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Abstract
In this brief note we explain in rather general terms the idea of ultrarela-
tivistic limits of black hole space-times in general relativity.

Prelude: Ultrarelativistic limits. We prepare the grounds for understand-
ing the concept of ultrarelativistic limits of black hole geometries by considering
simpler analogies.

To begin with think of a ball made of foam rubber. If you shoot it hard
enough it will be deformed: it will be squeezed in the direction of the motion
and elongated in the perpendicular directions.

A somewhat more complicated example is the electric field of a charged
body. Classical electrostatics tells us that a small ball with charge Q (which
for simplicity we assume to be located at the origin of our coordinate system)
creates an electric field according to Coulomb’s law,

E(x) =
Q

4π

x̂

‖x‖2
. (1)

Here x denotes an arbitrary point in space, x̂ denotes its direction and ‖x‖ its
distance to the origin. This means that a body with charge q located at the
point x will feel a force F according to

F (x) = q E(x) =
q Q

4π

x̂

‖x‖2
. (2)

One way to illustrate the electric field E is to draw its field lines and its
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Figure 1: Electric field
of a charge at rest

equipotential surfaces, see Figure 1. The field lines give
the directions in which the electric force acts; in our
case they are rays going straight out from the origin.
The equipotential surfaces connect all points where the
force has the same magnitude; in our case these are
concentric spheres which appear as circles in Figure 1
since we clearly have to suppress one dimension in our
drawing.

Now if we start to move the charged ball along, say,
the x-axis with speed v its field changes much in the
same way as the ball of foam rubber changes its shape:
the equipotential surfaces get squeezed in the direction
of the motion and elongated in the perpendicular direc-

tions, see Figure 2. This results in the circles of Figure 1 being deformed into
the ellipses of Figure 2. Moreover, the faster the charge moves the stronger the
field gets squeezed and the ellipses become narrower and narrower.

1



2

x

y

Figure 2: Electric field
of a charge moving in
the x-direction

Finally we want to consider the case when the
speed of the charge approaches the speed of light c =
299792458m/s—which according to Einstein’s special
theory of relativity is the maximum possible speed.
This situation is called the ultrarelativistic limit and
physicists speak of the ultrarelativistic electric field of
the charge Q. What actually happens is that the el-
lipses get all squeezed together to a single line—or re-
membering that we have suppressed one dimension the
ellipsoids get squeezed to a single plane. In other words
the entire electric field is now concentrated on a single
plane (see Figure 3), where it is, of course, very strong.
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Figure 3: Ultrarela-
tivistic electric field

This situation is precisely analogous to the situation
of a jet plane flying with the speed of sound. All the
acoustic energy is concentrated on a plane perpendicu-
lar to the direction of the motion which is carried along
with the jet plane.

The precise formula for the ultrarelativistic electro-
magnetic field is given by

F ik(u, v, y, z) =


0 0 0 0
0 0 −y −z
0 y 0 0
0 z 0 0

 4Q

ρ2
δ(u). (3)

A vivid way to picture this situation is by using a space-
time diagram. That is, we draw the time axis (labeled

by t) vertically and—again restricted by the 2 dimensions of our drawing—
one spatial direction, say x, horizontally. In this diagram the path taken by
the charge moving with the speed of light in the x-direction is given by a 45
degree line, see Figure 4. The angle of 45 degrees arises because we stick to
the commonly used practice to set the speed of light equal to one, c = 1.
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Figure 4: Space-time
diagram of the ultra-
relativistic field

Now the ultrarelativistic field, which is carried along
with the charge, at each instant of time t′ is concen-
trated on a plane perpendicular to the x-direction and
containing the current position of the charge (t′, x′).
Since we had to suppress the perpendicular directions,
the filed at each t′ is pictured solely by the single point
(t′, x′). In total the entire history of the ultrarelativistic
field is given by the collection of all such points, hence
by the line x = t. It is useful to label this line by a
new coordinate u = x− t such that the ultrarelativistic
field is concentrated on the 3-dimensional plane given
by u = 0. This is also explicitly expressed by the term
δ(u) in formula (3). Here δ denotes the Dirac function
which is zero for all u 6= 0 and—loosely speaking—infinitely large at u = 0 such
that its integral gives one,

∫∞
−∞ δ(t)dt = 1.

