On the Geroch-Traschen class of metrics

Roland Steinbauer University of Vienna

GF2009, Vienna September 4, 2009

On the Geroch-Traschen class of metrics

Roland Steinbauer University of Vienna

GF2009, Vienna September 4, 2009

joint work with

James Vickers

University of Southampton

Rough metrics for relativity

- (1) classically $g \in \mathcal{C}^{\infty}$... but $\mathcal{C}^{1,1}$ is okay
- (2) "purely" distributional setting [Marsden, 68], [Parker, 79] rather resticted
- (3) "maximally reasonable" distributional setting [Geroch&Traschen, 87]
- (4) nonlinear distributional geometry
 in the framework of Colombeau's special algebra
 [Kunzinger, Vickers, Mayerhofer, S., since 02]

```
??? Compatibility of (3) and (4) ???

Answer: Yes, but ...
```

Distributional setting(s) for GR

distributional metric

[Marsden, 68], [Parker, 79]

$$g \in \mathcal{D}'^0_2(M) \cong \mathcal{D}'(M) \otimes_{\mathcal{C}^\infty} \mathcal{T}^0_2(M) \cong L_{\mathcal{C}^\infty}(\mathfrak{X}(M),\mathfrak{X}(M);\mathcal{D}'(M))$$
 symmetric and nondegenerate, i.e., $g(X,Y) = 0 \ \forall Y \Rightarrow X = 0$. \rightsquigarrow no way to define, inverse, curvature, . . .

"maximal reasonable" setting: Geroch-Traschen class

$$g\in \left(H^1_{\mathrm{loc}}\cap L^\infty_{\mathrm{loc}}\right)^0_2(M)$$

(gt-setting)

[Geroch&Traschen, 87], [LeFloch&Mardare, 07]

Pro's: may define curvature Riem[g], Ric[g], R[g], W[g] in distributions consistent limits \rightsquigarrow valid modelling

Con's: Bianchi identities fail → energy conservation?

 $\dim(\text{supp}(\text{Riem}[g])) \ge 3 \rightsquigarrow \text{ thin shells yes, but strings no!}$

(Special Colombeau) Generalised setting for GR

• **generalised metric:** (technicalities on the index skipped) $g \in \mathcal{G}_2^0(M)$ symmetric and $\det(g)$ invertible in \mathcal{G} , i.e.,

$$\forall K \text{ comp. } \exists m : \inf_{p \in K} |\det(g_{\varepsilon}(p))| \ge \varepsilon^m$$
 (N_{ε})

captures idea of smoothing: locally \exists representative g_{ε} consisting of smooth metrics and $\det(g)$ invertible in \mathcal{G}

- usual machinery works, i.e.,
 - pointwise characterization of nondegeneracy
 - raise and lower indices: $\mathcal{G}_0^1(M) \ni X \mapsto X^{\flat} := g(X, ...) \in \mathcal{G}_1^0(M)$
 - ∃! generalised Levi-Civita connection for g
 - generalised curvature Riem[g], Ric[g], R[g] via usual formulae
 - basic \mathcal{C}^2 -compatibility: $g_{\varepsilon} \to g$ in \mathcal{C}^2 , g a vacuum solution of Einstein's equation $\Rightarrow \mathrm{Ric}[g_{\varepsilon}] \to 0$ in $\mathcal{D}_3^{\prime 1}$.

The question of compatibility

- $g \in (H^1_{loc} \cap L^\infty_{loc})^0_2(M)$ two ways to calculate the curvature
 - (i) gt-setting: coordinate formulae in \mathcal{D}' resp. $W_{loc}^{m,p}$

$$\rightarrow$$
 Riem[g] $\in \mathcal{D}'_3^1$

- (ii) \mathcal{G} -setting: embed g via convolution with a mollifier usual formulae for fixed ε \longrightarrow Riem[g_{ε}] $\in \mathcal{G}_{3}^{1}$
- Do we get the same answer?

$$H^1_{\mathrm{loc}} \cap L^{\infty}_{\mathrm{loc}} \ni g \xrightarrow{*\rho_{\varepsilon}} [g_{\varepsilon}] \in \mathcal{G}$$
 $gt\text{-setting} \downarrow \qquad \qquad \qquad \downarrow \mathcal{G}\text{-setting}$ $\mathrm{Riem}[g] \xrightarrow{\lim_{\varepsilon \to 0}} \mathrm{Riem}[g_{\varepsilon}]$

