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Abstract In rigorous constrained global optimization, upper bounds on the objec-
tive function help to reduce the search space. Obtaining a rigorous upper bound on
the objective requires finding a narrow box around an approximately feasible solu-
tion, which then must be verified to contain a feasible point. Approximations are
easily found by local optimization, but the verification often fails.

In this paper we show that even when the verification of an approximate feasible
point fails, the information extracted from the results of the local optimization can
still be used in many cases to reduce the search space. This is done by a rigorous
filtering technique called constraint aggregation. It forms an aggregated redundant
constraint, based on approximate Lagrange multipliers or on a vector valued measure
of constraint violation. Using the optimality conditions, two-sided linear relaxations,
the Gauss-Jordan algorithm and a directed modified Cholesky factorization, the in-
formation in the redundant constraint is turned into powerful bounds on the feasible
set. Constraint aggregation is especially useful since it also works in a tiny neighbor-
hood of the global optimizer, thereby reducing the cluster effect.

A simple introductory example demonstrates how our new method works. Ex-
tensive tests show the performance on a large benchmark.
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1 Introduction

Global optimization is the task of finding the best admissible conditions to achieve
an objective under given constraints, assuming that both are formulated in mathe-
matical terms. Global optima can be found by a combination of a variety of filtering
techniques usually embedded in a branch and bound scheme for complete search (see,
e.g., the survey NEUMAIER [27]). If the results have to be rigorous, the calculations
usually involve the use of interval arithmetic (see, e.g., NEUMAIER [25]).

Filtering (also called pruning) stands for reducing or discarding parts of the
search space of an optimization problem. The classical filtering algorithms are based
upon local consistencies [4] like 2B-consistency or Box-consistency (see, e.g., BEN-
HAMOU et al. [2]), 3B-consistency (LHOMME [23]), HC4 (BENHAMOU et al. [I]),
FBPD (Vu et al. [35]) and OCTUM (CHABERT & JAULIN [3]). If applied to
quadratic constraints, 2B-consistency or Box-consistency does not take advantage
of the special properties of quadratic forms; therefore often results are poorer than
desirable. 3B-consistency is more effective, but the practice shows that for quadratic
problems they usually tend to be slow due to the exhaustive branching needed
to achieve the required precision. Hull consistency techniques show promising re-
sults, but still do not optimally use the special structure of quadratic problems. For
quadratic problems, improved filtering methods are discussed in DOMES & NEU-
MAIER [7].

Higher order filtering methods usually include linear or convex relaxation. Rigor-
ous linear over- and underestimators for general global nonlinear programming prob-
lems involving odd and even powers, reciprocals, exponentials, logarithms, square
roots, and uncertain scalar multiples are discussed in HONGTHONG & KEARFOTT
[15]. The relaxed linear program usually contains more variables and/or constraints
than the original problem, but the constraints are much easier to exploit. A classical
method by McCormick [24], extended by SHERALI & ApDAMS [34], called RLT (re-
formulation — linearization technique), is used by LEBBAH et al. [22] in the QUAD
algorithm.

The prize-winning (but nonrigorous) global optimization code BARON [28], [29]
also uses linear relaxations. Another interesting approach was given by KoLev [21],
and a selection of additional linear relaxation techniques can be found in DOMES &
NEUMAIER [8]. Higher degree relaxations and convex relaxations are also discussed in
the literature; for example, affine and convex relaxations for non-convex multivariate
polynomials in GARLOFF et al. [12].

Usually, filtering methods are very efficient at the beginning of a branch and
bound procedure, but they tend to become inefficient close to the global solution,
resulting in excessive branching until the required precision is achieved. This so-
called cluster effect was first explained by KAISHENG & KEARFOTT [I6]. Techniques
designed to reduce or eliminate the cluster effect are discussed, e.g., by SCHICHL &
NEUMAIER [3I] and GOLDSZTEJN et al. [13].

We introduce a new rigorous filtering technique called constraint aggregation.
Based on an approximately feasible point, an aggregated redundant constraint is
formed, using approximate Lagrange multipliers when the approximation is nearly
feasible, or a vector valued measure of constraint violation when the approximation is
sufficiently infeasible. Using appropriate symbolic reformulation, the optimality con-
ditions, two-sided linear relaxations, the Gauss-Jordan algorithm and a directed mod-
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ified Cholesky factorization, the information in the redundant constraint is turned
into powerful bounds on the feasible set. Constraint aggregation is especially useful
since it also works in a tiny neighborhood of the global optimizer, thereby reducing
the cluster effect.

The following motivating example shows that constraint aggregation may dras-
tically improve the enclosure of a feasible set. The example is only intended for
demonstrating the new technique as simply as possible, not to show superiority to
other filtering techniques. The theory developed in the present paper then explains
the tricks behind this example — in fact variations of techniques used by NEUMAIER
[26] to prove sufficient global optimality conditions for quadratic programs — into a
general and powerful technique.

