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PERTURBATION THEORY FOR NORMAL OPERATORS

ARMIN RAINER

ABSTRACT. Let E 5 z +— A(z) be a ¥-mapping with its values being un-
bounded normal operators with common domain of definition and compact
resolvent. Here ¢ stands for C*°, C' (real analytic), clM] (Denjoy—Carleman
of Beurling or Roumieu type), C%! (locally Lipschitz), or C*:®*. The param-
eter domain F is either R or R™ or an infinite dimensional convenient vector
space. We completely describe the ¢-dependence on z of the eigenvalues and
the eigenvectors of A(x). Thereby we extend previously known results for self-
adjoint operators to normal operators, partly improve them, and show that
they are best possible. For normal matrices A(xz) we obtain partly stronger
results.

1. INTRODUCTION AND MAIN RESULTS

The purpose of this paper is to prove the following theorem.

1.1. Theorem. Let x — A(x) be a parameterized family of unbounded normal
operators in a Hilbert space H with common domain of definition and with compact
resolvent.

(A)

(B)

(©)

(D)

If A(x) is C (resp. C™1) in x € R and if the order of contact of any two
unequal eigenvalues is finite at each x € R, then the eigenvalues and the
eigenvectors of A(x) admit global C* (resp. C™M]) parameterizations in .
The latter condition is trivially satisfied if C™ is quasianalytic.
Assume that C™M) is quasianalytic. If A(z) is C™M) in x € R™, then for each
xo € R™ and for each eigenvalue z of A(xy), there exist a neighborhood D of
z in C, a neighborhood W of ¢ in R™, and a finite covering {my, : Uy, — W}
of W by composites of finitely many local blow-ups, such that the eigenvalues
of A(mi(y)) in D and the corresponding eigenvectors can be chosen CM!]
iny.
Assume that C™M is quasianalytic. If A(z) is CM) inx € R™, then for each
xg € R™ and for each eigenvalue z of A(xy), there exists a neighborhood D
of z in C, such that the eigenvalues of A(x) in D can be parameterized by
functions which are locally ‘piecewise Lipschitz continuous’, i.e., belong to
(M] . . .
Egc (cf. . In particular, they are SBViy.-functions whose classical
gradient exists almost everywhere and is locally bounded.
If v — A(x) is C%! in x € E, where E is a convenient vector space, then
each continuous eigenvalue E O U > x — A (x), for ¢®-open U C E, of
A(z) is C%Y inx. Ifxg € ENU and c : R — E is a C*®-curve with
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2 A. RAINER

c(0) = wo and c((0,1]) C U, then Aoc|,1) is globally Lipschitz on (0,1]. If
E =R, then the eigenvalues admit a C*'-parameterization in x.

(E) If x — A(z) is C in z € R, for some a > 0, then the eigenvalues admit
a C'-parameterization in x.

(F) If x — A(x) is C* in x € R, for some o > 0, then the eigenvalues admit
a twice differentiable parameterization in x.

Let us define the involved notions and explain the results.

1.2. Definitions and remarks. For a sequence M = (My)ren of positive real
numbers, U C R™ open, K C U compact, and p > 0, consider the set

0%f(x) n
(1.3) {m.xelﬂael\l }7

and define the Denjoy—Carleman classes
CMN(U) := {f € C(U) : ¥ compact K C U ¥p > 0: (L.3) is bounded},
MUY = {f € C(U) : ¥V compact K C U Jp > 0 : (1.3) is bounded}.

The elements of CM)(U) are said to be of Beurling type; those of CtM}(U) of
Roumieu type. If My = 1, for all k, then C™)(U) consists of the restrictions to
U of the real and imaginary parts of all entire functions, while C1M}(U) coincides
with the ring C%(U) of real analytic functions on U.

We use the notation C!M! for either C) or C{M} with the following restriction:
Statements that involve more than one C™! symbol must not be interpreted by
mixing C™) and C{M},

We shall always assume that M = (My,) has the following regularity properties:

(M;) Log-convexity: M2 < Mjy_1 My for all k.

My 41 ) 1/k

(M) Stability under derivation: sup, ( A

< 00

Then C™] is stable under composition and derivation. Moreover, C{M} D> Cv,
the CtM} inverse function theorem holds, and C{M?} is closed under solving ODEs.
The C™) inverse function theorem is valid and C™) is closed under solving ODEs
if additionally M1 /My — oo. This is satisfied if

(Mz) M™% = 00
which will always be assumed in the Beurling case. Condition (Ms]) is equivalent

to C¥ € CM) and in turn to C* C C1M} | The classes CIM] are quasianalytic, i.e.,
infinite Taylor expansion is injective, if and only if the following condition holds:

(My) Quasianalyticity: >, Mﬁ = 0.

For more details on Denjoy—Carleman classes see [39], [25], [27], [26], and references
therein.

A convenient vector space is a real locally convex vector space E satisfying the
following equivalent conditions: Mackey Cauchy sequences converge; C'°°-curves in
E are locally integrable in E; a curve ¢ : R — E is C* if and only if £ o c is C* for
all continuous linear functionals £. The ¢>-topology on E is the final topology with
respect to all C*°-curves. Functions f defined on ¢®°-open subsets of convenient
vector spaces E are called CF< if f ocis C*® for every C*®-curve c¢. If E is a
Banach space, then a C*®-function is C* and the kth derivative is locally Holder
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continuous of order « in the usual sense. This has been proved in [I6], see also the
lemma in [29]. For the Lipschitz case see [I7] and [23, 12.7 and 12.8].

That A(z) is a C°, C™M] or a C*“family of unbounded normal operators
means the following: There is a dense subspace V of the Hilbert space H so that
V is the domain of definition of each A(z), A(z) has closed graph, and we have
A(z)A(x)* = A(z)* A(z) wherever defined. Moreover, we require that  — (A(z)u |
v) is 0, CM] or C%2 for each u € V and v € H. This implies that = — A(z)u
is of the same class as a mapping £ — H (where E is either R or R™ or an infinite
dimensional convenient vector space) for each u € V, by [23] 2.3] for C*°, by [26],
4.3, 4.4, 4.5, and 5.1] for CIM] and by [23] 2.3], [I7, 2.6.2] or [16, 4.14.4] for C*>,
because C*® can be described by boundedness conditions only and for these the
uniform boundedness principle is valid. Note that the real analytic case is included
since C* = C1(Wx},

If A depends on a single real parameter z, then the eigenvalues of A may be
chosen continuously near each (zg, z), where z is an eigenvalue of A(z), see [20] 1T
Thm. 5.2]. The order of vanishing of a continuous function germ f at 0 € R is the
supremum of all integers p such that f(z) = zPg(x), where g is continuous; likewise
at any xg € R. The order of contact of two continuous function germs is the order
of vanishing of their difference.

A local blow-up ® over an open subset U of a C™]-manifold X means the com-
posite ® = 10 ¢ of a blow-up ¢ : U’ — U with center a C™l-submanifold and of
the inclusion ¢ : U — X.

A sequence of functions \; is said to parameterize the eigenvalues of A, if, for
each z € C, the cardinality |{i : A\;(z) = z}| equals the multiplicity of z as an
eigenvalue of A(x).

An SBV-function is a special function of bounded variation, i.e., a function
having bounded variation whose distributional derivative has trivial Cantor part,
see [I4] and [3].

1.4. Explanation of the results and background. The novelty of the results
in Theorem and of the partly stronger finite dimensional versions of f
for normal matrices which will be shown in the course of the proof of Theorem
is threefold:

e The results are well-known if all operators A(z) are self-adjoint; at least in
some weaker formulation. We show that the assumption of self-adjointness
can be replaced by normality, essentially without changing the conclusions
(only in @ we additionally have to assume continuity if dim E > 1).

e We achieve utmost generality, at least for matrices, by working in abstractly
defined quasianalytic subclasses of C*° which present a minimal setting for
our method of proof. For unbounded operators we restrict to C[M],

e We partly even improve the results for self-adjoint operators and show that
they are then best possible.

Let us briefly describe what was previously known. If all operators A(x) are
self-adjoint, then is due to Rellich [36] in 1942 for C*, to [2] for C*°, and to
28] for CtM} (with special M = (My)); the normal case follows for C* from an
observation due to Butler, see [20, IT Thm. 1.10] and [5} 3.5.1]. Part is due to
[30] for C¥-families of symmetric matrices and to [28] for unbounded self-adjoint
operators; in [28] (see also [34] and [35]) the normal case is treated, but there in
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addition we had to use local power substitutions. In the self-adjoint case, part
and part (D] are consequences of [35, 9.6] and [29], and part was proved in [24].
Part was shown in [24] under the assumption that R 3 z — A(z) is a C*°-curve
(or, more precisely, C3™“, if the multiplicity of an eigenvalues does never exceed
n) of self-adjoint operators. Our proof of works for normal A and needs only
the assumption C>%.

It is somewhat surprising that these results carry over to normal operators. For
Hermitian matrices the characteristic polynomial is hyperbolic, i.e., all its roots are
real, and the roots of families of hyperbolic polynomials admit ‘nice’ parameteri-
zations, which are reflected by the regularity properties of the eigenvalues and the
eigenvectors. For instance, the roots of a hyperbolic polynomial with coefficients
in some quasianalytic class of functions admit parameterizations in the same class
after desingularization by means of local blow-ups (of the parameter space), see [35]
and [30] for C¥; and the (increasingly ordered) roots are locally Lipschitz, provided
that the coeflicients are in C™, where n is the degree, see [12]. The perturbation
theory for complex polynomials is considerably weaker: In general, local power
substitutions are needed in order to desingularize, and the roots cannot satisfy a
local Lipschitz condition, e.g., 22 — 2z = 0, € R, see [35]. However, not every
quasianalytic family of polynomials appears as the characteristic polynomial of a
quasianalytic family of normal matrices. In fact, the set of normal complex n x n
matrices forms a real n® + n dimensional stratified submanifold of R2"” (the set of
all complex n X n matrices), see e.g. [I9]. So the normality condition implies per-
turbation results for operators stronger than predicted by the perturbation theory
for polynomials.

The results in and seem to be new even in the real analytic setting. How-
ever, we shall work in a minimal setting making the proofs (in particular desingu-
larization) work, namely subclasses of C° which are quasianalytic and have certain
stability properties, see Section |2l Only when passing to infinite dimensions we will
restrict to the framework of Denjoy—Carleman classes for which we have developed
the required principles of calculus beyond Banach spaces in [25, 27, 26]. One may
expect analogous results for any suitable quasianalytic function class.

In @ we need to assume continuity of z +— A(x) if dim E > 1, since in gen-
eral there will not exist continuous parameterizations of the single eigenvalues, see
Example However, it might be that the supplement in is still true with-
out that assumption, i.e., that a C%!-family R® > z + A(x) of normal complex
matrices admits a parameterization of its eigenvalues by SBVj,.-functions whose
classical gradient exists a.e. and is locally bounded, see Question [6.21

The conclusions in and are optimal in the following sense: There exist
C*>-curves (even non-quasianalytic C!™]) of real symmetric 2 x 2 matrices whose
eigenvalues do not admit a parameterization in C** for any o > 0, see the examples
in [24] and [28]. We also want to stress that (A]), (E), and are no longer true if
the parameter domain has more than one dimension: The eigenvalues 4=+/x2 + 92 of
the real analytic family (Z . ), x,y € R, are not C! at the origin, see Example

We point out that the assumptions in Theorem [I.1|may be slightly relaxed, if all
A(z) are m-sectorial operators. In that case it suffices to assume that the associated
quadratic forms a(x) have common domain of definition V' and = — a(z)(u) is of
the respective class for each u € V', see Remark
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The paper is organized as follows: We introduce and describe the classes of
smooth functions we shall be working with in Section [2] and polynomials with
coefficients in these classes in Section |3} In Section [4f we show that a quasianalytic
polynomial is solvable (i.e., admits roots in the same class as the coefficients) along
quasianalytic arcs if and only if it is solvable after blowing up (the parameter
space). This will be used in the proof of (B]). We shall prove (partly stronger)
finite dimensional versions of f for normal matrices in Section [5( and @ The
proof of the Theorem will finally be completed in Section [7] Several examples
in Section [§ will show that the results are best possible in the sense that, generally,
the assumptions cannot be weakened and the conclusions cannot be strengthened.
In particular, the results are no longer true if A is a family of merely diagonalizable
matrices.