On the gt-class of metrics

- $H_{\text{loc}}^1 \cap L_{\text{loc}}^\infty$ is an algebra
- $f \in H^1_{loc} \cap L^{\infty}_{loc}$ invertible : \Leftrightarrow loc. unif. bounded away from 0

$$\forall K \text{ compact } \exists C : |f(x)| \geq C > 0 \text{ a.e. on } K$$

then f^{-1} is again loc. unif. bded away from 0

Definition (Nondegenerate gt-metrics [LeFM07], [SV09])

A gt-regular metric is a section $g \in \left(H^1_{\text{loc}} \cap L^\infty_{\text{loc}}\right)^0_2(M)$, which is a Semi-Riemannian metric almost everywhere.

It is called nondegenerate, if

$$\forall K \text{ compact } \exists C : |\det g(x)| \ge C > 0 \text{ a.e. on } K.$$
 (N)

 $\Rightarrow g^{-1} \in \left(H^1_{\text{loc}} \cap L^\infty_{\text{loc}}\right)^0_2(M)$ and nondegenerate, i.e., $\det(g^{-1})$ loc. unif. bded away from 0

Embeddings and association

• scalars on $\Omega \subseteq \mathbb{R}^n$ open: $u \in \mathcal{E}'(\Omega)$

$$\begin{array}{ll} u_{\varepsilon} := u * \rho_{\varepsilon} \\ \iota(u) := [(u_{\varepsilon})_{\varepsilon}] \end{array} \text{ with } \begin{array}{ll} \rho \in \mathcal{S}(\mathbb{R}^{n}), \ \int \rho = 1, \ \rho_{\varepsilon} := \frac{1}{\varepsilon^{n}} \, \rho \left(\frac{\cdot}{\varepsilon}\right) \\ \int x^{\alpha} \rho(x) dx = 0 \ \forall |\alpha| \geq 1 \end{array}$$

- $u \in \mathcal{D}'(\Omega)$: sheaf theoretic construction, or set $u_{\varepsilon} = u * \psi_{\varepsilon}$, $\psi_{\varepsilon}(x) = \chi\left(\frac{x}{\sqrt{\varepsilon}}\right) \rho_{\varepsilon}(x)$, χ a cut-off
- ψ_{ε} is a strict δ -net (moderate, asymptotic vanishing moments)
 - (i) $supp(\psi_{\varepsilon}) \to \{0\} (\varepsilon \to 0)$ (ii) $\int \psi_{\varepsilon} \to 1 (\varepsilon \to 0)$
 - (iii) $\|\psi_{\varepsilon}\|_{L^{1}} < C$ for all ε (small)
- $g \in (H^1_{loc} \cap L^{\infty}_{loc})^0_2(M)$: $g^{\varepsilon}_{ii} := g_{ij} * \psi_{\varepsilon}, \rightsquigarrow \mathsf{metric} \ g_{\varepsilon}, \ \iota(g) = [(g_{\varepsilon})_{\varepsilon}]$
- association: $\mathcal{G} \ni u \approx v \in \mathcal{D}' : \Leftrightarrow \int u_{\varepsilon} \omega \to \langle v, \omega \rangle$

Smoothing gt-metrics

Basic properties of smoothing (ψ_{ε} a strict δ -net)

- $f \in L^1_{loc} \Rightarrow f_{\varepsilon} = f * \psi_{\varepsilon} \in C^{\infty}(\Omega_{\psi_{\varepsilon}})$
- $\bullet \ \ f \in W^{m,p}_{\mathrm{loc}} \ \Rightarrow \ f_{\varepsilon} := f * \psi_{\varepsilon} \to f \quad \text{ in } \quad W^{m,p}_{\mathrm{loc}} \text{ for all } m, \, 1 \leq p < \infty$
- $\bullet \ \, f,\,h\in H^1_{\mathrm{loc}}\cap L^\infty_{\mathrm{loc}} \, \Rightarrow \, f_\varepsilon h_\varepsilon \to \mathit{fh} \quad \text{in} \quad H^1_{\mathrm{loc}}\cap L^p_{\mathrm{loc}} \, \, \text{for all} \, \, p<\infty$

Lemma (Stability of the determinant)

Let g be nondegenerate, gt-regular, then

$$\det(g_{\varepsilon}) \to \det g$$
 in $H^1_{loc} \cap L^p_{loc}$ for all $p < \infty$.