Now if we want to apply the same procedure to the gravitational field of a
body we have to use the adequate physical theory which is general relativity.
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Interlude: General relativity, Albert Einstein’s theory of gravity, created
99 years ago is the current description of gravitation in modern physics. It is
an inherently geometric theory in the following sense: By Galileo’s principle
of equivalence all bodies fall the same in a gravitational field. The fact that
all bodies are affected in precisely the same way, allows one to think of the
gravitational field as being a property of the surroundig space itself. More
precisely, the gravitational field manifests itself in the properties of space and
time and, in particular, in its curvature. In fact, a massive body like e.g. the
earth curves its surrounding space, see Figure 5.

Figure 5: Space-time curvature

Slightly more technical the geometry of a
(vector) space is mathematically described by
an inner product, which determines how to
measure lengths and angles. In general rel-
ativity one uses as fundamental mathemati-
cal entity the so-called space-time metric gij

which provides such an inner product at each
point of space-time. From gij one derives the
curvature encoded in the so-called Riemann

and Ricci curvature tensors Ri
jkl and Rij . Now the fundamental equation of

general relativity— Einstein’s equation—says that the curvature of space-time is
determined by its mass-energy content encoded in the energy-momentum tensor
Tab and explicitly reads

Rij −
1

2
gij glmRlm =

8πG

c4
Tij , (4)

where G = 6.67 10−11N(m/kg)2 is Newton’s constant and c again is the speed
of light. In what follows we shall also set G = 1 which amounts to use so-called
geometric units.

In many ways the simplest (nontrivial) solution of equation (4) is the Schwarz-
schild metric which describes the gravitational field outside a spherically sym-
metric body, e.g. a star of total mass M . In the usual Schwarzschild coordinates
xj = (t, r, θ, ϕ) it explicitly reads

ds2 = gijdx
idxj (5)

= −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
.

Figure 6: Extended
Schwarzschild sol.

This form of the metric becomes singular on the so-called
Schwarzschild radius r = 2M which usually lies within
the star. But for very dense bodies, e.g. very massive stars
which undergo gravitational collapse the region r < 2M
becomes relevant. By changing to more suitable coordi-
nates one finds that the range of the radial coordinate can
be extended to all values r > 0. In this way one obtains
the maximally extended Schwarzschild solution which con-
tains the exterior regions I, III as well as the black and
white hole regions II, IV, see Figure 6. In particular,
the diagram illustrates the following scenario, notorious
in science fiction: If an observer, e.g. an unlucky space
ship starts in the exterior region I and enters region II by
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crossing the Schwarzschild radius r = 2M it can never leave it again—recall that
objects moving at the speed of light follow 45-degree lines. More dramatically
the doomed observer, after crossing the Schwarzschild radius cannot even send
any signal (e.g. a warning) to the outside world (region I) and will necessarily
end its existence in the curvature singularity located at r = 0, depicted by the
upper gray area in Figure 6.

The main part: Ultrarelativistic black holes. We now come to the main
part of this note and explain the notion of ultrarelativistic black hole geome-
tries, thereby taking up the line of ideas form the Prelude. There we discussed
the ultrarelativistic electromagnetic field of a charge, now we want to look at
the ultrarelativistic gravitational field of some ball of mass M . Our starting
point is the exterior Schwarzschild solution discussed above, which models the
gravitational field outside a spherically symmetric body and which we now write
in so-called isotropic coordinates,

ds2 = − (1−A)2

(1 +A)2
dt2 + (1 +A)4(dx2 + dy2 + dz2). (6)

Here A is given by A = 2M/r, where (t, x, y, z) are 4-dimensional coordinates

and r =
√
x2 + y2 + z2 is the 3-dimensional radius.