Notation. The notation C!™! stands for either C™) or CtM} with the follow-
ing restriction: Statements that involve more than one C™] symbol must not be
interpreted by mixing C*) and C{M},

Let N = N5 oU{0}. For o = (a1,...,04) € Nand z = (21, ...,24) € R? we write
al=ayl-agl ol = a4 Fag, 2% =2 - 2g?, and 9% = 9ol /ot - Oy e
We shall also use 9; = 9/0x;, d for the Fréchet derivative, and d,, for the directional
derivative in direction v. If a, 8 € N9, then a < 8 means @ < B3; for all 7.

For a C*° function germ f at a € R? we denote by f, € F; its Taylor series
at a, where F, is the ring of formal power series in ¢ variables. We write ff =
K[[z1, ..., z4]] if we want to stress that the coefficients belong to K (where K = R
or K = C) and the variables are z1, ..., 2, We also use f: fo. We write w(F') for
the order of F' € Fy, i.e., the lowest degree of non-zero monomials in F', with the
convention w(0) = +0o. For a C*° function germ f at 0 we set w(f) = w(f ).

Sy, denotes the symmetric group on {1,2,...,n}. It acts on C" by permuting
the coordinates: 0.2 = (25(1),- -+ 20(n)) for 2 = (21,...,2,) € C" and 0 € S,,.
This action is denoted by S, : C™. The isotropy subgroup that fixes z is de-
noted by (S,), = {0 € S, : 0.z = z}. The elementary symmetric functions
0j =D iy<wci; Zia ** Zi; generate the algebra of symmetric polynomials C[C"]3".

We write |S| for the cardinality of a finite set S and denote by H? the g¢-
dimensional Hausdorff measure.

L(E, F) is the space of bounded linear mappings E — F.

2. SMOOTH FUNCTION CLASSES

2.1. Classes of C*°-functions. Let us assume that for every open U C RY, g € N|
we have a subalgebra C(U) of C*°(U) = C*°(U, R) so that the following assumptions

* are satisfied.

(C1) C contains the restrictions of polynomial functions. The algebra of restric-
tions to U of polynomial functions on R? is contained in C(U).

(Ca) C is closed under composition. If V- C RP is open and ¢ = (¢1,...,9p) :
U — V is a mapping with each ¢; € C(U), then fo ¢ € C(U), for all
fecv).

(C3) C is closed under derivation. If f € C(U) and 1 < i < ¢, then 9;f € C(U).

(C4) C s closed under division by a coordinate. If f € C(U) is identically 0 along
a hyperplane {z : x; = a;}, then f(x) = (x; — a;)h(z), where h € C(U).
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(Cs) C is closed under taking the inverse. Let ¢ : U — V be a C-mapping be-
tween open subsets U and V in RY. Let a € U, p(a) = b, and suppose that
the Jacobian matrix (Op/0x)(a) is invertible. Then there exist neighbor-
hoods U’ of a, V' of b, and a C-mapping ¢ : V' — U’ such that ¢ (b) =
and ¢ oY = idy-.

A mapping ¢ : U — V between open subsets U C R? and V C RP is called a
C-mapping if fop € C(U), for every f € C(V). It follows from and that
¢ = (¢1,...,¢p) is a C-mapping if and only if ¢; € C(U), for all 1 < i < p.

Property is equivalent to the implicit function theorem in C: Let U C RIxRP
be open. Suppose that fi,..., f, € C(U), (a,b) € U, f(a,b) =0, and (9f/0y)(a,b)
is invertible, where f = (f1,..., fp). Then there is a neighborhood V' x W of (a, b)
in U and a C-mapping g : V' — W such that g(a) = b and f(z,g(z)) =0, forx € V.

It follows from that C is closed under taking the reciprocal: If f € C(U)
vanishes nowhere in U, then 1/f € C(U).

Frequently, we shall also require the following condition.

(Q) C is quasianalytic. If f € C(U) and for a € U the Taylor series of f at a
vanishes (i.e., f, = 0) then f vanishes in a neighborhood of a.

Since {x : J/‘; = 0} is closed in U, condition is equivalent to the following
property: If U is connected, then, for each a € U, the Taylor series homomorphism
C(U) = Fy, f > fa, is injective.
Occasionally, we will need a further condition.
(Cs) C 1is closed under solving ODEs. Let I C R be an open interval and let
U C R? be open. Consider the initial value problem

z’ = f(t.x), x(0)=y,

where f : I xU — RY is a C-mapping. Then the smooth solution x = z(t, y)
is of class C wherever it exists.

A complex-valued function f : U — C is said to be a C-function, or to belong
to C(U, C), if (Ref,Imf) : U — R? is a C-mapping. It is immediately verified that
and also hold for complex-valued functions f € C(U,C); as well as if
assumed.

Convention. From now on, C shall denote a fixed, but arbitrary, class of C'*°-
functions satisfying the conditions f. We shall write Cg for a class C which
is required to satisfy . It will be explicitly stated when @ is assumed.

Note that C might be C*° and Cg might be C¥. Here are some more examples.

2.2. Examples (Denjoy—Carleman classes ([39], [25], [26], and references therein)).
(1) Denjoy—Carleman classes of Roumieu type: If M = (Mj) is a positive log-
convex sequence which is stable under derivation (see and ), then the
Denjoy-Carleman class of Roumieu type C’{M } has the properties (Ci)—(Cq); see
[T, Section 4] for and [21] for . In particular, this is true for all
Gevrey classes GH‘S = k' }os > 0. If M (M) additionally satisfies (My)),
then C1M} s quamanalytw ). Among the Gevrey classes only G' = C* has this
property. However, by setting

ME" = (k- log(k) -+~ og" (k) - log" (k)"

k!
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where log™ denotes the n-fold composition of log, we obtain for each 0 < 6 < 1 and
each n € Ny a quasianalytic class C1M "y satisfying all required conditions, and
OOy 2 oMY it (5,n) # (8, 1'); see 27 1.9,

(2) Denjoy—Carleman classes of Beurling type: If M = (My) is a positive log-
convex sequence which is stable under derivation (see and (My)), then the
Denjoy-Carleman class of Beurling type C(*) has the properties f. Prop-
erties and are satisfied if additionally My1/M}, — oo (which follows from
(M3)). See [26], 2.1] for references. Again the non-quasianalytic classes C((F)x)
s> 0, and the quasianalytic classes C(M ") have all required properties.

If C'M] has all properties (C;) but , i.e., it is not closed under derivations, then
UjeN C[MH]7 where M,jj := M4 ;, has the properties 7, and, moreover, it
satisfies if and only if C!™] does.

2.3. Resolution of singularities in Cg. A C-manifold is a C'"*°-manifold such that
all chart change mappings are of class C. This provides a category C of C-manifolds
and C-mappings.

The implicit function property implies that a smooth (i.e., not singular)
subset of a C-manifold is a C-submanifold: Let M be a C-manifold. Suppose that U
is open in M, g1,...,gp, € C(U), and the gradients Vg, are linearly independent at
every point of the zero set X := {z € U : g;(z) = 0 for all i}. Then X is a closed
C-submanifold of U of codimension p.

The category C is closed under blowing up with center a closed C-submanifold.

We shall use a simple version of the desingularization theorem of Hironaka [I8] for
Co-function classes due to Bierstone and Milman [I0] [II]. We use the terminology
therein.

2.4. Theorem ([I1} 5.12]). Let M be a Cq-manifold, X a closed Cq-hypersurface
in M, and K a compact subset of M. Then, there is a neighborhood W of K and
a surjective mapping ¢ : W' — W of class Cq, such that:
(1) ¢ is a composite of finitely many Co-mappings, each of which is either a
blow-up with smooth center (that is nowhere dense in the smooth points
of the strict transform of X) or a surjection of the form ||, U; — U, U;,
where the latter is a finite covering of the target space by coordinate charts.
(2) The final strict transform X' of X is smooth, and =1 (X) has only normal
crossings. (In fact o=1(X) and detdyp simultaneously have only normal
crossings, where dy is the Jacobian matriz of ¢ with respect to any local
coordinate system.)

See [11], 5.9 and 5.10] and [I0] for stronger desingularization theorems in Cq.

A real- or complex-valued Cq-function on a Cg-manifold M is said to have only
normal crossings if each point in M admits a coordinate neighborhood U with
coordinates x = (z1,...,x,) such that

f(z) =z%(z), zel,

where g is a non-vanishing Co-function on U, and o € N?. Observe that, if a
product of Co-functions has only normal crossings, then each factor has only normal
crossings.

Let f € Co(M,C) and let K C M be compact. Then there exists a neighborhood
W of K and a finite covering {m : Uy — W} of W by Co-mappings m, each of
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which is a composite of finitely many local blow-ups, such that, for each k, the
function f o m; has only normal crossings. This follows from Theorem applied
to the real-valued Cq-function |f|*> = ff and from the previous observation.

By a local blow-up ® over an open subset U of a Cop-manifold M we mean the
composite ® = 1o ¢ of a blow-up ¢ : U’ — U with smooth center and of the
inclusion ¢ : U — M.

We shall need the following well-known lemma.

2.5. Lemma ([I1], 7.7], [8, 4.7], or [35 6.3]). Let o, 8,7 € N? and let a,b,c be
non-vanishing germs of real- or complez-valued Cq-functions at the origin of R9. If
r%a(x) — 2Pb(x) = x7c(z), then either a < 3 or B < a.

The following simple observation will be used repeatedly.

2.6. Lemma. Let I C R be an open interval. Let f;,g; : I — C, 1 < j < n,
be C-functions such that |{j : f;(t) = 2z} = {j : g;(t) = z}| for all t € I and
z € C. Assume that at each to € I the order of contact of any two elements of {f;}
(equivalently {g;}) is finite unless their germs at to coincide. Then {f;} and {g;}
differ by a constant permutation.

