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Rough metrics for relativity

(1) classically g € C> ... butC"! is okay

(2) “purely” distributional setting [Marsden, 68], [Parker, 79]
rather resticted

(3) “maximally reasonable” distributional setting
[Geroch&Traschen, 87]

(4) nonlinear distributional geometry
in the framework of Colombeau’s special algebra
[Kunzinger, Vickers, Mayerhofer, S., since 02]
77?7 Compatibility of (3) and (4) ??7?
but ...



Distributional setting(s) for GR

@ distributional metric [Marsden, 68], [Parker, 79]
g € D'5(M) = D' (M) @c TP(M) 2= Lo (X(M), X(M); D'(M))
symmetric and nondegenerate, i.e., g(X,Y)=0VvY = X =0.

~» no way to define, inverse, curvature, ...

@ “maximal reasonable” setting: Geroch-Traschen class
00\ 0
gec ('Lll1oc N Lloc)g (M)

(gt-setting) [Geroch&Traschen, 87], [LeFloch&Mardare, 07]

Pro’s: may define curvature Riem[g], Ric[g], R[g], W[g] in distributions
consistent limits ~» valid modelling

Con’s: Bianchi identities fail ~ energy conservation ?
dim(supp(Riem][g])) > 3 ~» thin shells yes, but strings no!
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(Special Colombeau)
Generalised setting for GR

@ generalised metric: (technicalities on the index skipped)
g € GI(M) symmetric and det(g) invertible in G, i.e.,
VK comp. 3m : inf{\det(gg(p))| >l (N:)
pe

captures idea of smoothing: locally 3 representative g.
consisting of smooth metrics and det(g) invertible in G

@ usual machinery works, i.e.,
@ pointwise characterization of nondegeneracy
raise and lower indices: G§(M) > X — X" := g(X, .) € G¥(M)
3! generalised Levi-Civita connection for g
generalised curvature Riem|[g], Ric[g], R[g] via usual formulae

basic C2-compatibility: g. — g in C2, g a vacuum solution of
Einstein’s equation = Ric[g:] — 0in Dj'.



The question of compatibility

@ ge (H\.n LIOC) (M) two ways to calculate the curvature

(i) gt-setting: coordinate formulae in D’ resp. WP

loc
~ Riem[g] € D'}

(i) G-setting: embed g via convolution with a mollifier
usual formulae for fixed ~+ Riem[g.] € Gi

@ Do we get the same answer?

'L’11oc loc >4 —> [gE] € g
gt-settingl lg-setting

Riem[g] RLEE Riem[g,]



On the gt-class of metrics

1 .
@ Hy. N Ly is an algebra

@ fe H! nL> invertible :< loc. unif. bounded away from 0

loc loc

VK compact3C: |f(x)| > C>0ae.onK

then /=" is again loc. unif. bded away from 0

Definition (Nondegenerate gt-metrics [LeFM07], [SV09])

A gt-regular metric is a section g € (H! . N Lfooc)g (M), which is a
Semi-Riemannian metric almost everywhere.
It is called nondegenerate, if

VK compact 3C : |detg(x)| > C > 0a.e.on K. (N)

)g (M) and nondegenerate, i.e.,
det(g~") loc. unif. bded away from 0

= g e (Hl.NLE

loc loc
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Embeddings and association

@ scalarson Q C R" open: u € £'(Q)

Us := U pe with pES(Rn) fp:1 pe:sl”p(g)
y(u) = [(ue)] fX(yp x)dx =0V|a| > 1

@ u e D'(Q): sheaf theoretic construction, or
setu. = uxv., VY(x)=x (%) pe(X), x acut-off

@ 1. is a strict 6-net (moderate, asymptotic vanishing moments)

(i) supp(y) — {0} (¢ — 0) (i) [ — 1 (¢ —0)
(iii) [[ell,r < Cfor all e (small)

@ ge (Hi.N Lﬁ)’%) (M): g5 = gjj * 1, ~ metric g, «(g) = [(g-)]

@ association: G u~rveD & [Uw— (V,w)



Smoothing gt-metrics

Basic properties of smoothing (. a strict §-net)
@ fell =f="Fxy.€C>®(Qy.)

loc

@ feW™ = f .=fx¢p.—f in W'Pforallm 1<p<oo

loc loc

@ f,he H NLX = fh.—fh in H _NLP

loc loc loc loc

forall p < oo

Lemma (Stability of the determinant)
Let g be nondegenerate, gt-regular, then

det(g.) — detg in H' nlLP

loc loc

for all p < oo.

