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The wider topic

Focusing of geodesics under curvature bounds is the
main analytical ingredient in the singularity thms. of GR

What are the singularity theorems of General Relativity?

rigorous results in Lorentzian differential geometry

physically resonsable assumptions lead to singularities of spacetime

singularity ∼ incomplete causal geodesic

Why should you care?

Roger Penrose’s 2020 Nobel Prize in Physics

recent extensions: non-smooth spacetimes & Lorentzian length spaces

Here: bring out the analysis underneath the geometry

classical: analysis of Riccati equation, comparison results

low regularity: g ∈ Lip, distributional curvature & regularisation
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The structure of the singularity theorems

Pattern theorem [José Senovilla, 1998]

A smooth spacetime (M, g) is singular if it satisfies:

(I) A suitable initial condition,

(E) a condition on the curvature (energy condition),

(C) a causality condition.

(I) ; causal geodesics start focusing
(E) analysis of Riccati/Raychaudhuri eq.

; focusing goes on
; focal/conjugate point
; geos. stop maximising

(C) ; there are maximising causal geos

Resolution: some causal geodesics
stop existing before (first) conjugate point
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geometric conditions
to be fed into analytic
machinery

global structure of spacetime
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Geodesics & maximisers

Geodesics: curves γ : I → M with ∇γ̇ γ̇ = 0, i.e.,

γ̈ i (s) = Γijk
(
γ(s)

)
γ̇j(s) γ̇k(s) with Γ ∼ g−1 ∂g

For data p ∈ M, v ∈ TpM unique max. extended sol.

Locally causal geodesics (g(γ̇, γ̇) ≤ 0) maximise Lor. distance

Stop maximising after first conjuagte point
. i.e. almost meeting point of geodesics

Key task

Link the curvature to the occurrence of conjugate points
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Geodesic focusing

Raychaudhuri eq. for expansion θ along causal geodesic γ : I → M

θ̇ = −Ric(γ̇, γ̇)− tr(σ2)− θ2

3

Ric ∼ ∂2g (∂g)2

latter two terms are non-positive

Assume energy condition: Ric(γ̇, γ̇) ≥ 0 (SEC)

Assume initial condition: θ(0) < 0

=⇒ θ → −∞ for some t in [0,−3/θ(0)).

=⇒ γ has conjugate point

=⇒ γ stops maximising before −3/θ(0)

Estimate on Ricci curvature says when geos stop maximising
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Low regularity: Why at all & What can be done?

Why: nature of “singularities”, physical models, analysis of i.v.p.

Results for g ∈ C 1,1: all three classical thms. ✓
[KSSV,15], [KSV,15], [GGKS,18]

Results for g ∈ C 1: all three classical thms. & Gannon-Lee ✓
[G,20], [KOSS,22], [SS,21]

Results in synthetic setting: Hawking thm. ✓
[Cavalletti&Mondino,20]

Issue 1: relation between approaches ?

Issue 2: g ∈ Lip long-term goal: g ∈ H1 ∩ L∞

Main challenges: from distributional curvature get
(1) useful curvature bounds on regularisations
(2) omit restricting to single geodesics
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Low regularity: How?

Basis: chartwise regularisation of metric by convolution

gε(x) := g ⋆M ρε(x) :=
∑

χi (x)ψ
∗
i

((
ψi ∗(ζi · g)

)
∗ ρε

)
(x).

Lemma (Reg. and conv. for g ∈ Lip) [CG,12], [CGHKS,24]

There are smooth Lorentzian metrics ǧε, ĝε with

ǧε ≺ g ≺ ĝε (lightcones adjusted via tweaked convolution)

ǧε, ĝε → g , and (ǧε)
−1, (ĝε)

−1 → g−1 in W 1,p
loc (M) (1 ≤ p <∞)

Lipschitz-focusing: The rough guide

1 Formulate distributional (EC) for g ∈ Lip
2 Derive surrogate (EC) for ǧε: Ric[ǧε](X ,X ) ≥ −δ (on K cp.)
3 still show smooth focusing for ǧε
4 show that geodesics of g stop maximising.
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ǧε ≺ g ≺ ĝε (lightcones adjusted via tweaked convolution)
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Lipschitz-focusing: The rough guide

