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Weakly singular space-times I

General Relativity: space-time (M, g)
Einstein equations Gab[g ] = κ Tab

classically: singularities defined geometrically
i.e., via incomplete geodesics

problem: many reasonable space-times are singular e.g.:

impulsive gravitational waves,
shell-crossing singularities,
cosmic strings, ...

often (but not always) the metric is locally bounded but

below validity of standard differential geometry, i.e., C 1,1

below largest “reasonable” distributional class, i.e., H2
loc ∩ L∞loc

[Geroch, Traschen, 87]

; nonlinear distributional geometry (digression)
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Weakly singular space-times II

physically relevant: not geodesics but tidal forces on extended bodies
near singularity but unclear how to model!

idea: study behavior of test fields instead [Clarke, 96]
singularities as obstructions to the evolution of test fields rather than
as obstructions to extending geodesics

so: study Cauchy problem for the wave equation locally near
singularity

problem: 2gu = ∇a(∇au) = | det g |−
1
2 ∂a(| det g |−

1
2 gab∂bu)

involves coefficients of low regularity

results: local unique solvability

for shell-crossing singularities [Clarke, 98] (weak solution concept)
for cosmic strings [Vickers, Wilson, 00] (in G)

; generalization to “weakly singular” space-times (this talk)
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Distributional differential geometry

[Schwartz, de Rham, Marsden, Parker, ...]

distributions on manifolds: dual space of compactly supported n-forms
D′(M) = (Ωn

c(M))′

distributional sections in vector bundles

D′(M,E ) =
(
Γc(M,E ∗ ⊗ Ωn

c(M)
)′

∼= D′(M)⊗C∞(M) Γ(M,E )

∼= LC∞(M)

(
Γ(M,E ∗),D′(M)

)
extension of classical operations by continuity:

Lξ, [ , ], ∧, ιξ, { , } . . .

but with only one D′-factor
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Distributional semi-Riemannian geometry

distributional pseudo-Riemannian metric

g ∈ D′0
2(M) = {t : X(M)× X(M) → D′(M) : t C∞(M)− bilinear}

symmetric and nondegenerate, i.e., g(ξ, η) = 0 ∀η ∈ X(M) ⇒ ξ = 0.

distributional connection D : X(M)×D′1
0(M) → D′1

0(M)
C∞(M)-linear in first, R-linear in second slot, Dξ(f η) = fDξη + ξ(f )η

problems:
can’t insert D′-vector fields into D′-metric
curvature in general undefined: R(ξ, η) = [Dξ,Dη]− D[ξ,η] (nonlin.!)
notion of nondegeneracy is too weak (no point-values ; non-local):

ds2 = x2 dx2 (classically) degenerate in 0, but nondegenerate in D′.
index of a distributional metric?
geodesics of a distributional metric?

Would need a notion of manifold-valued distributions.
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Distributional General Relativity?

differential geometry, Einstein equations:
g ∈ D′(M,T 0

2 (M)) simply not possible!

positive results in special cases

gravitational shock waves [Lichnerowicz, 1950-ies]
thin shells of matter, [Israel, 66]
ultrarelativistic black holes [Balasin, Nachbagauer, 1990-ies]
...

dim supp(Tab) = dim supp(Gab) = 3

No-go results [Geroch-Traschen, 1987]
maximal “reasonable” class is gab ∈ H2

loc ∩ L∞loc

curvature tensors, in particular Gab defined in D′
limit consistency, completeness
Bianchi identities (; energy conservation) can’t be formulated

=⇒ dim supp(Gab) ≥ 3
excludes many interesting examples, e.g. cosmic strings
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Nonlinear distributional geometry

Colombeau tensor fields (special version)
usual quotient construction using:

(T r
s )M : (uε) ∈ (T r

s )(0,1] : ∀K ⊂⊂ M ∀P ∃N : sup
x∈K

‖Puε(x)‖h = O(ε−N)

N r
s : (uε) ∈ (T r

s )(0,1] : ∀K ⊂⊂ M ∀m : sup
x∈K

‖ uε(x)‖h = O(εm)

Gr
s (M) := (T r

s )M/N r
s G(M) := G 0

0 (M)