• But (N) for g does not imply (N_{ε}) for g_{ε} and m=0, $(N_{\varepsilon}^{0})!$

g nondegenerate gt-regular metric $\neq g_{\varepsilon}$ generalised metric

Preserving nondegeneracy (1)

problem (1): preserving positivity for scalars

• want: $0 \le f \in H^1_{loc} \cap L^{\infty}_{loc}$ & loc. unif. bounded away from 0

$$\Rightarrow \ \forall K \text{ compact } \exists C, \varepsilon_0 : \ f_{\varepsilon}(x) \geq C > 0 \quad \forall x \in K, \ \varepsilon \leq \varepsilon_0 \qquad (N'_{\varepsilon})$$

Then $1/f_{\epsilon}$ smooth, locally uniformly bounded net, and $1/f_{\varepsilon} \to 1/f$ in $H_{loc}^1 \cap L_{loc}^p$ for all $p < \infty$.

• true if $\psi_{\varepsilon} \geq 0$, but ρ with vanishing moments $\Rightarrow \rho \geq 0 \Rightarrow \psi_{\varepsilon} \geq 0$

Lemma (Existence of admissible mollifiers)

There exist moderate strict delta nets ρ_{ε} with

(i)
$$\operatorname{supp}(\rho_{\varepsilon}) \subseteq B_{\varepsilon}(0)$$
 (ii) $\int \rho_{\varepsilon}(x) dx = 1$

(ii)
$$\int \rho_{\varepsilon}(x) dx = 1$$

(iii)
$$\forall j \in \mathbb{N} \ \exists \varepsilon_0 : \int x^{\alpha} \rho_{\varepsilon}(x) \, dx = 0$$
 for all $1 \leq |\alpha| \leq j$ and all $\varepsilon \leq \varepsilon_0$

(iv)
$$\forall \eta > 0 \ \exists \varepsilon_0 : \ \int |\rho_{\varepsilon}(x)| \ dx \le 1 + \eta \quad \text{ for all } \varepsilon \le \varepsilon_0.$$

Convolution with ρ_{ε} provides an embedding ι_{ρ} into \mathcal{G} with (N'_{ε}) .

Preserving nondegeneracy (2)

problem (2): preserving nondegeneracy for metrics

• want: $\forall K$ cp. $\exists C, \varepsilon_0 : |\det(g_{\varepsilon})| \geq C_K > 0 \ \forall x \in K, \ \varepsilon \leq \varepsilon_0 \quad (N_{\varepsilon}^0)$

Definition (Stability condition)

Let g be a gt-regular metric and $\lambda_1, \ldots, \lambda_n$ its eigenvalues.

- (i) For any compact K we set $\mu_K := \min_{1 < i < n} \underset{x \in K}{essinf} |\lambda^i(x)|$.
- (ii) We call g stable if on K there is A^K continuous, such that $\max_{i,j} \underset{x \in K}{essup} |g_{ij}(x) A^K_{ij}(x)| \leq C < \tfrac{\mu_K}{2n}.$

Lemma (Nondegeneracy of smoothed gt-regular metrics)

Let g be a nondegenerate, stable, and gt-regular metric. Let g_{ε} be a smoothing of g with an admissible mollifier $(\rho_{\varepsilon})_{\varepsilon}$. Then (N_{ε}^0) holds, and the embedding $\iota_{\rho}(g)$ is a gen. metric.

Stability results

Lemma (Stability of the inverse and Christoffel symbols)

Let g be a nondegenerate, stable, and gt-regular metric. Let g_{ε} be a smoothing of g with an admissible mollifier $(\rho_{\varepsilon})_{\varepsilon}$.

(i) The inverse of the smoothing $(g_{\varepsilon})^{-1}$ is a smooth and locally uniformly bounded net (on rel. cp. sets for ε small), and

$$(g_{\varepsilon})^{-1} o g^{-1} \ \text{in} \ H^1_{\mathrm{loc}} \cap L^p_{\mathrm{loc}} \ \text{for all} \ p < \infty.$$

In particular, for any embedding we have that $(\iota_{\rho}(g))^{-1} \approx g^{-1}$.

