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@ Introduction: Motivation from General Relativity
@ Digression: Generalized functions & General Relativity

© The wave equation on singular space-times
@ The setting: Foliations etc.
@ The result: Local existence and uniqueness

©® The method of proof: Higher order energy estimates
@ Outlook

@ Some references
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Weakly singular space-times |

@ General Relativity: space-time (M, g)
Einstein equations G[g] = & Tap
@ classically: singularities defined geometrically
i.e., via incomplete geodesics
@ problem: many reasonable space-times are singular e.g.:

impulsive gravitational waves,
shell-crossing singularities,
cosmic strings, ...

@ often (but not always) the metric is locally bounded but

o below validity of standard differential geometry, i.e., C1:1
o below largest “reasonable” distributional class, i.e., H,QOC nLy.
[Geroch, Traschen, 87]

~> nonlinear distributional geometry (digression)
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Weakly singular space-times I

@ physically relevant: not geodesics but tidal forces on extended bodies
near singularity but unclear how to model!

e idea: study behavior of test fields instead [Clarke, 96]
singularities as obstructions to the evolution of test fields rather than
as obstructions to extending geodesics

@ so: study Cauchy problem for the wave equation locally near
singularity

o problem: T, u=V?(V,u) = |detg| 20,(|det g|~2g?d)u)
involves coefficients of low regularity

@ results: local unique solvability

o for shell-crossing singularities [Clarke, 98] (weak solution concept)
o for cosmic strings [Vickers, Wilson, 00] (in G)
~> generalization to “weakly singular” space-times (this talk)
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Distributional differential geometry

[Schwartz, de Rham, Marsden, Parker, ...]

@ distributions on manifolds: dual space of compactly supported n-forms
D'(M) = (Q2(M))
o distributional sections in vector bundles
/
D(ME) = (Te(M.E"oQ1(M))
D'(M) ®coo(my I(M, E)
Lo (T(M, E%), D/(M)

12

12

@ extension of classical operations by continuity:

Le, [, 1, A we, {5} -

but with only one D’-factor
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Distributional semi-Riemannian geometry

o distributional pseudo-Riemannian metric
g € D'5(M) = {t: X(M) x X(M) — D'(M) : t C*(M) — bilinear}

symmetric and nondegenerate, i.e., g(§,7) =0Vn € X(M) = £ =0.

e distributional connection D : X(M) x D'g(M) — D'5(M)
C*°(M)-linear in first, R-linear in second slot, D¢(fn) = fDen + &(f)n
@ problems:
e can't insert D’-vector fields into D’-metric
o curvature in general undefined: R(§,7) = [D¢, Dy] — Dye ;) (nonlin.!)
e notion of nondegeneracy is too weak (no point-values ~» non-local):
ds? = x? dx? (classically) degenerate in 0, but nondegenerate in D’.
e index of a distributional metric?
e geodesics of a distributional metric?
Would need a notion of manifold-valued distributions.
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Distributional General Relativity?

o differential geometry, Einstein equations:
g € D'(M, TY(M)) simply not possible!
@ positive results in special cases

e gravitational shock waves [Lichnerowicz, 1950-ies]
thin shells of matter, [Israel, 66]
ultrarelativistic black holes [Balasin, Nachbagauer, 1990-ies]

dim supp( T,p) = dimsupp(Gap) = 3
@ No-go results [Geroch-Traschen, 1987]
o maximal “reasonable” class is g.» € H2 . N L3S
@ curvature tensors, in particular G, defined in D’
@ limit consistency, completeness
@ Bianchi identities (~ energy conservation) can't be formulated
= dimsupp(Gap) > 3
o excludes many interesting examples, e.g. cosmic strings
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Nonlinear distributional geometry

o Colombeau tensor fields (special version)
usual quotient construction using:
(T e (ue) € (7)) vK cc MYP 3N : sup ||Pu-(x)|[s = O(™ ")
xeK

NI (w) e (TH)OU vKeac M Vm: sup || w(x)|n = O(E™)
K

P(S

Gi(M) = (I )m/NE  G(M) == GJ(M)

@ G(.) is a fine sheaf of differential algebras w.r.t. Lxu := [(Lxuc)e]
e G/(.) is a fine sheaf of C*°(M)-modules and
of G(M)-modules; finitely gen., projective

@ characterizations:
Gi(M) = G(M) T (M) = Loy (T2(M). G(M))

Loqu) (G2(M), G(M))