@ But (N) for g does not imply (N.) for g. and m = 0, (N°)!

g nondegenerate gt-regular metric A g. generalised metric



Preserving nondegeneracy (1)
problem (1): preserving positivity for scalars
@ want: 0 < f e H! N LX &loc. unif. bounded away from 0
= VK compact3C,eo: £.(x)>C>0 VxeK, e<eg (N))

Then 1/f. smooth, locally uniformly bounded net, and
1/f. —1/fin Hl.NLP forall p < cc.

@ true if ¢ > 0, but p with vanishing moments = p 2 0= . 20
Lemma (Existence of admissible mollifiers)
There exist moderate strict delta nets p. with

(i) supp(p:)  B-(0) (ii) | pe(x) dx =1
(i) Vje NJeg: [x¥pe(x)dx =0 foralll<|a]<jandalle <z
(iv) Vp>03eo: [|p(x)|dx <1+n foralle <eo.

Convolution with p. provides an embedding ., into G with (N.).
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Preserving nondegeneracy (2)

problem (2): preserving nondegeneracy for metrics
@ want: VK cp. 3C,ep: |det(g.)| > Ck >0Vx e K, e <go (N?)

Definition (Stability condition)
Let g be a gt-regular metric and A4, ..., A\ its eigenvalues.

(i) For any compact K we set px := min essmf IN(x)].
1<i<n xeK

(i) We call g stable if on K there is AX continuous, such that
max essup |gji(x) — A (x)| < C < 4«
1] xeK

Lemma (Nondegeneracy of smoothed gt-regular metrics)

Let g be a nondegenerate, stable, and gt-reqular metric.
Let g. be a smoothing of g with an admissible mollifier (pe)e.
Then (N?) holds, and the embedding 1,(g) is a gen. metric.

11/16



Stability results

Lemma (Stability of the inverse and Christoffel symbols)

Let g be a nondegenerate, stable, and gt-regular metric.
Let g. be a smoothing of g with an admissible mollifier (p:)..

(i) The inverse of the smoothing (g.)~" is a smooth and locally
uniformly bounded net (on rel. cp. sets for e small), and

() ' =g tinHl nLP

loc loc

for all p < cc.

In particular, for any embedding we have that (.,(g9)) "' ~ g~ '.

(i) The Christoffel symbols of the smoothing T jx[g-], F}k[gg] are
smooth and L2 -bounded nets (on rel. cp. sets for e small), and

loc
Fiklge] — Tk and T [ge] — T in LE,.

In particular, for any embedding T j[t,(9)] ~ Tjx[g] and

Cilen(9)] = Tlg]-
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Compatibility results

Theorem (Compatibility of the gt- with the G-setting)

Let g be a nondegenerate, stable, and gt-regular metric, and
denote its Riemann tensor by Riem|g].

Let g. be a smoothing of g with an admissible mollifier (pe)e .
Then we have for the Riemann tensor Riem[g.] of g.

Riem[g.] — Riem[g] in D'}.
Hence for any embedding ., we have Riem[.,(g)] ~ Riem][g].

Hl100 N Lfo% M} [ ] g
nondeg., stable 9 g:| €
gt-settingl J G-setting

Riem|[g] —= —  Riem[g.]
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Discussion

Relation to older stability results: (g,), gt-regular sequence

@ [LeFloch&Mardare, 07]
gn— ginHi, ga' — g tinLiy
for smoothings via convolution g, ' /4 g~ in LS.
@ [Geroch&Traschen, 87]
gh—ginH g, =g Tinl2., gn gy bdedin L2 (%)
= Riem[g,] — Riem[g] in D}'.

Existence of approximating sequences with (x)

@ [Geroch&Traschen, 87]
Only for continuous g, open for general g.

@ Positive answer for general g by the above Theorem.

= Riem[g,] — Riem][g], in D4’
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Further prospects

@ Jump conditions along singular hypersurfaces in the spirit of
[LeFloch&Mardare, 07], [Lichnerowicz, 55-79] in the generalised
setting plus compatibility. Applications to gravitational shock
waves.

Diploma thesis of Nastasia Grubic.

@ Regularity of generalised solutions to wave equations in singular
space-times ([Grant, Mayerhofer, S., 08]).

@ Compatibility for connections in fibre bundles ([Kunzinger,
Vickers, S., 05]).
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