\phi : \sigma \to \text{Inv}(\sigma)$ (seen as a subset of boxes of \mathcal{B}_{λ_n}). Then we have the following situation.

Definition

Set $\sigma \in S_n$. The permutation σ is called vexillary if and only if σ is 2143-avoiding.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

Set $\sigma \in S_n$. The permutation σ is called vexillary if and only if σ is 2143-avoiding.

Theorem (Stanley, 1984)

If σ is vexillary, then there exists a partition $\lambda(\sigma)$ of the integer $\ell(\sigma)$ such that $\operatorname{red}(\sigma) = f^{\lambda(\sigma)}$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Definition

Set $\sigma \in S_n$. The permutation σ is called vexillary if and only if σ is 2143-avoiding.

Theorem (Stanley, 1984)

If σ is vexillary, then there exists a partition $\lambda(\sigma)$ of the integer $\ell(\sigma)$ such that $red(\sigma) = f^{\lambda(\sigma)}$.

Definition

We denote

$$\operatorname{Vex}(\lambda) = \{ \sigma \mid \sigma \text{ vexillary and } \lambda(\sigma) = \lambda \}$$

(It is an infinite set, the permutations are taken in ALL symmetric groups)

Using ϕ and one more combinatorial tool, we can explicitly construct an application Ψ from Vex(λ) to Typ(λ) (the set of the types of shape λ) such that:

Using ϕ and one more combinatorial tool, we can explicitly construct an application Ψ from Vex(λ) to Typ(λ) (the set of the types of shape λ) such that:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• for all $\sigma \in \text{Vex}(\lambda)$, $|\text{Tab}(\Psi(\sigma))| = \text{red}(\sigma) = f^{\lambda}$.

Using ϕ and one more combinatorial tool, we can explicitly construct an application Ψ from Vex(λ) to Typ(λ) (the set of the types of shape λ) such that:

- for all $\sigma \in \operatorname{Vex}(\lambda)$, $|\operatorname{Tab}(\Psi(\sigma))| = \operatorname{red}(\sigma) = f^{\lambda}$.
- We can construct σ_{λ} such that $\Psi(\sigma_{\lambda}) = \mathcal{B}_{\lambda}$ (recall: \mathcal{B}_{λ} is the type associated with balanced tableaux of shape λ).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Using ϕ and one more combinatorial tool, we can explicitly construct an application Ψ from Vex(λ) to Typ(λ) (the set of the types of shape λ) such that:

- for all $\sigma \in \operatorname{Vex}(\lambda)$, $|\operatorname{Tab}(\Psi(\sigma))| = \operatorname{red}(\sigma) = f^{\lambda}$.
- We can construct σ_{λ} such that $\Psi(\sigma_{\lambda}) = \mathcal{B}_{\lambda}$ (recall: \mathcal{B}_{λ} is the type associated with balanced tableaux of shape λ).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Corollary

We have that $|Bal(\lambda)| = f^{\lambda} = |SYT(\lambda)|$.

Thank you for your attention.