12

1%
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Generalized pseudo-Riemannian geometry |

o For g € G3(M) TFAE
(i) g:Gi(M) x G{(M) — G(M) symm. & det g invertible in G(M)
(i) Vx: g(%): K" x K" — K symmetric and nondegenerate
(iii) On every rel. cp. chart there exists a representative that is a classical
pseudo-Riemannian metric and det g is invertible in G(M)
If there exists a representative with constant index, g is called
generalized pseudo-Riemannian metric.
o results:

e index of is well-defined
(proof by finite-dimensional perturbation theory)

o inverse metric g~ ! is a well-defined element of G2(M)

o £+ g(&,.) induces a G(M)-linear isomorphism: G&(M) — G2(M)
~» raising/lowering of indices
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Generalized pseudo-Riemannian geometry |l

@ Generalized connection:
D : G§(M) x G5(M) — Gg(M)

G(M)-linear in first, R-linear in second slot, lA)g(fn) = f[A)gn +&(F)n

o Fundamental Lemma: For every generalized metric there exists a
unique metric and torsion-free connection, the generalized Levi-Civita
connection.

@ curvature can be defined

RenC = Die.¢ — [De, D¢

Einstein equations can be formulated
@ compatibility with
o classical theory: g ~, g = gen. curvature ~;_5 class. curvature
o Geroch-Traschen approach (recent work)
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The wave equation on singular space-times: Overview

@ The Result: Local existence and uniqueness Theorem for the Cauchy
problem for the scalar wave equation for a large class of “weakly
singular” (essentially locally bounded) space-time metrics in the
(special) Colomebau algebra.

@ Class of metrics:
precise definition needs some geometric preparation
o formulated entirely in G
e many weakly singular metrics can be modelled within this class

@ embedding via convolution with standard mollifier
@ physically motivated modelling

e e.g.: impulsive pp-waves (in Rosen form), expanding spherical impulsive
waves, cosmic strings, ...
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e the metric: g, € G9(M) a generalized Lorentz metric
= VV C M rel. cp. 3 repr. (g5,)e Which is a classical L-metric and
VK CC U3N : infg||detg:|| > ™
use exclusively such representatives from now on

o the geometry: p € U C M open & rel. cp.
t: U— R smooth, t(p) =0, 0 :=dt#0on U
assume IMo > 0: g Y(dt,dt) < 1/M?
= Y, :={qe U: t(q) =7} "“uniformly spacelike” hypersurfaces
e constructions: normal vector &2 := g?°cy,; norm V2 = —g. (&, &)
corresponding normalized versions: £2 = £2/V., 6< := o,/ V.
note: only ¢ independent of ¢!
generalized Riemann metric: e, := g5, + 2635}
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The class of metrics

We define the following class of weakly singular metrics
(A) VK cC U Vk Vn,...,nx € X(M)

o supk ||Lm ... Lk g- || = O(e7%)
o supy ||l ... Ly g2t = O(e7%)

in particular g, g-! locally uniformly bounded

= 1/M0 < vV _g€(€€7§6) = V. < M
(B) VK CC U supy|[Vgetel| = O(1)
= |ILegelle. = O(1), |[Vgeec|l = O(1) = [[Vgee e
(C) for each e : ¥ := X past cp., spacelike hypersurface s.t. 9JH(X) =X
and A # 0, open A C . JF(X)

= existence of classical solutions on common domain

all norms || || derived from some classical Riemannian background metric
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Formulation of the result

e For given weakly singular g and v, w € G(X) we consider the i.v.p.
Ogu =0, uly = v, L§A|):u =w (O)

and ask for solutions in G(U)

Theorem: Let (M, g) be a generalized space-time with a weakly singular
metric (i.e., (A)—=(C) hold) and let v,w € G(X). Then for any p € &
there exists an open neighborhood V' where (O) has a unique solution
in G(V).

e In coordinates (U, {t,x!, x?, x3})
g = —V2dt? + b (dx' — Nidt) @ (o — Mdt)
Ve, OVe, b5 =0(1), 0V, 0°hs, 0°Ni = O(el*)
Ogete = |detg.|"20,(| det g 2g2°0p)uc = £ € N(U)
u(t=0,x") = wv(x), Le ue(t= 0,x") = w.(x") (O0)
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General strategy of proof

key ingredient: higher order energy estimates
o use of e-dependent Sobolev norms
o use of e-dependent energy-momentum tensors
e switch back to sup-norms
step 1: existence of classical solutions u. for fixed £ (by (C))
~» candidate for G-solution
step 2: existence of G-solutions:
moderate data ~» moderate initial energies
~» moderate energies for all times ~ (u:): € Em(V)
step 3: uniqueness—part 1:
independence of the choice of the representatives of v, w
negligible data ~» [..... ] ~ (u:): € N(V)
step 2: uniqueness—part 2:
independence of the choice of the representative of g
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Sobolev norms and energies |

@ use the R-metric e, := g5, + 2556} to define “pointwise” norm

VO = ||V5, ... V5 ull2
= el ePU(VE L V5 ) (V.. V5 u)
@ 4D-Sobolev norms on 2, w.r.t. Vg resp. 0

. 1
VNl . = (S fo, IV @)27)*

Nullh, o= (S Jo 19p - Opuluc)
J

1
2

PLseees
0<j<k

|

Sor
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Sobolev norms and Energies |l

@ 3D-Sobolev norms on S; w.r.t. V= resp. 0

i 1
VNl = (Sho fs, V9(0) )’

ol . = ( ks Oy - Opy 22

.....