Paradigm: Curvature bds. characterised by reg. [KOV,23]

distributional Ric[g ] ≥ 0 ⇐⇒ for all δ: Ric[gε] ≥ −δ for ε small

Problem: Ric[ǧε] → Ric[g ] only distributionally
; cannot carry Ric[g ] ≥ 0 through construction

Solution: compatibility of distinct regularisations
g ∈ C 1: Ric[g ] ⋆M ρε︸ ︷︷ ︸

Ric[g ]⋆Mρε(X ,X )≥0

− Ric[gε], Ric[gε]− Ric[ǧε] → 0 loc. unif.

Lemma (Compatibility of reg. for g ∈ Lip) [CGHKS,24]

∥Ric[ǧε]− Ric[g ] ⋆M ρε∥Lp(K) → 0 (1 ≤ p <∞)

∥Ric[ǧε]− Ric[g ] ⋆M ρε∥L∞(K) ≤ CK

To be fed into the geometric machinery later on.
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Compatibility of reg: Friedrichs lemma as the key step
relevant terms in Ric[ǧε]− Ric[g ] ⋆M ρε[

(ψβ)∗gε
]ij︸ ︷︷ ︸

=:aε

( [
ξ∂k((ψβ)∗g)lm

]︸ ︷︷ ︸
=:f

∗ρε
)
−
( [

(ψβ)∗g
]ij︸ ︷︷ ︸

=:a

ξ∂k((ψβ)∗g)lm︸ ︷︷ ︸
=f

)
∗ ρε

Prove aεfε − (af )ε → 0 in W 1,p (1 ≤ p <∞) & bounded in W 1,∞ for

a ∈ Lip, f ∈ L∞, C∞ ∋ aε → a loc. unif., fε := f ∗ ρε,

Write relevant term as integral op. [Braverman, Milatovic, Shubin,02]

Kεf (x) =

∫
kε(x , y)f (y)dy =

∫
∂y j

((
a(x)− a(y)

)
ρε(x − y)

)
f (y) dy

Properties of kernels kε∫
|kε(x , y)| dx ≤ C ,

∫
|kε(x , y)| dx dy ≤ C1,

∫
kε(x , y) dy = 0

give ∥Kεf ∥L1(K) → 0 for all f ∈ C∞
c (Rn) and that sufffices by UBP
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Feeding the analytic result into the geometric machinery

Lemma (Curvature estimates) [CGHKS,24]

Ric[ǧε]−(U,U) → 0 in L1 (∀U ǧε causal)

Ric[ǧε](U,U) ≥ nκ for some κ < 0

Look at set of good points in Cauchy surface
Reg(T ) ∋ x if geo. starting at x max. up to T

Volume estimate [Treude, Grant,13] &
segment inequality [GKOS,24]
. inspired by [Cheeger & Colding, 96]

areag (Reg(T )) ≤ limsup areaǧε(
ε̌Reg(T ))

≤ C

∫
Ω
|Ric[ǧε]−(U,U)| → 0

Reg(T )

So areagReg(T ) = 0; replacement for conjugate pts.
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The result

Lipschitz Hawking singularity theorem [CGHKS,24]

Let (M, g) be a Lipschitz spacetime such that

(C) There is a spacelike Cauchy surface Σ with

(I) mean curvature HΣ ≥ β > 0, and

(E) Ric[g ](U,U) ≥ 0 distributional for all U causal

Then (M, g) is causal geodesically incomplete.

Comparison with synthetic theorem of [Cavalletti & Mondino,20] needs

comparison of curvature conditions:
synthetic, optimal-transport based vs. distributional

C 1-Riemannian: ⇐= ✓ =⇒ almost [KOV,23]

C 1-Lorentzian ⇐= ✓ [Braun & Calisti,23]
. So [CV,20] (almost) implies [G,20]

Lipschitz ???
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. So [CV,20] (almost) implies [G,20]

Lipschitz ???
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