(ii) The Christoffel symbols of the smoothing $\Gamma_{ijk}[g_{\varepsilon}]$, $\Gamma^i_{jk}[g_{\varepsilon}]$ are smooth and L^2_{loc} -bounded nets (on rel. cp. sets for ε small), and

$$\Gamma_{ijk}[g_{arepsilon}]
ightarrow \Gamma_{ijk}$$
 and $\Gamma^i_{jk}[g_{arepsilon}]
ightarrow \Gamma^i_{jk}$ in $L^2_{
m loc}$

In particular, for any embedding $\Gamma_{ijk}[\iota_{\rho}(g)] \approx \Gamma_{ijk}[g]$ and $\Gamma^{i}_{ik}[\iota_{\rho}(g)] \approx \Gamma^{i}_{ik}[g]$.

Compatibility results

Theorem (Compatibility of the gt- with the G-setting)

Let g be a nondegenerate, stable, and gt-regular metric, and denote its Riemann tensor by Riem[g].

Let g_{ε} be a smoothing of g with an admissible mollifier $(\rho_{\varepsilon})_{\varepsilon}$. Then we have for the Riemann tensor $\text{Riem}[g_{\varepsilon}]$ of g_{ε}

$$Riem[g_{\varepsilon}] \rightarrow Riem[g] \text{ in } \mathcal{D}'_3^1.$$

Hence for any embedding ι_{ρ} we have $Riem[\iota_{\rho}(g)] \approx Riem[g]$.

$$\begin{array}{ccc} H^1_{\mathrm{loc}} \cap L^\infty_{\mathrm{loc}} & & \exists g & \xrightarrow{*\iota_\rho \text{ admissible}} & [g_\varepsilon] \in \mathcal{G} \\ & & & & & & & & & \\ \text{gt-setting} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & &$$

Discussion

Relation to older stability results: $(g_n)_n$ gt-regular sequence

- [LeFloch&Mardare, 07] $g_n \to g$ in H^1_{loc} , $g_n^{-1} \to g^{-1}$ in $L^\infty_{loc} \Rightarrow \text{Riem}[g_n] \to \text{Riem}[g]$, in $\mathcal{D}_3'^1$. for smoothings via convolution $g_n^{-1} \not\to g^{-1}$ in L^∞_{loc} .
- [Geroch&Traschen, 87] $g_n \rightarrow g$ in H^1_{loc} , $g_n^{-1} \rightarrow g^{-1}$ in L^2_{loc} , g_n , g_n^{-1} bded in L^∞_{loc} (*) $\Rightarrow \operatorname{Riem}[g_n] \rightarrow \operatorname{Riem}[g]$ in $\mathcal{D}_3'^1$.

Existence of approximating sequences with (*)

- [Geroch&Traschen, 87]
 Only for continuous g, open for general g.
- Positive answer for general g by the above Theorem.

Further prospects

 Jump conditions along singular hypersurfaces in the spirit of [LeFloch&Mardare, 07], [Lichnerowicz, 55-79] in the generalised setting plus compatibility. Applications to gravitational shock waves.

Diploma thesis of Nastasia Grubic.

- Regularity of generalised solutions to wave equations in singular space-times ([Grant, Mayerhofer, S., 08]).
- Compatibility for connections in fibre bundles ([Kunzinger, Vickers, S., 05]).

Some References

- R. Geroch, J. Traschen, Strings and Other distributional Sources in General Relativity, Phys. Rev. D 36, 1987.
- P. LeFloch, C. Mardare, Definition and Stability of Lorentzian Manifolds With Distributional Curvature, Port. math. 64, 2007.
- R. Steinbauer, J. Vickers, On the Geroch-Traschen class of metrics, Class. Quantum Grav. 26, 2009.
- R. Steinbauer, A note on distributional semi-Riemannian geometry, Proceedings of the 12th Serbian Mathematical Congress, Novi Sad, September 2008, arXiv:0812.0173
- R. Steinbauer, J. Vickers, The Use of Generalized Functions and Distributions in General Relativity, Class. Q. Grav. 23, 2006.
- M. Kunzinger, R. Steinbauer, J. Vickers, Generalised Connections and Curvature, Math. Proc. Cambridge Philos. Soc. 139, 2005.
- M. Kunzinger, R. Steinbauer, Generalized Pseudo-Riemannian Geometry, Trans. Amer. Math. Soc. 354, 2002.