The assumption on the order of contact is trivially satisfied if the functions are
of class Cq.
Proof. Set f = (f1,...,fn), 9= (91,...,9n), and consider the set

J:={t€l:|(Sn)gw| minimal} = {t € I : [{g1(t),...,gn(t)}| maximal}

which is open in I. Choose oy € J. There exists a permutation oy, € Sy, /(Sn)g(t0)
so that f(to) = o¢,.9(to). Set § = o¢,.g. We claim that f = g. This is true locally
near tg, since J is open. Assume for contradiction that there exists ¢t; € I so that
f(t1) # g(t1). Without loss of generality assume ¢y < t; and let

s = sup{t € [to,t1) : f|[t0,t] = §|[t0,t]} € (to,t1)-

But then the C-curve h = f — § is identically 0 on the (non-trivial) interval [to, s]
and for each ¢ > 0 there exists ¢t € (s,s + ¢) with h(t) # 0. Thus, h must vanish of
infinite order at s, which contradicts our assumption. ([

3. C-POLYNOMIALS

3.1. Monic univariate complex polynomials. The space of all monic univariate
complex polynomials P of fixed degree n,

(32) P(z)=z"+) (-1Vaz"7 = [[(z=X), a5} €C,
j=1 j=1
naturally identifies with C™ (via P +— (a1,...,a,)). It may also be viewed as the

orbit space C"/S,, with respect to the standard action S,, : C" of the symmetric
group S,, on C™ by permuting the coordinates (the roots A; of P). The elementary
symmetric functions

O’j()\l,...,)\n): Z )‘il"')‘ij
i1<"'<’ij

generate the algebra of symmetric polynomials on C”, i.e., C[C"]5" = C[o,...,0,].
It follows that the orbit projection C* — C"/S,, identifies with the mapping o =
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(61,...,0n) : C* — C” and we have a; = gj(A1,...,A,) (Vieta’s formulas). The

associated polynomials

(33) A )= >0 i = )P (i = Ai)? e (N, = Aa)?
11 <tg < - <ip

are symmetric. Thus there exist unique polynomials Ay, such that A, = Ay o0,
and so the A are functions of P. The number of distinct roots of P equals the
maximal k such that Ak(P) # 0; it cannot decrease locally in P.

If P is any monic polynomial, we denote by a;(P) its coefficients so that P takes
the form with a; = a;(P).

The inverse function property and imply the following lemma.

3.4. Lemma (Splitting lemma in C, see [35] 3.2]). Let Py be a complex polynomial
satisfying Py = Py - Py, where Py and Py are monic polynomials without common
root. Then for P near Py we have P = Py(P) - Po(P) for C-mappings of monic
polynomials P +— Py(P) and P — Py(P), defined for P near Py, with the given
initial values. (Here P+ P;(P) is understood as a mapping R*" — R2dee Fi )

3.5. C-families of polynomials. By a C-family of polynomials we mean a poly-
nomial

(3.6) P(r)(z) = 2" + Z(*l)jaj(x)zn’j,

where the coefficients a; are complex-valued C-functions defined in a C-manifold
M. Let g € M. If P(xg) has distinct roots vy, ..., v,,, the Splitting Lemma
provides a C-factorization P(z) = Pi(z) - - - Pp(z) near zg such that no two factors
have common roots and all roots of Py (xg) are equal to v, for 1 < h < m. This
factorization amounts to a reduction of S,, : C" to Sp,; X --- xS, :C"@.--aC"m,
where nj, is the multiplicity of vy. In this situation we shall write

S(P(x0)) :=Sp, X - XSy, .

In other words, S(P(zo)) is the stabilizer of the ordered n-tuple consisting of the
roots of P(zg) with multiplicities.

Furthermore, we will remove fized points of S,,, x--- xS, :C" @ ... C'n
or, equivalently, reduce each factor P, to the case a1(Py) = 0 by replacing z by
z —a1(Py)/np. The effect on the roots of P, is a shift by a C-function.

For later reference we state the following result.

3.7. Proposition ([20, II Thm. 5.2]). The roots of a polynomial (3.6 with contin-
uous coefficients a; : R — C admit a continuous parameterization.

3.8. Normal nonflatness. Let I/ C R be an open interval and let I 5 ¢t — P(t)
be a C-family of polynomials . We say that P is normally nonflat at tg € I if
it has the following property:

(N) Let k be maximal with the property that the germ at to of t — Ay (P(t))

is not 0. Then ¢ — A (P(t)) is not infinitely flat at to.

By , condition is equivalent to the following: Let A; denote the germs at
to of a continuous parameterization of the roots of P; such exist by Proposition
Then the order of contact at ¢ty of any two unequal A; is finite. Evidently, is
satisfied if P is a Cg-polynomial.

We shall say that P is normally nonflat if holds at each ¢ty € I.
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3.9. Lemma ([34], 2.1]). Let P be a polynomial (3.6]) with coefficients a; : R,0 — C
germs at 0 of C-functions, and a1 = 0. Then, for integers r, the following conditions
are equivalent:

(1) wlaj) > gjr, for all2 < j <mn;

(2) w(A;) > j(G—1)r, forall2<j <n.
Consequently, if P is normally nonflat at 0 and w(a;) = oo for all j, then a; =0
for all 5.

3.10. Proposition (Puiseux’s theorem in C). Let P be a polynomial (3.6) with
coefficients a;j : R,0 — C germs at 0 of C-functions. If P is normally nonflat at 0,
then there exists a positive integer v and germs \; : R,0 — C of C-functions such

that P(£7)(2) = [T, (= = A (1)

Proof. For C = C* this was proved in [34] 3.2]. The same proof works for general
C. See also [31]. O

3.11. Lemma (Glueing local choices of roots). Let R o ¢t — P(t) be a C-curve of
polynomials . If P is normally nonflat and locally admits C-parameterizations
of its roots, i.e., for each ty € R there exist an open interval Iy, 3 to and C-functions
which represent the roots of P on Iy, then there exists a global C-parameterization
of the roots.

Proof. Let I C R be a proper open subinterval and let \;, 1 < j < n, be C-functions
which represent the roots of P on I. We show that the C-parameterization \; can
be extended to a larger domain. Let the right (say) endpoint b of I be finite.
There exists a C-parameterization p; of the roots on some open interval I, > b. By
Lemma we may renumber the p; so that for all j, \; = p; on their common
domain I N I;. So together the A; and the p; form a C-parameterization of the
roots on I U Ip. [l

4. Co-POLYNOMIALS SOLVABLE ALONG C@-ARCS

We have shown in [35], 6.7] that a Cg-polynomial P admits a Cg-parameterization
of its roots after desingularization by means of local blow-ups and local power
substitutions. In this section we shall prove that local blow-ups suffice if P is
solvable along Cg-arcs. This will be applied to the characteristic polynomial of
normal Cg-matrices in Section [5| It might also be of independent interest.

We say that a Co-family M > = +— P(z) of polynomials is solvable along Cq-arcs
if, for all Cg-curves c : R — M, the roots of P o c admit Cg-parameterizations.

4.1. Theorem. Let M be a Co-manifold and let M > x — P(x) be a Cq-family
of polynomials solvable along Cg-arcs. Let K C M be compact. Then there
exists a finite covering {my, : Uy — W} of a neighborhood W of K, where each my
is a composite of finitely many local blow-ups, such that, for all k, the family of
polynomials P oy, allows a Cq-parameterization of its roots on Uy.

Proof. Since the statement is local, we may assume without loss of generality
that M is an open neighborhood of 0 € R%. We use induction on the cardinality
|S(P(0))] of S(P(0)).

If |S(P(0))| = 1, all roots of P(0) are pairwise different. So the statement follows
from the Cg-implicit function theorem or from the Splitting Lemma
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Suppose that |S(P(0))| > 1. Let vq,..., v, denote the distinct roots of P(0);
some of them are multiple (m = 1 is allowed). The Splitting Lemma provides
a Cg-factorization P(z) = Pi(x)--- Pn(x) near 0 such that the roots of distinct
factors remain separated and P (0)(z) = (z — vp)™ for 1 < h < m. We reduce
t0 Sp, X -+ xSy, : C" @ --- & C™ and we remove fixed points (see [3.5)), which
preserves solvability along Co-arcs. So, if aj ; := a;(P,) denote the coefficients of
Py, we may assume that ap; = 0 for all h. Then all roots of P (0) are equal to
0, and hence ap ;(0) =0, for all 1 < h < m and 1 < j < ny. If all coefficients
ap,; of Py are identically 0, so are all its roots, and we remove the factor P, from
the product P; --- P,,. Thus we can assume that for each 1 < h < m there is a
2 < j < ny, such that ap_; # 0.

Let us define the Co-functions

(4.2) Apj(x) = ahyj(x)%‘! (for 1 <h <mand 2 <j<mny).

By Theorem [2.4] we find a finite covering {m, : Uy — U} of a neighborhood U of 0
by Co-mappings 7y, each of which is a composite of finitely many local blow-ups,
such that, for each k, the non-zero A, jom, (for 1 <h <mand 2 < j < nyp) and
its pairwise non-zero differences Ay, ;om — Ay jom, (for 1 <h <1< m, 1 <i <y,
and 1 < j < n;) simultaneously have only normal crossings.

Let k be fixed and let x¢ € Ug. Then xy admits a neighborhood W}, with suitable
coordinates in which 29 = 0 and so that either Ay j om, =0 or

(Apj o m)(x) = 2" A}, ;(x),

where Aﬁ) j is a non-vanishing Co-function on W, and oy, ; € N9. The collection
of exponents {ay, j : Apjomy # 0,1 < h<m,2<j<ng}is totally ordered, by
Lemma 2.5l Let o denote its minimum.

If « = 0, then (A}, jomy)(zo) = Aﬁyj(mo) # 0forsomel < h<mand2 < j<ny.
So, by (4.2), not all roots of (P, o m)(zo) coincide (since aj; o7 = 0), and, thus,
|S((P o m) (o)) < |S(P(0))]. Obviously, P oy is again solvable along Cg-arcs.
By the induction hypothesis, there exists a finite covering {mx; : Wy, — Wy} of
Wi, (possibly shrinking W) of the required type such that, for all [, the family of
polynomials P o 7, o my; allows a Cg-parameterization of its roots on Wy;.

Let us assume that a # 0. Then there exist Co-functions A% ; on Wi (maybe
some of them 0) such that, for all 1 <h <m and 2 < j < np, ’

(4.3) (Apj o) (z) = xo‘flﬁ)j(x), and,

(4.4) flﬁ,j = AEJ is non-vanishing, for some 1 < h <m and 2 < j < ny,.

2-(2 &):é B
n! n!’" 7 nl M )

where ;,v; € N are relatively prime (and ~; > 0), for all 1 <1 <gq.

Let us write

4.5. Claim. v, =1 forall1 <i<gq.

We have to prove that a/n! € N9. Assume for contradiction that there is an ig
such that a;,/n! ¢ N. Let u € Wy, be such that u;, = 0 and u; # 0, for i # 4o,
and let e;, denote the ipth standard unit vector in R?. Since P, is solvable along
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Cg-arcs, we have

Np
Qn(t)(2) = Pu(mi(u+tei,))(2) = [J (2 = Mn(1))

j=1
for Co-functions Ay ; near ¢t = 0. By (4.4), there exist hy and 2 < jy < ny, so that
Aﬁo,jo is non-vanishing. By (4.2)) and (4.3), we have
(4.6) W(aj(Qho)nT!) > «a,, for all j, and,
(4.7) w(ajo(Qny) ) = iy
Since a;, > 0, (4.6) implies that Ay, ;(0) =0 for all 1 < j < ny,. Set

Thy = 1§I]n§12h0 w()\ho’j).

There exist Cq-functions fi,,; such that A, j(t) = "0 pp, ;(t) for all j, by (Cd).
Then

(4.8) w(a;j(Qny)) = jra,, for all j,

and the pp,; parameterize the roots of the polynomial Qho with coefficients
aj(Qno(t)) == t7™0a;(Qp, (t)). Since pp, ;(0) # 0 for some j, not all coefficients
of Qn,(0) vanish. So, for some j;, we have

(4.9) w(aj, (Qno)) = Jj1rny-
Combining (4.6) and (4.9) we find oy, /n! < 1, and (4.7) and (4.8)) together imply

a;, /n! > 1. Hence oy, /n! = rp, € N, a contradiction. Thus Claim is shown.

By (4.2)), (4.3), and Claim each ay; o m is divisible by x97 where 8 =
(B1,...,Bq), and, by , there exist Cq-functions aﬁ’j on Wy such that

(4.10) (an,; omg)(z) = xjﬂaﬁ,j(x) (for 1<h<mand2<j<ny).