NI

e Energy momentum tensors (k > 0)

a 1 a
T220(u) = — g0

2
-,—Eab,k(u) — (g;cgebd 1g:bg€cd)e£1q1 ) Pk—lqk—l
2
ViV, Vi Vi Vi 10
@ Energies (k > 0)
b
Ejfs : _/ OfS a 7J 5b
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Lemma 1: Equivalency of norms and energies

() (VI lIs, . vs. energies)
There exist constants A, A’ such that

AVluls, )? < Ef(u) < AV ulls, )?
(i) Cll s, vs- 2l lis,.c)

For each k there exist positive constants By, B, such that
k

v k
Vllulls, ) < B/izezk —Cllulls )

j=1
Cllulls, )?* < Bkz 5V lulls )7

(iii) (basic energy estimate) Ve, 7 the dommant energy condition gives:

A

EX (1) < Efo( +Z / (6V5T29(0) + T2 (6)V56s) e
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Proposition 1: Energy estimates

Let u. be a solution of (O.). Then Vk 3C,, C//, ([ st. VO < 7 <

(i) Exc(ue) < Ege(ue) + G(VIENG ) + C"'/CO Ef(ue)d¢
1 .
+ CL/ZM E (u:)d(
1

¢=0
(i) EX.(u) < (Eok,s(uawq(vufuk-l >

Z 2(1+k—1 / (”€)dc)

¢=0
(iii) If the initial energy (Eg .(u))e is moderate [negligible] then

sup (Ef,s(us))s
0<7<v

is moderate [negligible].
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Lemma 2: Auxiliary estimates

(i)

(Bounds on initial energies from initial data)
Let u. be a solution of (O.). If (v¢), (w:)- are moderate resp.
negligible, then the initial energies (Eéfe(us))e, for each k > 0, are
moderate resp. negligible nets of real numbers.
[estimate t-derivatives of the data using the wave equation
0?u. =
_Vaz (f;: + VlszNiataiue - (hg - éNéNé) aiajue + g:b r[gs]cab %)]
(Bounds on solutions from bounds on energies)
For m > 3/2 an integer, there exists a constant K and number N
such that for all u € C*°(£;) and for all ¢ € [0, 7] we have

sup Oy - - O u(x)| < Ke™V sup EMH(u).

xEQ, o<c<r oF

[uses Sobolev embedding plus Lemma 1]
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Independence of the representative of the metric

(i) Let g. be another representative and consider

Dgsfla f;—:
U(t=0,x") = wve(x')

8tﬁg(t = 0, Xi)

I
X
~—
X
—

(i) The difference . := u. — U solves
Og<Ue = f. — Ogeu,, vanishing data

(III) f;_: — Dgaus = (f;_: — Dgaus) + (Dgsug — Dgsus) = Dg‘fus — Dgsus
is negligible by well-definedness of 0.

(Osaka 2008) February 2008 21 /23



Outlook & Perspectives

@ more general classes of metrics: log-type growth in € replacing
O(1)...Holder-Zygmund classes

generalization of Hadamard parametrix constructions

generalized singularity theorems
(extending geodesics in generalized sense)

@ go non-linear: Einstein equations

@ connections to cosmic censorship hypothesis

(Osaka 2008) February 2008 22 /23



Some references

@ J. A. Vickers and J. P. Wilson, Generalized hyperbolicity in conical
spacetimes, Class. Quantum Grav., 17 (2000)

e M. Kunzinger, R.S., Foundations of a nonlinear distributional
geometry, Acta Appl. Math. 71 (2002).

@ Mark J. Heinzle, R.S., Remarks on the distributional Schwarzschild
geometry, J. Math. Phys. 43(3) (2002).

o M. Kunzinger, R.S., Generalized pseudo-Riemannian geometry, Trans.
Amer. Math. Soc., 354 (2002)

o Jiri Podolsky, R.S., Geodesics in spacetimes with expanding impulsive
gravitational waves, Phys. Rev. D, 67 (2003).

o R.S., J. Vickers, The use of generalized functions and distributions in
general relativity, Class. Quantum Grav. 23(10) (2006)

o E. Mayerhofer, On Lorentz geometry in algebras of generalized
functions, Proc. Edinb. Math. Soc., to appear.

e J. Grant, E. Mayerhofer, R.S., The wave equation on singular space
times, Commun. Math. Phys., to appear.

(Osaka 2008) February 2008 23 /23