G( ) is a fine sheaf of differential algebras w.r.t. LXu := [(LXuε)ε]

Gr
s ( ) is a fine sheaf of C∞(M)-modules and

of G(M)-modules; finitely gen., projective

characterizations:

Gr
s (M) ∼= G(M)⊗ T r

s (M) ∼= LC∞(M)

(
T s

r (M),G(M)
)

∼= LG(M)

(
Gs

r (M),G(M)
)
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Generalized pseudo-Riemannian geometry I

For g ∈ G0
2(M) TFAE

(i) g : G1
0(M)× G1

0(M) → G(M) symm. & det g invertible in G(M)

(ii) ∀x̃ : g(x̃): K̃n × K̃n → K̃ symmetric and nondegenerate

(iii) On every rel. cp. chart there exists a representative that is a classical
pseudo-Riemannian metric and det g is invertible in G(M)

If there exists a representative with constant index, g is called
generalized pseudo-Riemannian metric.

results:
index of is well-defined

(proof by finite-dimensional perturbation theory)

inverse metric g−1 is a well-defined element of G2
0(M)

ξ 7→ g(ξ, .) induces a G(M)-linear isomorphism: G1
0(M) → G0

1(M)
; raising/lowering of indices
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Generalized pseudo-Riemannian geometry II

Generalized connection:

D̂ : G1
0(M)× G1

0(M) → G1
0(M)

G(M)-linear in first, R̃-linear in second slot, D̂ξ(f η) = f D̂ξη + ξ(f )η

Fundamental Lemma: For every generalized metric there exists a
unique metric and torsion-free connection, the generalized Levi-Civita
connection.

curvature can be defined

R̂ξ,ηζ := D̂[ξ,η]ζ − [D̂ξ, D̂η]ζ

Einstein equations can be formulated

compatibility with

classical theory: ĝ ≈k g ⇒ gen. curvature ≈k−2 class. curvature
Geroch-Traschen approach (recent work)
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The wave equation on singular space-times: Overview

The Result: Local existence and uniqueness Theorem for the Cauchy
problem for the scalar wave equation for a large class of “weakly
singular” (essentially locally bounded) space-time metrics in the
(special) Colomebau algebra.

Class of metrics:
precise definition needs some geometric preparation

formulated entirely in G
many weakly singular metrics can be modelled within this class

embedding via convolution with standard mollifier
physically motivated modelling

e.g.: impulsive pp-waves (in Rosen form), expanding spherical impulsive
waves, cosmic strings, ...
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The setup

the metric: gab ∈ G0
2(M) a generalized Lorentz metric

⇒ ∀V ⊆ M rel. cp. ∃ repr. (g ε
ab)ε which is a classical L-metric and

∀K ⊂⊂ U∃N : infK || det gε|| ≥ εm

use exclusively such representatives from now on

the geometry: p ∈ U ⊆ M open & rel. cp.
t : U → R smooth, t(p) = 0, σ := dt 6= 0 on U

assume ∃M0 > 0 : g−1
ε (dt, dt) ≤ 1/M2

0

=⇒ Στ := {q ∈ U : t(q) = τ} “uniformly spacelike” hypersurfaces

constructions: normal vector ξa
ε := gab

ε σb; norm V 2
ε := −gε(ξε, ξε)

corresponding normalized versions: ξ̂a
ε = ξa

ε/Vε, σ̂ε
a := σa/Vε

note: only σ independent of ε!
generalized Riemann metric: eε

ab := g ε
ab + 2σ̂ε

aσ̂
ε
b
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The class of metrics

We define the following class of weakly singular metrics

(A) ∀K ⊂⊂ U ∀k ∀η1, . . . , ηk ∈ X(M)

supK ||Lη1 . . . Lηk gε || = O(ε−k)
supK ||Lη1 . . . Lηk g−1

ε || = O(ε−k)

in particular gε, g−1
ε locally uniformly bounded

⇒ 1/M0 ≤
√
−gε(ξε, ξε) = Vε ≤ M0

(B) ∀K ⊂⊂ U : supK ||∇gεξε|| = O(1)

⇒ ||Lξgε||eε = O(1), ||∇gεeε|| = O(1) = ||∇gεe−1
ε ||eε

(C) for each ε : Σ := Σ0 past cp., spacelike hypersurface s.t. ∂J+
ε (Σ) = Σ

and ∃A 6= ∅, open A ⊆
⋂

ε J+
ε (Σ)

⇒ existence of classical solutions on common domain

all norms ‖ ‖ derived from some classical Riemannian background metric
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Formulation of the result

For given weakly singular g and v ,w ∈ G(Σ) we consider the i.v.p.