Consider the Co-family of polynomials P} with coefficients a;(PF) := aﬁ, ;- By

(4.4), there exist 1 < h < m and 2 < j < nyp, such that a’fm(mo) # 0, and, hence,
not all roots of PF(zq) coincide. So for P* := Pf... P% we have |S(P*(z0))| <

|S(P(0))]-
4.11. Claim. P* is solvable along Co-arcs.

Let ¢ : R — Wy, be a Cg-curve. By Lemma [3.T1} it suffices to show that the roots
of P¥ o c locally admit Cg-parameterizations, and without loss of generality it is
enough to show this locally near 0 € R. By Proposition there exists v € Ny g
such that ¢ — P*(c(t7)) admits a Cg-parameterization \; of its roots near t = 0 €
R. Let v be minimal with that property. For contradiction assume that v > 1. By
, the roots of P¥ and P oy, differ by the monomial factor m(z) := 2. Thus,
the functions p;(t) := m(c(t”)) - A;(t) form a Cq-parameterization of the roots of
t — P(m(c(t7))). Since P o 7y, is solvable along Cq-arcs, there exist Cg-functions
vj which parameterize the roots of P o 7, o ¢. Hence, both collections {y;} and
{t = v;(t7)} parametrize the roots of ¢t — P(m(c(t7))), and, after renumbering,
we may assume that v;(t?) = m(c(t7));(t) for all j, by Lemma [2.6] By and
(C4), the quotients v;/(m o c) are Co-functions. As they parameterize the roots of
P* o ¢, the choice of v was not minimal, a contradiction. This proves Claim m
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Now, by the induction hypothesis, there exists a finite covering {mg; : Wi — Wi}
of Wy, (possibly shrinking W} ) of the required type such that, for all [, the family
of polynomials P* o7y, admits a Co-parameterization )\?l of its roots on Wy;. Then
the Co-functions = — m(mp(x)) - A¥(z) form a choice of the roots of the family
x> (Pomgomg)(x) for © € Wy,.

Since k and xg were arbitrary, the assertion of the theorem follows. O

Let us call a Co-family M > xz — P(x) of polynomials (3.6)) solvable after blowing
up if the conclusion of Theorem [.1] holds, i.e., for K C M compact, there exists
a finite covering {m; : Ux — W} of a neighborhood W of K, where each 7y is
a composite of finitely many local blow-ups, such that, for all k, P o 7; allows a
Co-parameterization of its roots.

4.12. Corollary (Solvability along Cg-arcs and after blowing up are equivalent).
A Cq-family M > x — P(x) of polynomials (3.6) is solvable along Cq-arcs if and
only if it is solvable after blowing up.

Proof. One direction is shown in Theorem Il For the converse direction let
c:R = M be a Co-curve. By Lemma [3.11} it suffices to prove that P o ¢ admits
Co-parameterizations of its roots, locally. Let to € R, set K := {c(to)}, and apply
the assumption that P is solvable after blowing up. Denote by ¢ : R,y — M the
germ of ¢ at tg.

Uy —8M8 —=C»

) -

]Rat() w (Cn/sn cn

(& P‘W

Since Cg-curves admit a lifting over blow-ups, all arrows in the diagram are of class
Cq. This implies the statement. |

Remarks. (1) Compare with the interrelation between arc-analyticity and blow-
analyticity, see [9] and [32].

(2) Hyperbolic Cg-polynomials are solvable along Cq-arcs, see [35] 6.11]. Hyper-
bolic means all roots are real at each parameter value. In the next section will meet
another class of polynomials solvable along Cqg-arcs.

5. SMOOTH PERTURBATION THEORY FOR NORMAL MATRICES

5.1. Lemma. Let P be a polynomial (3.6) with coefficients a; : R,0 — C germs
at 0 of C-functions, and assume that P is normally nonflat at 0. I]ithere exist
Ay, ... A, € C[[t]] which represent the roots of the formal polynomial P, i.e.,
P(t)(z) = =+ 3 (~1Va; (02" = [[ (= = A,(0)),

j=1 j=1
then there exist germs Ai,..., A\ : R,0 = C of C-functions such that P(t)(z) =
H?Zl(z — (1) and N\j = A for all j.
Proof. In view of the reduction procedure described in (which preserves normal
nonflatness) we may assume that all roots of P(0) equal 0 and a; = 0. Let r :=
mini<j<pw(A;) > 1. If r = oo then all a; = 0, by Lemma and by setting
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all \; = 0 we are done. So we may assume that r < oo. For each j we have
w(a;) > jr, thus a; is divisible by t7, and, by , there exist C-germs b; such
that a;(t) = t77b;(t). Consider the polynomial ) with coefficients a;(Q) := b;. It is
easy to see that @ is normally nonflat at 0 and that not all roots of Q(0) coincide.
Thus, induction on the cardinality of S(P(0)) proves the statement. O

Remark. It is easy to check that the ring of germs at 0 € R of complex-valued
Co-functions is a Henselian excellent discrete valuation ring with maximal ideal
m = {h : h(0) = 0} and m-adic completion C[[t]]. Thus, by [4], [33], or [37, Thm.
4.2], it has the Artin approximation property which might be used alternatively to
Lemma [5.1|in the quasianalytic case.

Let us introduce notation. We associate with a parameterized family of complex
matrices A(z) = (4;;(2))1<s,j<n its characteristic polynomial x(A) := det(A — 2I)
and set Py := (—1)"x(A). Then Py is a family of polynomials with coefficients
aj(Py) = Trace(A A), i.e.,

(5:2)  Pa(@)(z) = (~1)"x(A(2))(2) = 2" + Y _ (= 1) Trace(AI A(x))="~.

Jj=1

We say that A(z) = (Aij(x))1<ij<n is a family of normal complex matrices if
A(z)A*(x) = A*(z)A(z) for all x.

5.3. Proposition. Let A(t) = (A;;(t))1<i j<n be a C-curve of normal complex ma-
trices, i.e., the entries A;; belong to C(R,C), such that Pa is normally nonflat.
Then there exists a global C-parameterization of the eigenvalues and the eigenpro-
jections of A.

In the real analytic case the local statement of this proposition is (by considering
holomorphic extensions) a direct consequence of [20, IT Thm. 1.10] which exploits
the monodromy of algebraic functions; see also [5, 3.5.1]. An algebraic version
for normal matrices over so-called Hermitian discrete valuation rings is due to [IJ.
Actually, for Cg-curves of normal matrices, the local statement follows from [IJ,
since the germs at 0 € R of complex-valued Cg-functions form a Hermitian discrete
valuation ring (as can be checked using Remark .

Proof. First we treat the eigenvalues. By Lemma [3.11] it suffices to show that
there exist C-parameterizations of the eigenvalues, locally near each ty. Without
loss of generality assume that ¢ty = 0. In view of Lemma [5.1] it is enough to prove
the following claim.

Claim. There exist Ay, ..., A, € C[[t]] such that ﬁ;(t)(z) =110, (z — Aj(1)).

Jj=1

This claim is a consequence of [I], since C[[t]] is a Hermitian discrete valuation
ring and P4 = Pj, where the matrix A(t) = (A;;(t)) is normal, since Taylor expan-

sion commutes with transposition and conjugation (note that Y f;t7 =Y f;t).
Here is a direct proof more adapted to our situation.

Proof of claim. Let s be maximal with the property that the germ at 0 of AS(PA)
does not vanish identically. If A;(P4(0)) # 0, then the Splitting Lemmaimplies

the assertion. So let us assume that Az(P4(0)) = 0, i.e., generically distinct roots
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of P4 meet at 0. By Proposition there exists a minimal v € N5 such that

S

(5.4) Pat)(2) = [] (= = As ()™

Jj=1

for generically distinct C-germs A; : R,0 — C. Let 6 be a primitive yth root of
unity and consider the formal power series

(55) A0 = N (067 =D N x0" - tF (where Aj = KIIA(0)).

k>0 k>0
By (5.4), the X;(Gt) represent the roots of the formal polynomial f’;(ﬂ), likewise
with the A;(t). Since C[[t, 2]] is a unique factorization domain, we have:
(5.6) There exists o € S, such that S\;(Gt) = @(t) forall1 <j <s.

We shall show that o is trivial. Then, in view of (5.5)), A; - 6¥ = \; ;, for all j and
all k € N. So A = 0 whenever k ¢ yN, and, thus, S\;(tl/V) is a formal power series
in t. By , the formal power series X;(tl/w), 1 < j < s, represent the distinct
roots of I/D:;(t); they are pairwise distinct by normal nonflatness. The claim follows.

Suppose that o is non-trivial. Clearly, A1,...,\s parameterize the generically
distinct eigenvalues of ¢ — A(t7). Let P,..., Ps denote the respective eigenprojec-
tions:

S
A7) — (1)
(5.7) Pi(t) = —
e

JFi

Normal nonflatness implies that there exist (matrix-valued) C-germs @; such that
P;(t) =t7PiQ;(t), p; € N. Since A(t") is normal, and, thus, ||P;(t)|| = 1, each P; is
of class C, by . So we may consider the formal power series (with coefficients
n x n matrices) P;(0t) = >0 Pk - (06)F = 3,5 Pixf® - t*, and and
imply that ]3i(9t) = /ga(t) for all 7. If o is non-trivial, we get in particular
P, o = P; for some ¢ # j. The fact that P;(t)P;(t) = 0 off 0 implies P, oPjo =0
and, since P; is idempotent, we have (P; )? = P; . Therefore,

Pio = (Pi0)* = PioPio =0,
which contradicts || P;(t)|| = 1. Hence o = id and the claim is shown.

Now we treat the eigenprojections. Let A\; : R — C, 1 < j <'s, be a global C-
parameterizations of the generically distinct eigenvalues of A and let P;, 1 < j <'s,
be the respective eigenprojections. Then each P; is expressed by with v = 1,
and we may conclude similarly as above that each eigenprojection is globally of
class C. Normal nonflatness implies that points where distinct eigenvalues meet
cannot accumulate. (]

5.8. Theorem. Let M be a Cq-manifold and let A(z) = (Aij(x))1<i j<n be a family
of normal complex matrices with entries A;; in Co(M,C). Let K C M be compact.
Then there exists a finite covering {my : Uy — W} of a neighborhood W of K,
where each Ty, is a composite of finitely many local blow-ups, such that, for all k,
the family of normal complex matrices A o my, allows a Cq-parameterization of its
etgenvalues and its eigenvectors on Uy.
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If M = R, A is of class C, and P4 is normally nonflat, then there exist
global C-parameterizations of the eigenvalues and local C-parameterizations of the
etgenvectors of A. If we assume , also the eigenvectors admit a global C-
parameterization.

Proof. The proof is subdivided into several claims.
5.9. Claim. The statements about the eigenvalues are true.

For M = R this was shown in Proposition Let M be a general Cg-manifold.
Proposition implies that the associated Cg-family of polynomials P4 is solvable
along Co-arcs. So Theorem [.1] implies Claim

5.10. Claim. Let A = A(x) be a family of normal complex nxn matrices, where the
entries A;j are Co-functions and the eigenvalues of A admit a Cq-parameterization
Aj in a neighborhood of 0 € RY. Then there exists a finite covering {my : Uy, — U} of
a neighborhood U of 0, where each 7 is a composite of finitely many local blow-ups,
such that, for all k, A omy admits a Cq-parameterization of its eigenvectors.