We now outline the ultrarelativistic boost of the Schwarzschild space-time
invented by P. Aichelburg and R. Sexl in the by now classical article [1]. The
first step is to set the mass in motion, or equivalently to look at the massive ball
if we move by it, say along the x-axis with constant speed v. Technically this is
achieved by applying a boost, i.e., a velocity-depending Lorentz transformation

t̄ =
t+ xv√
1− v2

, x̄ =
x+ tv√
1− v2

, ȳ = y, z̄ = z

to (6) which then takes the form

ds2 = (1+A)2(−dt̄2+dx̄2+dȳ2+dz̄2)−
(

(1+A)4−
(1−A

1 +A

)4) (dt̄− vdx̄)2

1− v2
. (7)

Moreover, we relate the rest mass M of the body to its total energy p via
M = p

√
1− v2 and hence A changes to

A =
2M

r
=

p(1− v2)

2
√

(x̄− vt̄)2 + (1− v2)(ȳ2 + z̄2)
.

In a second step we now want to take the speed v to its ultrarelativistic limit,
v → c = 1. Here certain unpleasant subtleties arise. Even if we scale the rest
mass to zero, M → 0, to keep the total energy p constant, which seems only
reasonable, a limit of (7) simply does not exist. Only after performing another
peculiar change of coordinates,

x′ − vt′ = x̄− vt̄, x′ + vt′ = x̄+ vt̄+ 4p log
(√

(x̄− vt̄)2 + (1− v2)− (x̄− t̄)
)

and allowing for generalized functions1 as coefficients of the metric we arrive at
the result

ds2 = −2dudv + dy′2 + dz′2 + 8p δ(u) log(ρ)du2, (8)

1This is mathematically somewhat delicate, see the Appendix.
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where for convenience we have set u = t′ − x′, v = t′ + x′ and ρ =
√
y′2 + z′2.

From the form of the metric (8) we see the following: The term 2dudv+dy′2+
dz′2 is just flat space, so no gravitational effect results from it. The final term
8p δ(u) log(ρ)du2 contains the Dirac function and hence is only non-zero if u = 0.

t’

u=0

x’

Figure 7: ultrarel.
Schwarzschild field

So the only effect occurring is a very strong curvature
on the 3-dimensional hyperplane given by u = 0. This
hyperplane contains the entire history of the mass M
which is located at u = 0, y′ = 0 = z′ and we recover a
picture similar to the ultrarelativistic electromagnetic
field, see Figure 7. Again the perpendicular directions
y′, z′ are suppressed such that each point on the line
u = 0 represents a 2-dimensional plane, together mak-
ing up the entire 3-plane where the field is concentrated.

Moreover, one finds that the metric (8) represents
a gravitational wave and since the curvature is concen-
trated on a small part of space-time it actually is a

so-called impulsive gravitational wave, a notion which we shall discuss in the
final section.

Postlude: Impulsive gravitational waves.

Figure 8: Gravitatio-
nal waves as ripples in
space-time

We start briefly explaining the notion of gravitational
waves by looking at a more familiar but analogous ex-
ample. Electrodynamics allows for wave like solutions,
that is electromagnetic waves propagating in vacuum.
Depending on their frequency we distinguish e.g. visible
light, ultraviolet radiation, X-rays or γ-rays. Similarly
general relativity predicts wave like solutions, that is
small changes of curvature traveling at the speed of
light through space-time. The easiest way to picture
gravitational waves is to think of them as small ripples
of curvature traveling through the universe just like wa-
ter waves travel on a pond after you drop a stone into
it, see Figure 8.

Gravitational waves so far have only been observed indirectly. Indeed, in
1974 R. Hulse and J. Taylor studied the binary pulsar PSR 1913+16 whose
precise observations provided firm evidence that the system is actually emitting
gravitational radiation—a discovery which was awarded with the 1993 Nobel
Prize in physics. With the highly sensitive large-scale gravitational wave inter-
ferometers such as LIGO or Virgo, a direct observation of gravitational waves
will probably be feasible within the next couple of years.