2gu = 0, u|Σ = v , Lξ̂|Σu = w (2)

and ask for solutions in G(U)

Theorem: Let (M, g) be a generalized space-time with a weakly singular
metric (i.e., (A)–(C) hold) and let v ,w ∈ G(Σ). Then for any p ∈ Σ
there exists an open neighborhood V where (2) has a unique solution
in G(V ).

In coordinates (U, {t, x1, x2, x3})
gε = −V 2

ε dt2 + hε
ij

(
dx i − N i

εdt
)
⊗

(
dx j − N j

εdt
)

Vε, ∂Vε, hε
ij = O(1), ∂αVε, ∂αhε

ij , ∂αN i
ε = O(ε|α|)

2gεuε = | det gε|−
1
2 ∂a(| det gε|−

1
2 gab

ε ∂b)uε = fε ∈ N (U)

uε(t = 0, x i ) = vε(x
i ), Lξ̂ε

uε(t = 0, x i ) = wε(x
i ) (2ε)
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General strategy of proof

key ingredient: higher order energy estimates

use of ε-dependent Sobolev norms
use of ε-dependent energy-momentum tensors
switch back to sup-norms

step 1: existence of classical solutions uε for fixed ε (by (C))
; candidate for G-solution

step 2: existence of G-solutions:
moderate data ; moderate initial energies

; moderate energies for all times ; (uε)ε ∈ EM(V )

step 3: uniqueness—part 1:
independence of the choice of the representatives of v ,w

negligible data ; [. . . . . . ] ; (uε)ε ∈ N (V )

step 2: uniqueness—part 2:
independence of the choice of the representative of g

(Osaka 2008) February 2008 15 / 23



Sobolev norms and energies I

use the R-metric eε
ab := g ε

ab + 2σ̂ε
aσ̂

ε
b to define “pointwise” norm

|∇(j)
ε u|2 := ||∇ε

p1
. . .∇ε

pj
u||2eε

= ep1q1
ε . . . e

pjqj
ε (∇ε

p1
. . .∇ε

pj
u) (∇ε

q1
. . .∇ε

qj
u)

4D-Sobolev norms on Ωτ w.r.t. ∇gε resp. ∂

∇‖u‖k
Ωτ , ε :=

( ∑k
j=0

∫
Ωτ
|∇(j)

ε (u)|2µε
) 1

2

∂‖u‖k
Ωτ , ε :=

( ∑
p1,...,pj

0≤j≤k

∫
Ωτ
|∂p1 . . . ∂pj u|2µε

) 1
2
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Sobolev norms and Energies II

3D-Sobolev norms on Sτ w.r.t. ∇gε resp. ∂

∇‖u‖k
Sτ , ε :=

( ∑k
j=0

∫
Sτ
|∇(j)

ε (u)|2µε
τ

) 1
2

∂‖u‖k
Sτ , ε :=

( ∑
p1,...,pj

0≤j≤k

∫
Sτ
|∂p1 . . . ∂pj u|2µε

τ

) 1
2

Energy momentum tensors (k > 0)

T ab,0
ε (u) := −1

2
gab

ε u2

T ab,k
ε (u) :=

(
gac

ε gbd
ε − 1

2
gab

ε g cd
ε

)
ep1q1
ε . . . e

pk−1qk−1
ε

(∇ε
c∇ε

p1
. . .∇ε

pk−1
u)(∇ε

d∇ε
q1

. . .∇ε
qk−1

u)

Energies (k ≥ 0)

E k
τ,ε(u) :=

∑k
j=0

∫
Sτ

T ab,j
ε (u)ξ̂ε

a ξ̂
ε
bµ̂

ε
τ
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Lemma 1: Equivalency of norms and energies