We prove Claim using induction on | S(P4(0))|.
First consider the following reduction: Let 14, ..., v, denote the pairwise distinct
eigenvalues of A(0) with respective multiplicities nq,...,n,,. The sets

Ap={X:M0)=wp}, 1<h<m,

form a partition of the A; such that \;(z) # A;(z), for « near 0, if A; and A; belong
to different Aj. Consider

VM = P ker(A(z) — A(z)) = ker (oxea, (A(z) = A(z))), 1<h<m.
AEA,

(The order of the compositions is not relevant.) Then V" is the kernel of a Co-
vector bundle homomorphism B(z) with constant rank (even of constant dimension
of the kernel), and thus it is a Cgo-vector subbundle of the trivial bundle U xC* — U
(where U C R is a neighborhood of 0) which admits a Cg-framing. This can be seen
as follows: Choose a basis of C™ such that A(0) is diagonal. By the elimination
procedure one can construct a basis for the kernel of B(0). For x near 0, the
elimination procedure (with the same choices) gives then a basis of the kernel of
B(z). This clearly involves only operations which preserve the class Cg. The
elements of this basis are then of class Cg in x near 0.

Therefore, it suffices to find Cg-eigenvectors in each subbundle V(") separately,
expanded in the constructed Cg-frame field. But in this frame field the vector
subbundle looks again like a constant vector space. So we may treat each of these
parts (A restricted to V™) as matrix with respect to the frame field) separately.
For simplicity of notation we suppress the index h.

Let us write a; := a;(Pa). Suppose that all eigenvalues of A(0) coincide and are
equal to a1 (0)/n, according to . Eigenvectors of A(z) are also eigenvectors of
A(z) — (a1(z)/n)I (and vice versa), thus we may replace A(z) by A(x)— (a1(z)/n)l
and assume that a; = 0. So A(0) = 0.

If A = 0 identically, we choose the eigenvectors constant and we are done. Note
that this proves Claim if |S(Pa(0))] = 1.
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Assume that A # 0. By Theorem|2.4] there exists a finite covering {mj, : Uy — U}
of a neighborhood U of 0, where each 7, is a composite of finitely many local blow-
ups, such that, for each k, the non-zero entries A;; o 7, of Ao my, and its pairwise
non-zero differences A;; o 7, — Ay 0 7y, simultaneously have only normal crossings.

Let k be fixed and let x¢ € Ug. Then xy admits a neighborhood W}, with suitable
coordinates in which 29 = 0 and such that either A;; o m, =0 or

(Asj 0 mi) () = 29 Bl (x),

where ij is a non-vanishing Cq-function on Wy, and a;; € N9. The collection of
exponents {a;; : A;j o, # 0} is totally ordered, by Lemma Let a denote its
minimum.

If a = 0, then (A;; o mg)(zg) = ij(mo) # 0 for some 1 < 4,5 < n. Since
a1 o = 0, we may conclude that not all eigenvalues of (A o mg)(xg) coincide.
Thus, | S(Paor, (%0))] < | S(Pa(0))|, and, by the induction hypothesis, there exists
a finite covering {mg; : Wiy — Wi} of Wy (possibly shrinking W},) of the required
type such that, for all [, the family of normal matrices A o m;, o 7y allows a Cg-
parameterization of its eigenvectors on Wy;.

Assume that a # 0. Then there exist Co-functions Af; (maybe some of them 0)
such that, for all 1 <14,57 < n,

(Aj o m)(x) = 2 A (),

and Af;(x) = Bfj(x) # 0 for some i,j and all 2 € Wi. So AF(z) = (Af;(x))
forms a Cg-family of normal n X n matrices, and its eigenvalues differ from those
of (Aom)(x) by a monomial factor 2* and admit a Co-parameterization. Indeed,
the Co-functions \; o m, parameterize the eigenvalues of A o 7, and are divisible
by 2, otherwise « — \;(m())/2* would be an unbounded root of a polynomial
with bounded coefficients, a contradiction (see e.g. [35, 2.4]). In view of (5.2)), the
Co-functions @ — \;j(mx(x)) /o represent the eigenvalues of A*.

Eigenvectors of A¥(z) are also eigenvectors of (A o 7;)(z) (and vice versa). As
Af;(x9) # 0 for some i,j and since a;(Pax) = 0, not all eigenvalues of A*(x)
coincide. Hence, | S(Pax(z0)| < |S(Pa(0))|, and the induction hypothesis implies
the statement. The proof of Claim is complete.

5.11. Claim. If M =R, A is of class C, and P4 is normally nonflat, then there
exist local C-parameterizations of the eigenvectors of A. If we assume , there
ezists a global C-parameterization of the eigenvectors.

By Claim the eigenvalues admit global C-parameterizations A; on R, which
are unique up to a constant permutation, by Lemma The proof of Claim
works in this case as well: Theorem [2.4] and Lemma the only ingredients that
need quasianalyticity, are both trivially true, and normal nonflatness is preserved by
the reduction process. So there are local C-choices of the eigenvectors. The proof of
Claimfurther gives us, for each eigenvalue A; : R — C with generic multiplicity
n;, a unique n;-dimensional C-vector subbundle Vt(] ) of R x C™ whose fiber over
t € R consists of eigenvectors for the eigenvalue A;(¢). By Proposition the
eigenprojection P; corresponding to A; is C on R and P;(¢t)(C") = Vt(J ) Tt suffices
to prove that each P; has a transformation function of class C, cf. [20, II §4.2], i.e.,
there exists a matrix-valued function R 3 ¢ — Uj(t) such that U;(t) is invertible
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for each t, both U; and Uj_1 are C on R, and Uj(t)Pj(O)Uj_l(t) = P;(t). If {v;} is
a basis of P;(0)(C™), then {U;(t)v;} is a basis of P;(t)(C").

We construct a transformation function of class C following [20] 1T §4.2]. Let us
suppress the index j. Differentiation of P2 = P and applying this identity several
times yields

P =[Q,P)=QP—-PQ, where Q=[P ,P]=PP-PP.
By (C5)), Q is of class C. By (Cg), the linear ODE
(5.12) X' = QX
with initial condition X (0) = I has a unique global solution X = U. Similarly,
(5.13) Y =-YQ

with initial condition Y'(0) = I has a unique global solution Y = V. Now (VU)' =
VU4 VU = -VQU +VQU = 0 implies that VU is a constant and, by the initial
conditions, we find that VU =1, thus U~ = V. Since (PU)" = P'U+PU’ = (P’ +
PQ)U = QPU, PU is a solution of with initial condition X (0) = P(0). Since
the general solution of is X (t) = U(t)X(0), we have U(t)X(0) = P(t)U(¢t),
hence U(t)P(0)U~1(t) = P(t). So U is a transformation function for P.

Moreover, U(t) is unitary for each ¢ and hence the eigenvectors may be chosen
orthonormal. This is seen as follows, cf. [20] IT §6.2]: Normality of A implies P* = P
and (P")* = P’, by differentiation. Thus @ = [P’, P] is skew-Hermitian, and, since
U solves , we find

U") =-UrQ

i.e., U* solves . Uniqueness implies that U* =V = U1, ([l

6. LIPSCHITZ EIGENVALUES OF NORMAL MATRICES
There is the following result.

6.1. Theorem ([7], [0 VIL.4.1]). Let A, B be normal complex n x n matrices and
let Aj(A) and A\;(B), 1 < j <n, denote the respective eigenvalues. Then
min max [\;(A) — ;) (B)| < C||A - B

o€S, 1<j<n
for a universal constant C with 1 < C' < 3, where || || is the operator norm.

In particular, the unordered n-tuple of eigenvalues \(A) = (A (4),..., A (4)) is
continuous (even Lipschitz) as a function of the normal matrix A. However, the
single eigenvalues do in general not allow continuous parameterizations, see Ex-
ample Continuous parameterizations exist if A is Hermitian (e.g. ordering by
size A\j(A) < Aj41(A); see [2, 4.1]) or if A depends on a single real parameter (see
Proposition . We shall show in this section that, if A depends on parameters
locally in a Lipschitz way and admits continuous parameterizations A; of its eigen-
values, then the A; are locally Lipschitz. No such result is true for the eigenvectors,
see Section

We will repeatedly use the following fact.

6.2. Lemma ([22, 4.3]). Let ¢ : (a,b) — X be a continuous curve in a compact
metric space X. The set of accumulation points of c(t) ast — at is connected.

Let us start with the one parameter case.
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6.3. Proposition. Let A(t) = (A;;(t))1<ij<n be a curve of normal complexr ma-
trices, where the entries A;; : R — C are locally Lipschitz. Then the eigenvalues
of A admit a parameterization which is locally Lipschitz. Actually, any continuous
parameterization of the eigenvalues of A is locally Lipschitz.

Proof. Let s € R be fixed. Let z be an eigenvalue of A(s) of multiplicity m.
We choose a simple closed C'-curve v in the resolvent set of A(s) enclosing only z
among all eigenvalues of A(s). By continuity, see Proposition no eigenvalue of
A(t) lies on ~, for ¢ near s; see also Lemma below. Now,
t— —i, (A(t) — 2)"V dz =: P(t,7) = P(t)
27i J,

is a locally Lipschitz curve of projections onto the direct sum of all eigenspaces
corresponding to eigenvalues of A(t) in the interior of v with constant rank (cf.
Section . For t near s, there are equally many eigenvalues in the interior of ~,
and, by Proposition we may call them \;(¢), for 1 < j < m, so that each \; is
continuous.

The image of t — P(t,~) describes a locally Lipschitz vector subbundle of the
trivial bundle Rx C® — R. For each t choose an orthonormal system of eigenvectors
v;(t) of A(t) corresponding to the A;(¢). They form a (not necessarily continuous)
framing. By local triviality of the vector bundle, for each ¢ near s and each sequence
ti — t there is a subsequence (again denoted by ¢x) such that v;(tx) — w;(t), where
the w;(t) form an orthonormal system of eigenvectors of A(t)|p(+)cr). Consider

wvj(tk) + %Qﬁ(tk) — ij(tk) =0.

Now assume that A’(s) exists. For ¢ = s take the inner product of with
each w;(s): The first summand vanishes, since all \;(s) coincide with z and since
the w;(s) form also an orthonormal system of eigenvectors of A(s)* corresponding
to the eigenvalue z (cf. [20, T §6.9]). Letting k — oo, we find that the w;(s) are a
basis of eigenvectors of P(s)A’(s)|p(s)(cn) With eigenvalues

lim 2t = Mi(8),

k—oco t, — s

(6.4)

We may conclude, by Lemma that the right-sided derivative A§+)(s) of each A;
exists at s. Similarly, the left-sided derivatives )\;7) (s) exist and they form the same
set of numbers with correct multiplicities. Hence, applying a suitable permutation
on one side of s provides a continuous choice of the eigenvalues through z which is
differentiable at s.

If we take the inner product of with w;(t) (for ¢ near s) and proceed to the
limit, then (as the first summand vanishes again by the same reason) we obtain

(6.5) AP (1) = (A'(t)w;(t) | wj(t))  whenever A'(t) exists,

for a unit eigenvector wj;(t) of A(t) with eigenvalue A;(t). A similar formula holds
for the left-sided derivatives )\;_) (t).

An inspection of these arguments shows that they hold for any continuous pa-
rameterization A; of the eigenvalues of A. Hence we have shown:
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6.6. Claim. Let \; be any continuous parameterization of the eigenvalues of A.
If A'(s) exists, then the one-sided derivatives of A; exist at s, left- and right-sided
derivatives form the same set with correct multiplicities, namely, the set of eigen-
values of A'(s), and they satisfy a formula of type . Applying a suitable per-
mutation on one side of s provides a continuous choice of the eigenvalues which is
differentiable at s.