Impulsive gravitational waves are geometries that model gravitational waves
with very short duration but with a big amplitude. They have been introduced
by R. Penrose (see e.g. [3]) who derived corresponding solutions of the Einstein
equation using an elegant geometric construction called scissors and paste ap-
proach. In the easiest case, which leads to so called impulsive pp-waves one
takes flat Minkowski space

ds2 = −dt2 + dx2 + dy2 + dz2 = −2dudv + dy2 + dz2 (9)

and cuts it into two halves along the 3-plane N given by u = 0. Then one
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Figure 9: The scissors
and paste method

reattaches the halves with a suitable warp, see Figure 9.
More precisely, points with coordinates (u = 0, v, y, z)
on the boundary of the left halfM+ of Minkowski space
are matched to points on the boundary of the right half
M− according to the rule

(u = 0, v, y, z) → (u = 0, v +H(y, z), y, z), (10)

where H is called the warping function. The resulting
space-time metric takes the form

ds2 = −2dudv + dy2 + dz2 +H(y, z)δ(u)du2 (11)

and the Einstein equations reduce to the Laplace equation for H,

4H(y, z) =
(
∂2y + ∂2z

)
H(y, z) = 0.

It is now easy to see that the ultrarelativistic Schwarzschild solution (8)

is precisely of the form (11) with H(y, z) = 8p log(
√
y2 + z2), hence it is an

impulsive pp-wave.
Finally we discuss the effect that an impulsive pp-wave has on an observer,

i.e., what happens e.g. to a space ship that is hit by such a wave which—
according to Aichelburg and Sexl—may be caused by a massive body flying
by at the speed of light. In fact when the observer is hit by the wave at the
point (u = 0, v, y, z), i.e., when it passes the u = 0-plane at (y, z), then (the
v-coordinate of) its position instantaneously changes according to the warp
v → v + H(y, z), cf. Figure 9 and equation (10). Moreover, the v-direction
of its path also changes in a way again determined by the (derivatives of the)
warping function H. In the transverse directions y and z the path of the observer
also instantaneously changes the direction. In total we have that any observer
hit by the impulsive wave feels the following violent effect: it jumps in the v-
direction and instantaneously changes the direction of its flight in the v, y and
z-directions.

Appendix: The wider scientific area. So far we only have discussed the
most simple case of an ultrarelativistic black hole space-time and its correspond-
ing impulsive gravitational wave. In this appendix we briefly put the topic into
its wider scientific context and supplement some main references.

The Aichelburg-Sexl procedure has been generalized by a number of authors
to different black hole geometries of the Kerr-Newman family and also to the
case of a non-vanishing cosmological constant, see [4, Sec. 3.5] and [2, Ch. 20]
for an overview and the bulk of references collected there. In all cases the result-
ing ultrarelativistic space-times turn out to be impulsive gravitational waves of
various kinds which can serve as simple exact models for violent gravitational
wave bursts.

These geometries have been used extensively as simple test cases in particle
physics, in particular, the scattering of various particles in these backgrounds
has been studied from the 1990-ies on. These studies have some relevance in the
quest for a quantum theory of gravitation which, however, is still (completely)
open.

In a more theoretical context impulsive gravitational waves are mathemati-
cally delicate to handle. Due to the occurrence of the Dirac-delta in the metric
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(cf. equation (11)) one has to deal with very rough geometric objects while
the underlying mathematical theory of Lorentzian geometry usually is only for-
mulated in terms of very smooth functions. Hence these geometries have also
been key eamples in the development of theories of (nonlinear) distributional
geometry, see [5] for an overview.

Impulsive gravitational waves still are an area of active research, on the one
hand within the field of exact radiative solutions of Einstein equations and, on
the other hand in the context of low regularity Lorentzian geometry.
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