(i) (∇‖ ‖Sτ , ε vs. energies)
There exist constants A,A′ such that

A′(∇‖u‖k
Sτ , ε)

2 ≤ E k
τ,ε(u) ≤ A(∇‖u‖k

Sτ , ε)
2

(ii) (∇‖ ‖Sτ , ε vs. ∂‖ ‖Sτ , ε)
For each k there exist positive constants Bk ,B ′

k such that

(∇‖u‖k
Sτ , ε)

2 ≤ B ′
k

k∑
j=1

1

ε2(k−j)
(∂‖u‖j

Sτ , ε)
2

(∂‖u‖k
Sτ , ε)

2 ≤ Bk

k∑
j=1

1

ε2(k−j)
(∇‖u‖j

Sτ , ε)
2

(iii) (basic energy estimate) ∀ε, τ the dominant energy condition gives:

E k
τ,ε(u) ≤ E k

τ=0,ε(u) +
k∑

j=0

∫
Ωτ

(
ξb∇ε

aT
ab,j
ε (u) + T ab,j

ε (u)∇ε
aξb

)
µε.
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Proposition 1: Energy estimates

Let uε be a solution of (2ε). Then ∀k ∃C ′
k ,C ′′

k ,C ′′′
k s.t. ∀0 ≤ τ ≤ γ

(i) E k
τ,ε(uε) ≤ E k

0,ε(uε) + C ′
k(∇‖fε‖k−1

Ωτ , ε)
2 + C ′′′

k

∫ τ

ζ=0
E k

ζ,ε(uε)dζ

+ C ′′
k

k−1∑
j=1

1

ε2(1+k−j)

∫ τ

ζ=0
E j

ζ,ε(uε)dζ

(ii) E k
τ,ε(uε) ≤

(
E k

0,ε(uε) + C ′
k(∇‖fε‖k−1

Ωτ , ε)
2

+ C ′′
k

k−1∑
j=1

1

ε2(1+k−j)

τ∫
ζ=0

E j
ζ,ε(uε)dζ

)
eC ′′′k τ

(iii) If the initial energy (E k
0, ε(uε))ε is moderate [negligible] then

sup
0≤τ≤γ

(E k
τ, ε(uε))ε

is moderate [negligible].
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Lemma 2: Auxiliary estimates

(i) (Bounds on initial energies from initial data)
Let uε be a solution of (2ε). If (vε)ε, (wε)ε are moderate resp.
negligible, then the initial energies (E k

0,ε(uε))ε, for each k ≥ 0, are
moderate resp. negligible nets of real numbers.
[estimate t-derivatives of the data using the wave equation
∂2

t uε =

−V 2
ε

(
fε + 2

V 2
ε
N i∂t∂iuε −

(
hij

ε − 1
V 2

ε
N i

εN
j
ε

)
∂i∂juε + gab

ε Γ[gε]
c
ab

∂uε
∂xc

)
]

(ii) (Bounds on solutions from bounds on energies)
For m > 3/2 an integer, there exists a constant K and number N
such that for all u ∈ C∞(Ωτ ) and for all ζ ∈ [0, τ ] we have

sup
x∈Ωτ

|∂x i1 · · · ∂x il u(x)| ≤ Kε−N sup
0≤ζ≤τ

Em+l
ζ,ε (u).

[uses Sobolev embedding plus Lemma 1]
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Independence of the representative of the metric

(i) Let ĝε be another representative and consider

2ĝε ûε = fε

ûε(t = 0, x i ) = vε(x
i )

∂t ûε(t = 0, x i ) = wε(x
i )

(ii) The difference ũε := uε − ûε solves

2ĝε ũε = fε −2ĝεuε, vanishing data

(iii) fε −2ĝεuε = (fε −2gεuε) + (2gεuε −2ĝεuε) = 2gεuε −2ĝεuε

is negligible by well-definedness of 2g .
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Outlook & Perspectives

more general classes of metrics: log-type growth in ε replacing
O(1)...Hölder-Zygmund classes

generalization of Hadamard parametrix constructions

generalized singularity theorems
(extending geodesics in generalized sense)

go non-linear: Einstein equations

connections to cosmic censorship hypothesis
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