Next we claim that each ); is locally absolutely continuous. Then A; is differ-
entiable almost everywhere and its derivative is locally bounded, by (6.5). Thus A;
is locally Lipschitz.

6.7. Claim. Any continuous parameterization A\; of the eigenvalues of A is locally
absolutely continuous.

Taking the inner product of with w;(t) leads to
68 |(AZAO, ) )| = |G ) g 0,

tpy — 1 tp —1
for unit eigenvectors v;(tx), w;(t) of A(ty), A(t) with eigenvalue A;(tx), A;(t),
respectively, and such that v;(ty) — w;(t).

Let I C R be an open bounded interval, J D I an open neighborhood of the
closure I, and let C; denote the Lipschitz constant of A on J (with respect to
the operator norm). If ¢t € J and J 3 t; — t, tx # t, then, after passing to a
subsequence (again denoted by ;) so that v;(ty) — w;(t), there is, by (6.8), a
ko = ko(t, (tx)) € N such that
Aj(te) — A (1)

tpy —t
Let j be fixed. Consider the continuous functions
it 4 17k) = Ai(0) and set  C} = max |qx(t)].

1/k tel

We claim that Cj is bounded in k. Otherwise there exists a subsequence (again
denoted by Cy) such that Cj, * co. Choose t), € I such that Cy = |qx(t)|. Since T
is compact, after passing to a subsequence, t;, — too € I. We may also assume that
this convergence is fast, i.e., for all n € N the sequence k™ (t — to) is bounded. If
tr = too constantly, then Cy = |qx(too)| < 2C for sufficiently large k, by . So
we may assume that ¢ # t, and consider

(6.9) <2Cy;, forall k> k.

qk(t) =

(6.10)
(e + 1/k) t
Cu = lau(on)| = | =20
it +1/k) — Aj(t) tr) — Aj(teo)
1+ K|ty — too|) + | 2R = Aioe) |yt .
—’ th+ 1/k — too ‘(+|’“ |+’ th — too [t |

By (6.9 , there is some ky € N such that both difference quotients on the right
hand side of are bounded by 2C; for all k > ko. (Here we pass first to a
subsequence of t; and then in turn to a subsequence of s; := ¢ + 1/k, and set
ko := max{ko(too, (tx)), ko(teo, (sx))}.) This contradicts the assumption that Cj is
unbounded.

Since C = max, 7 |qx(t)| is bounded, the sequence of functions g is bounded in
LP(I), for any p > 1. Since LP([) is reflexive if 1 < p < oo, for such p, there exists a
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subsequence (again denoted by the full sequence) and an element \’; € LP(I) such
that (see e.g. [13) V Thm. 4.2])

At +1/k) — X(t)
— (¢ J J
g ( ~ 1/k

Thus, for a test function ¢ € C°(I),

) — X, weakly in LP().

/IA;-sﬁdt = Jim_ | (Aj(t+ 11/;2 - Aj(t))so(t)dt
: p(t = 1/k) — o) :
= k]ggo ’ )\](t)( l/k )dt = — /I )\j(p dt,

where we used substitution and assumed that k is sufficiently large so that supp(p)+
1/k C I. This shows that A} is the weak derivative of \;, and, hence, A; € WhP(I).

It follows that there is an absolutely continuous function \; on I which coincides
with ); almost everywhere in I, and, thus, on a dense subset of I. By continuity,
Aj = Aj. The proof of Claim is complete. (]

6.11. Proposition. Let A(t) = (A;i;(t))i<ij<n be a curve of normal complex ma-
trices, where the entries A;; : R — C are C' (resp. C?). Then the eigenvalues of
A admit a parameterization which is Ct (resp. twice differentiable).

Proof. The proof is subdivided into several claims. We use the notation in the

proof of

6.12. Claim. If A is C*, then the eigenvalues admit a C*-parameterization.

We use induction on n. Let A; be a continuous parameterization of the eigen-
values of A (see Proposition . If s is such that not all \;(s) coincide, then the
set {1,...,n} decomposes into the subsets {j : \;(s) = w}, w € C. For 7 and j in
different (non-empty) subsets, we have \;(t) # A;(¢) for all ¢ in an open interval I
containing s. As in the proof of we may treat distinct subsets separately (by
considering A(t)|p(¢,4)(cr), Where 7 encloses exactly one of the distinct eigenvalues
of A(s) at a time). By the induction hypothesis, Claim holds on I;.

Let I be an open interval containing only points s, where not all A;(s) coincide.
Let J C I be a maximal open subinterval on which Claim[6.12] holds. We claim that
J = I. Otherwise an endpoint a of J belongs to I and there is a C'-parameterization
of the eigenvalues on an open interval I, 3 a. Choosing s € J N I, and permuting
one choice of eigenvalues on one side of s in a suitable way (see Claim , we
might extend the C''-parameterization beyond a, contradicting maximality of .J.

The set E of points, where all eigenvalues coincide, is closed, and on its com-
plement (which is a disjoint union of open intervals) we may parameterize the
eigenvalues by C*-functions p;. For each isolated point s of E we apply in turn the
following arguments: Extending all u; to s by the single n-fold eigenvalue of A(s)
provides a continuous parameterization near s. By Claim we may assume that
the p; are differentiable at s after applying a suitable permutation to the right of
5. We claim that the derivative of each p; is continuous at s. Namely, let t; — s

and apply to t,
(6.13) 1 (te) = (A’ (te)w; (t) | w;(te))-

Choose a subsequence such that the w;(tx) converge. Then (6.13) converges to
one of the eigenvalues of A’(s). We may conclude, by Lemma that the limit
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lim, 4+ 4 (t) exists and that it equals one of the eigenvalues of A’(s) (the same for
t — s~ ). By the mean value theorem, for 6 € (0,1),
iy — pin (8 R) = ()
ty(s) = hlggi h

BERT] ’ BT ’
7;}5& wi(s+0h) = lim p;(t).

t—st

Finally, we extend each p; by the single n-fold eigenvalues of A(s) at each accu-
mulation point s of E. By Claim and since s is an accumulation point of F, all
1 (s) exist and coincide. Let t;, — s. By (6.13), the sequence 1j(t;) is bounded,
and, thus, has a convergent subsequence. By passing to a subsequence again so that
the w;(t),) converge, we find, by (6.13), that 1 (t) converges to some eigenvalue of
A'(s). But the latter all coincide with y(s), by Claim This implies that the
ﬂ; are continuous at s. The proof of Claim is complete.

6.14. Claim. Assume that A is C%. For each s there is a C'-parameterization of
the eigenvalues near s which is twice differentiable at s.

We may assume without loss of generality that s = 0. By the usual reduction
procedure (i.e., treating distinct eigenvalues of A(0) separately by restricting to
P(t,v)(C™) for suitable v and in turn replacing A by A — (a1(P4)/n)I) we may
assume without loss of generality that 0 is the only eigenvalue of A(0). Then
A(t) = tA(t), where t — A(t) is a C'-curve of normal matrices. By Claim
there is a C'-parameterization p; of the eigenvalues of A. Then the functions
t — tu;(t) are twice differentiable at 0 and represent the eigenvalues of A.

6.15. Claim. If A is C?, then the eigenvalues of A admit a parameterization which
is twice differentiable at every point.

We modify the proof of Claim [6.12] and just indicate the necessary changes.

Let I be an open interval containing only points s so that not all eigenvalues of
A(s) coincide. We show that a twice differentiable parameterization, say j;, of the
eigenvalues on an open subinterval J C I can be extended to I. Let a € I denote
the right, say, endpoint of J. By induction, there exists a twice differentiable
parameterization \; of the eigenvalues on an open interval I, > a. Choose s €
J NI, and let ¢, — s. For each k there is a permutation o € S,, such that
wj(tr) = Ao(y)(tx) for all j. By passing to subsequences in turn (and Claim ,
we can assume that o does not depend on k and that also p;(tx) = )\;U)(tk) for all
j. Then

i) = 15(s) Ao (te) = A5 ()
tp — s N lk—s

(6.16)

)

and, thus, 1/ (s) = A7 ;) (s) for all j. So we can extend p; beyond a.

Let E denote the set of points s so that all eigenvalues of A(s) coincide. The last
paragraph implies the existence of a twice differentiable parameterization of the
eigenvalues on the complement of E. By the arguments in the proof of Claim [6.12]
we may construct from it a C'-parameterization i on R which is twice differen-
tiable on the complement of E. Let s € E and ¢, — s. Let A; be the parameteriza-
tion of the eigenvalues near s provided by Claim[6.14] After passing to subsequences
as above, we have (6.16|).

Assume that s is isolated in E. As \; is twice differentiable at s, we conclude,
by Lemma [6.2] that the left-sided and the right-sided second order derivatives of
w; exist at s, and they form the same set of numbers with correct multiplicities.
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By applying a permutation to the right of s, we obtain a twice differentiable pa-
rameterization of the eigenvalues near s. We treat all isolated points s € E in this
way.

If s is an accumulation point of E, then all u;(s) coincide. Let £ > ¢, — s. In
view of and by Lemma we find that the second order derivatives of the
; exist at s and they all coincide, by considering second order difference quotients
on points in E. The proof is complete. [l

The following is a modification of [24] Lemma] and can be shown in the same
way. For convenience of the reader, we include a proof.

6.17. Lemma (Cf. [24]). Let I be an interval, n < N, and f1, ..., AN, A1y oy Ap
I — C be continuous (resp. C* or twice differentiable) such that |{j : \;(t) = z}| <
{j : uj(t) = z}| for allt € I and z € C. Then there exist continuous (resp. C*
or twice differentiable) functions Api1,...,An : I — C such that {1 < j < N :
Ni(t) =z} =H{Jj:pj(t) =z} forallt € I and z € C.

Proof. We use induction on N. Certainly, the assertion is true if N = 1.

For s € I such that not all 11;(s) coincide, the sets {\;} and {u;} decompose
into subsets so that elements of different subsets do not meet on an open interval
I, containing s. By induction, the statement holds on I,.

Suppose that for no ¢t € I all p;(t) coincide. Let J be a maximal open subinterval
of I for which the statement of the lemma is true with )\} for j > n. We will show
J = I. If the right (say) endpoint b of J belongs to I, then the statement holds
on an open interval I, 2 b with )\f for 5 > n. Choose s € JNI,. We claim
that there is a permutation o so that each )\} in {t € J:t < s} can be extended
by /\g(j) in {t € I, : t > s}, contradicting maximality of J. Let ¢, — s—. We
have )\; (ty) = )\i(j)(tk) for a permutation o which depends on k. By passing to
a subsequence, we may assume that o is independent of & which shows the claim
in the continuous case. For the C' and the twice differentiable case, we pass to
a subsequence again in order to obtain ()\;)’(tk) = (Ai(j))’(tk) and we use the
arguments surrounding .

Let E denote the closed set of all points in I, where all 1; coincide. The comple-
ment I\ E is a disjoint union of open intervals, on each of which the lemma holds.
Extending the A; to s € E by the unique value ,(s), provides a continuous exten-
sion to I. For the C! and the twice differentiable case, we may renumber the \;
to the right of each isolated point s € E so that they fit together in a C! or twice
differentiable way (by Lemma . If s is an accumulation point of F, then all
derivatives i (s) =: p'(s) coincide. Thus, by Lemma each \; is differentiable
at s with \’(s) = p/(s), and A} is continuous at s:

Nj(t) = g, () = W' (s) = Nj(s), ast—s.
If pij is twice differentiable at s, then all uf(s) =: u”(s) coincide, by considering

second order difference quotients on points in . By Lemma we may conclude
that each \; is twice differentiable at s with \/(s) = p"(s). O

6.18. The class LC. Let U be open in R7. We denote by £¢(U) the class of all
complex-valued functions f with the following properties:

(£1) f is defined and of class C on the complement U \ Ey, s of a closed set Ey, ¢
with /Hq(EUﬁf) =0 and 'Hqil(Eny) < 0.
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(L2) fis bounded on U\ Ey ;.
(L3) Vfis bounded on U\ Ey ;.

H? denotes the g-dimensional Hausdorff measure.

6.19. Theorem. Let x — A(zx) = (Ai;j(2))i<ij<n be a parameterized family of
normal complex matrices. Then:

(1) If z — A(z) is Cg in x € U, where U is open in R, then for any com-
pact K C U there exists a relatively compact neighborhood W of K and a
parameterization \; of the eigenvalues of A on W which belongs to L2,
thus, also to SBV . More precisely, the classical gradient V;(x) exists for
allx € W\ Ew.», and for those x we have

IVAi(x)

oo = max [9;Ai(z)| < sup [|A'(y)]| < oo,
J yeWw

where || || is the operator norm and A'(x) = dA(x) the Fréchet derivative.

(2) If x — A(z) is C%t in x € U, where U is c®-open in a convenient vector
space E, then each continuous eigenvalue A : U OV — C, V ¢>-open, of
AisCOY If 2o € UNV and ¢ : R — U is a C*°-curve with ¢(0) = z¢ and
c((0,1]) €V, then Ao | is globally Lipschitz on (0,1].

Proof. (1) By [35] 9.6], there exists a parameterization A; of the eigenvalues of A
on W which satisfies and and such that V\; € L'(W); in particular, each
Ai belongs to SBV, also by [35], 9.6]. For x € W \ Ew,y,, t € R small, and e; the
jth standard unit vector in R?, the curve t — A;(x + te;) represents an eigenvalue
of t — A(x + te;), and, by Claim we have

d

90(@)] = | Zleodile + tey)| < 4/ (2)]

which implies the statement.

(2) Suppose that A : V — C is a continuous eigenvalue of A. Let ¢ : R — V be
C®°. Then ) o ¢ parameterizes an eigenvalue of the C%!-curve of normal matrices
Aoc. By Lemma Ao c can be completed to a continuous parameterization of
the eigenvalues of A o ¢ which is locally Lipschitz, by Proposition and so Aoc
is locally Lipschitz. Since ¢ was arbitrary, we conclude that A : V — C is C%! (see
12).

Let z0 € UNV and let ¢ : R — U be C* with ¢(0) = zo and ¢((0,1]) C V.
We already know that Ao c|(, 1) is locally Lipschitz. Its derivative exists a.e. and is
bounded by the Lipschitz constant of Aoc|j ;] (With respect to the operator norm),
by Claim [6.6] The assertion follows. O

6.20. Remark. Suppose that R? O U 3 z — A(z) = (Aij(2))1<ij<n is a C%1-
family of normal complex matrices. Then Claim[6.6actually implies that, whenever
a (one-sided) directional derivative of an eigenvalue of A exists, it is uniformly
bounded on compact subsets of U.

6.21. Question. Let R? D U > z — A(x) = (Aij(®))1<ij<n be a C¥1-family of
normal complex matrices. Do the eigenvalues of A admit a parameterization by
S BVioc-functions whose classical gradient exists a.e. and is locally bounded?

6.22. Corollary. Let H,(C) (resp. SH,(C)) denote the real vector space of n x n
Hermitian (resp. skew-Hermitian) matrices. For each A € H,(C), let A\T(A) =
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(M(A),..., A\ (A)) be the n-tuple of increasz'ngly ordered eigenvalues of A, i.e.,
Ai(A) < 1+1(A) For each A € SH,,(C), set u'(A) := iXT(—iA). Then:
(1) Both mappings A" : H,(C) — R" and u' : SH,(C) — iR™ are globally
Lipschitz; more precisely,

m?XM}(A) —M(B)| <||[A=B|| for all A,B € H,(C), and
max| s} (A) = pj(B) < |4~ Bl for all A, B € SH,(C),

where || || is the operator norm.

(2) Let a € (0,1]. If x — A(x) € H,(C) (resp. € SH,(C)) is C* inx € U,
where U 1is ¢>-open in a convenient vector space E, then x — \T(A(z))
(resp. x> pt(A(z))) forms a CO®-parameterization of the eigenvalues.

Note that (1) is due to [40], see also [6 II1.2.6]. Compare (2) with [29].

Proof. (1) The mapping A" is continuous, and, by Theorem 2), it is locally
Lipschitz, thus, differentiable a.e. Let A, B € H,(C) with ||[B|| =1. Then R> ¢ —

/\T(A +1tB), 1 < j <n, forms a continuous parameterization of the eigenvalues of
t— A+tB. If )\T is differentiable at A, then Clalm.lmphes \dB)\T( )] <1, and,
thus, ||d)\j( )|| < 1. Tt follows that AT is globally Lipschitz with Lipschitz constant

1. The statement for ' follows immediately from u'(A4) = iAT(—iA).
(2) follows from (1). O

7. PERTURBATION THEORY FOR UNBOUNDED NORMAL OPERATORS

Let E 5 z — A(x) be a parameterized family of unbounded normal operators in a
Hilbert space H with common domain of definition V' and with compact resolvent.
The parameter domain F is either R, R™, or an infinite dimensional convenient
vector space, respectively (as specified in Theorem [1.1). Let M = (M) be log-
convex and stable under derivations (see and (Ms))). In the Beurling case
CM) we also assume M,i/k — 00, or, equivalently CM) D C% (see (Ms]). Let €
stand for C*°, CM! or C*2: remember that C™) means CM) or C1M},

7.1. Lemma (Resolvent lemma [28]). If x — A(x) is € in x, then the resolvent
(x,2) = (A(x) — 2)~t € L(H, H) is ¢ on its natural domain, the global resolvent
set {(z,z) € ExC: (A(x) — z) : V — H is invertible} which is open (and even
connected).

Proof. For C>, CtM} with special M = (M), and C*® this was proved in
[28]. The same proof works for general M = (My), C!M] and C*; for the latter
even with the same references. So we just sketch the proof for C1Ml: By definition
z = (A(z)u | v) is CIM] for each w € V and v € H and, thus, 2 — A(z)u is of the
same class as a mapping E — H for each u € V' (see .

The following claim was proved in [28, Claim (1)] for C%.

7.2. Claim. For each x consider the norm ||ul|? = ||ul|* + [|A(z)ul|* on V. Since
A(z) is closed, (V)| |lz) is a Hilbert space with inner product (u | v), = (u |
v) + (A(z)u | A(x)v). All these norms || || on V are equivalent, locally uniformly
inx. We then equip V with one of the equivalent Hilbert norms, say || |lo, and have

A(x) € L(V,H) for all x.
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By the linear uniform boundedness theorem and by [26] 5.1], we conclude that
the mapping E — L(V,H),z — A(z), is CIM]. If for some (x,z) € E x C the
bounded operator A(z) — z : V — H is invertible, then this is true locally with
respect to the ¢™-topology on the product which is the product topology, by [23,
4.16). The resolvent (z,z) — (A(z) —2)~ : H — V is CM] since inversion is
real analytic on the Banach space L(V, H) and since CM] > C¥ is stable under
composition [26], 4.11]. O

Proof of Theorem Let 290 € E and let z be an eigenvalue of A(zg) of
multiplicity N. We choose a simple closed C!-curve v in the resolvent set of A(xq)
enclosing only z among all eigenvalues of A(z). Since the global resolvent set is
open, see Lemma no eigenvalue of A(z) lies on +, for x near zy. By Lemma

1

2w

(A(x) — 2)"t dz =: P(x,7) = P(x)

T —

is a ¥-mapping. Each P(z) is a projection, namely onto the direct sum of all
eigenspaces corresponding to eigenvalues of A(z) in the interior of ~, with finite
rank. Thus the rank must be constant: It is easy to see that the (finite) rank
cannot fall locally, and it cannot increase, since the distance in L(H, H) of P(x) to
the subset of operators of rank < N = rank(P(z)) is continuous in z and is either
0 or 1. So, for z in a neighborhood U of x(, there are equally many eigenvalues
in the interior of v, and we may call them \;(z) for 1 < j < N (repeated with
multiplicity).

The family of N-dimensional complex vector spaces U > x — P(z)(H) C H
forms a ¢ Hermitian vector subbundle over U of the trivial bundle U x H — U:
For given x, choose v1,...vy € H such that the P(x)(v;) are linearly independent
and thus span P(z)(H). This remains true locally in 2. We use the Gram Schmidt
orthonormalization procedure (which is C* and preserves %) for the P(z)(v;) to
obtain a local orthonormal ¢-frame of the bundle.

Now A(z) maps P(z)(H) to itself and in a local @-frame it is given by a normal
N x N matrix parameterized in a ¥-way by . Then all local assertions (i.e., in
a product neighborhood of (zg, z)) of the theorem follow: and follow from
Theorem (C) and @ from Theorem and from Proposition

Let us prove (D). Let E C U 3 x — A(z) be a continuous eigenvalue of z — A(x)
which is C%! in 2 € E, where U is ¢>®-open in a convenient vector space F, and let
c:R — U be a C*°-curve. We first show that A o ¢ is locally Lipschitz. Let t € R
and x = ¢(t) € U. By the local result, € U has an open neighborhood V' such
that the restriction A|y is C%1. Thus M|y o ¢|; is locally Lipschitz, where I is the
connected component of ¢~(V) which contains ¢. This implies the statement.

For the supplements in @ we need the following claim.

7.3. Claim. Lett — A(t) be C%! int € R, let I C R be a compact interval, and let
t — X\ (t) be a Lipschitz eigenvalue of t — A(t) defined on a subinterval of I. Then

Aj(s) = A (0] < (1+ (N (e = 1),

for a constant C depending only on I.
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By reducing to P(t)A(t)| p(t)(m) as above, we may conclude that holds true,
and, thus, for V; = (V.|| [|) and [Jul|f = [[u]|}; + [|A()ull3;,

Aj(t) = Aj(t)‘ HA(tk) —A() H
(t ()] < (t (t
=20y o) ) < [ ZER=E Ll o )
A(tr) — A() H 2
= || == (t A(te)v; (te)||2 - 1
[reeran ARV DIUST RN PIUSEICAT
A(te) — A(t)
— || A28k T A 1 , 2
H tp —t HL(V,,k,H) + 12 ()]
< O+ (),
for a constant C, since all norms || ||; are uniformly equivalent locally in ¢, by

Claim Since ¢t + A;(t) is Lipschitz, in particular, absolutely continuous, we
obtain

(N ()] < C+CIN(t)]  ae.,
and Gronwall’s lemma (e.g. [15], (10.5.1.3)]) implies the asserted inequality.

For the first supplement in @, let 20 € ENU, c: R — E, ¢(0) = z0, and
¢((0,1]) € U. The continuous function Aoc|(g 1) represents an eigenvalue of Aoc|(g 1
and is locally Lipschitz. By Claim Ao c|(o,1) is bounded on (0,1], and, by
Lemma the limit lim,_,o+ Aocf,1](t) =: z exists and is an eigenvalue of A(xo).
The local result (the supplement in Theorem 2)) yields that Aoc|(g 1 is globally
Lipschitz.

Finally, it remains to extend the local choices to global ones for the cases ,

@ifE:R, ,and:

7.4. Claim. In case the eigenvalues and the eigenvectors admit global C* (resp.
C’[M}) parameterizations. In the cases (]E[) if E =R, , and the eigenvalues
admit global C%', C', and twice differentiable parameterizations, respectively.

First we treat the eigenvalues. Let & stand for €, CM] CO1 C1, or “twice
differentiable”; according to case , @, , or . Choose a numbering of the
eigenvalues of A(0) (with multiplicities).

We consider sequences of &-functions (A;);cq, indexed by ordinals a and defined
on open intervals I; containing some fixed ¢y € R, which parameterize eigenvalues
of A. The set of all such sequences is partially ordered by inclusion of ordinals and
then by restriction of the component functions. For each increasing chain the union
is again such a sequence. By Zorn’s lemma there exists a maximal sequence (\;).

In any maximal sequence each component function A; is globally defined on R.
This is seen as follows: If b < oo is the right (say) endpoint of I;, then, by Claim
and by Lemma [6.2] the limit lim,_,,— \;() =: z exists and is an eigenvalue of A(b).
By the local results, there exist d,e > 0 such that all eigenvalues |A — z| < € of A(t)
for |t — b| < ¢ admit a parameterization by &-functions

pi:(b—0,b+0) > {AeC: |-z <e} = Bez).

In case 7 A; coincides with some p; on their common domain, since unequal
eigenvalues have finite order of contact, and, hence, it admits an extension beyond
b. In the other cases consider the A; whose graph {(¢,A;(t)) : t € I;} has non-
empty intersection with the vertical boundary {b — d,b + d} x B.(z) of the tube
(b—0,b+0) x Be(z) € R x C. The endpoints of the corresponding intervals I;
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decompose (b — §,b+ §) into finitely many subintervals. We apply Lemma on
each subinterval; in case @ where \; € C%! we use its continuous version. Then we
glue at the endpoints of the subintervals in a continuous, C', or twice differentiable
way, respectively, (as before in the proof of Proposition to obtain an extension
of at least A;. In case @ this extension is C%!, since we already know that any
continuous eigenvalue is C%!. So the sequence was not maximal and the assertion
follows.

Any maximal sequence (\;) parameterizes all eigenvalues of A with the right
multiplicities. If not, there is some ¢, and some eigenvalue z of A(ty) such that
I{j : Aj(to) = z}| is less than the multiplicity of z. By the local results, Lemma
and the assumption on the order of contact in case , we may again conclude
that (\;) was not maximal, a contradiction.

Now let us treat the eigenvectors. Let \;j : R — C be a C*° (resp. CM1) eigen-
value with generic multiplicity N. By the arguments in the proof of Claim [5.11
we obtain a unique global N-dimensional C* (resp. C'M]) vector subbundle of
R x H — R whose fiber over t consists of eigenvectors for the eigenvalue A;(t). The
corresponding C*° (resp. CM]) eigenprojection P; has a transformation function,
since the arguments at the end of work in Banach spaces, see [41] and [38], 3.4].
So we find global C° (resp. C (M ]) eigenvectors for each eigenvalue. This completes
the proof of Claim [7.4] and the proof of the theorem. ([

7.5. Remark (m-sectorial operators). The assumptions in Theorem may be
slightly relaxed, if all A(x) are m-sectorial operators. In that case it suffices to
assume that the associated quadratic forms a(x) have common domain of definition
V and z — a(x)(u) is of the respective class for each v € V. In the following
discussion we use the definitions of [20, VI].

Let £ > x — a(x) be a parameterized family of closed sectorial (possibly un-
bounded) sesquilinear forms in a Hilbert space H so that there is a dense subspace V'
of H which is the domain of definition of each a(x), i.e., V(a(z)) = V. We say that
a(z) is 0, CMI or C*« if s a(x)(u,v) is O, CIM] or C*« for each u,v € V;
by polarization it is actually enough to require that z — a(z)(u) = a(x)(u, u) is of
the respective class for all u € V. Let € stand for C>°, CIM] or C*,

There is a bijective correspondence a — A, between the set of all densely defined
closed sectorial forms a and the set of all m-sectorial operators A, where a is bounded
if and only if A, is bounded and a is symmetric (i.e., a(u,v) = a(v,u) for u,v € V) if
and only if A, is self-adjoint (by the first representation theorem [20, VI Thm. 2.1]).
Note that an m-sectorial operator necessarily is densely defined and closed.

Thus with the ¢-family © — a(z) of closed sectorial forms we associate the
family & +— Aq(2) = Aq(y) of m-sectorial operators. If we also assume that A, () is
normal for every x and has compact resolvent for every (equivalently, some) x, then
the conclusions of Theorem hold true for the family « — A4(x). This follows
from the following two claims which replace Lemma [7.1] and Claim [7.3]

7.6. Claim. The mapping (x,z) v (Aq(z) —2)"' € L(H, H) is €.

This claim can be shown along the lines of the proof of [20, VII Thm. 4.2]: Fix
xo. Without loss of generality s = Rea(z) > 1; this can be achieved by adding a
suitable constant to a(zp). Then the associated operator S = A > 1 is self-adjoint
and has a unique square root G = S'/2. Consider the forms

b(z)(u,v) = a(z)(G  u, G"1v).




29

Each form b(z) is defined everywhere on H, since G~u € V(G) = V(s) = V (by
the second representation theorem [20, VI Thm. 2.23]), closable and thus bounded.
The assumption that « — a(z) is a €-family immediately gives that z — b(x)(u,v)
is € for each u,v € H. Consider the family of operators B(x) € L(H, H) defined
by
(B(z)u | v) = b(z)(u,v).

By the linear uniform boundedness principle and the fact that it suffices to use a
set of linear functionals which together recognize bounded sets instead of the whole
dual (see the references in [[.2)),  + B(z) € L(H,H) is ¢. Replacing u,v by
Gu, Gv we obtain

(7.7 a(z)(u,v) = (B(x)Gu | Gv), for u,v € V.
So we have
(Aa(@)u | vy = (B(x)Gu | Gv), for u € V(Aq(x)),v eV,
whence GB(z)Gu exists and equals Aq(x)u, since G is self-adjoint. Since GB(z)G
is accretive and A4 () is m-accretive, we have
Aq(z) = GB(z)G, and
Ag(z) ' =G 'B(x)"'G™'  near x,

where G~ € L(H, H) and B(z)~! € L(H, H), since B(z) is invertible (cf. [20, VI
Thm. 3.2]). It follows that z — A4(z)~! € L(H, H) is ¢ near zo. Here we use that
% is preserved by composition with a real analytic mapping.

Assume that A,(zg) — 2o is invertible. Then A,(z) — z is invertible for (z, 2)
near (xg, 29). For such (x,z) we have

(Ag(z) — 2)Ag(z) ™t =1 — 244(2) "
and 1—zA.(x)~! : H — H is bijective. Thus (z,2) +— (1—2A.(z)"")~' € L(H, H)
is € and hence also
(z,2) = (Ag(z) — 2) 7t = Aa(z) 71 (1 — 244(z) ™Y~ € L(H, H)

is € near (zg, 7). This shows Claim
In what follows we assume that the parameter space is E =R and ¢t = z.

7.8. Claim. Assume that t — a(t) is C%1. A C%l-eigenvalue t — \;(t) of t —
Aq(t) cannot accelerate to 0o in finite time.

Note that implies that a(t) is locally uniformly sectorial. Thus we may
assume without loss of generality that s(¢) = Rea(t) > 1 near ty. Since a(?) is
closed, the inner product (u | v); := (u | v) + 5(¢)(u,v) makes V to a Hilbert space
Vi = (V|| |I+) (see [20, VI Thm. 1.11]). The arguments in the proof of [28, Claim
(1)] show that all these norms || ||: are locally uniformly equivalent.

By reducing to Pq(t)Aq(t)|p, )y (where Pq(t) = —5 A{(Au(x) —2)7tdz) we

have (with ¢ replaced by ) and hence, using 7
Ai(te) — A (¢ B(ti) — B(t
2408 050l oy = (2L B o 1) | G 1))

tr —to tr — to
B(tk) — B(to) 2
< T 1€ s 86 N ) s,

< C\/1+ (80 (0 (80)) - /14 5(t0) (w5 (1)) = C1/1 4+ Re (1) - /1 + Re s (fo).
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for a constant C, since all norms || ||¢ are locally uniformly equivalent and since
s(t)(u,v) = (S(t)?u | S(t)/?v) for S(t) = Ag4) > 1, by the second representation
theorem [20, VI Thm. 2.23]. Since ¢t — A;(¢) is Lipschitz, it follows that

|Re Nj(t)| < [Nj(t)] < C+ C|Re);(t)]  ae.,

and Gronwall’s lemma implies that ¢t — Re A;(¢) cannot accelerate to oo in finite
time. Since Aq(t) is locally uniformly m-sectorial, \;(t) lies in a sector {z € C :
|arg(z — ¢)| < 6}, for 0 < 0 < 7/2 and ¢ € R, and the claim follows.

8. THE RESULTS ARE BEST POSSIBLE

The condition on the order of contact in cannot be dropped: This follows
from the examples in [24] and [28] for C*° and for non-quasianalytic CtM}, From
the latter one can also deduce a counterexample for non-quasianalytic C'().

These examples together with Example lso show that results of type f
are hopeless for the eigenvectors. Moreover, (B]) is wrong without desingularization,
by Example B3]

Result is optimal, since by Example the single eigenvalues cannot be cho-
sen continuously in general. By the example in [24], in and the eigenvalues
cannot be C1# for any 3 > 0, even if t — A(t) is C*°. On the other hand, in our
proof the assumption C*® in (resp. C*% in ) cannot be weakened to C', by
the “resolvent example” in [24], but we do not know whether there is a C! (resp. C?)
curve of unbounded normal operators with common domain and compact resolvent
whose eigenvalues cannot be parameterized C* (resp. twice differentiably).

Example 8.3] and Example 8.4 show that the results are generally no longer true
if A is a family of merely diagonalizable matrices.

8.1. Example (The first partials of eigenvectors cannot be locally bounded). The
real analytic family of normal (even real symmetric) matrices

x
A(.T,y) = (y _yx) , T, Y€ Ra
has the eigenvalues d=+/x2 + y2. There cannot exist a parameterization of the
eigenvectors of A with locally bounded derivatives. Namely, if (Z) denotes an
eigenvector with norm 1 for the eigenvalue y/x2 + 32, then the partial derivative
(U=) (where it exists) must satisfy

L0 R G e
—r — /22 +y? 0 = 1
Y T ¢ty Ug \/W—i_ v

If (“*) were bounded near 0, the left-hand side would converge to 0 as z,y — 0,

Vg
whereas the right-hand side does not, a contradiction.

8.2. Example (The single eigenvalues cannot be chosen continuously). The eigen-
values of the locally Lipschitz family of normal matrices

A(:r):<|2| g) zeC =R

do not admit a parameterization which is continuous in a neighborhood of 0.



31

8.3. Example (Mere diagonalizability does not guarantee C* eigenvalues). The
eigenvalues of the real analytic curve of diagonalizable matrices

z 0 0
A(z)y=(0 0 2*|, z€eR,
0 =z O

are given by x, +3/2 if £ > 0 and by z, +i|z[>/? if 2 < 0.

8.4. Example (Mere diagonalizability does not guarantee C%! eigenvalues). See
[20, IT Ex. 5.9]:

Alr) = ( ]* Jz]* = |z|? (2 + sin il)>  zeR\{0), A(0) =0,

=] =]

forms a C'-curve of diagonalizable matrices if & > 1 and 3 > 2. The eigenvalues
of A are given by

a 1\3

Ai (@) = £z T (2 +smﬂ) LoweR\{0}, AL(0)
x

The derivatives /| exist everywhere, but they are discontinuous at 0 if a + 5 < 4

and even unbounded near 0 if a 4+ 8 < 4.

0.
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