X1-X2=0
N2

X4+ X5 =2

Fig. 1 Motivating example.

Example 1 Consider the simple two dimensional optimization problem

min 1T
st. 2?+a22 <2 (1)
1 — T2 > 0.
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Suppose that a local optimizer found the optimal solution xy = 1, 9 = —1 of ,
and the associated multipliers v = 1 (for the objective) and y = (—0.5,0) (for the
constraints). The upper bound of the objective arising from the known point (namely
the optimal solution) is zyze < —1, resulting in the CSP

find (21, x2)

s.t. xywe < —1,
:c% + x% <2, (2)
X1 — X9 2 0

for potentially better points (see Figure [I). In the present case (as always when
the local search happened to find the unique global minimizer), the CSP has a
feasible set consisting of a single point only: the minimizer.

Constraint propagation on the constraints of result in 1,29 € [—\/5, \/5]
only (see the box a in Figure [I}). But if we aggregate the constraints using the
multipliers v = 1 and y = (—0.5,0) we obtain

w123 — (=0.5)(2] + 23) + 0(z1 — w2) < 1(—1) = (<0.5)2+0, (3)

hence 0.5(z; + x2)? < 0. The aggregated and simplified result is a strong new con-
straint since it implies 1 + zo = 0. To make this an automatic consequence of
constraint propagation we introduce the new variable z for x; + x5 and transform
this into the constraints

z=x1 +x2, 0.52%2<0. (4)

Constraint propagation on (4)) gives z € [0, 0]. Therefore, the aggregated, transformed
CSP may be written as

T1xe < —1, 234+ 23<2, 1 —20>0, z=ax;+x9, 0.52°<0, (5)

with the additional bounds z1,z2 € [ — V2, \/5] The interval hull of the linear
subproblem

Ty — 22 >0, z=1a14 22, 1‘1,1726[—\/57\/5], ZE[O,O}7 (6)

obtainable constructively through linear bounding for the variables x; and x5 (see
DOMES & NEUMAIER [8, p. 17]) is z1 € [0,v/2] and x3 € [—/2,0] (Figure box b).
With these improved bounds, constraint propagation on z1zo < —1 and z = 1 + 24
contracts the bounds to a single point, the optimal solution; cf. Figure [I}

In floating point arithmetic, the same computations should have approximately
the same results.

The paper is organized as follows. After providing basic notation and terminology
in Section 2.1} -2} and 23] we discuss a method for computing Lagrange-multipliers
in Then we introduce uncertainties (Section and use them in Section
to specify the problem class treated, namely the uncertain optimization problems.
Then we conclude the preliminaries by discussing feasibility (Section , bounds
on the objective and verification of feasible points in Section [2.8] The second part

1 This is true for simple consistency algorithms such as 2B, HC4, Box consistency and the
like. However, for this simple example, constraint propagation with 3B-consistency would (as
our new technique) directly reduce the domains to the optimal point. This is a coincidence
that is unlikely to happen with more complex quadratic constraints.
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is concerned about the new method, in particular about filtering by constraint ag-
gregation (Section , filtering a singly-quadratic constraint satisfaction problem
(Section , and finding good aggregators (Section . The latter is related to com-
putable certificates of infeasibility (Subsection‘ We conclude the paper by giving
extensive numerical tests in Section Bl

2 Preliminaries
2.1 Matrix notation

R™*™ denotes the vector space of all m x n matrices A with real entries A;; (i =
1,...,m, k =1,...,n), and R®" = R"*! denotes the vector space of all column
vectors of length n. For vectors and matrices, the relations =, #, <, >, <, > and
the absolute value |A| of a matrix A are interpreted component-wise.

The number of nonzero entries of a matrix A is denoted by nnz(A). The n-
dimensional identity matrix is denoted by I and the n-dimensional zero matrix is
denoted by 0. The transpose of a matrix A is denoted by AT, and A~T is short for
(AT)~L. The ith row vector of a matrix A is denoted by A;. and the jth column
vector by A.;. For an n x n matrix A, diag(A) denotes the n-dimensional vector with
diag(A); = A

The number of elements of an index set N is denoted by |N|. The set =N denotes
the complement of N. Let I C {1,...,m} and J C {1,...,n} be index sets and let
ny := |I|, ny :=|J|. For an n-dimensional vector x, x; denotes the n ;-dimensional
vector built from the components of x selected by the index set J. For an m x n
matrix A, the expression A;. denotes the n; X m matrix built from the rows of A
selected by the index sets I. Similarly, A.; denotes the m X n; matrix built from the
columns of A selected by the index sets J. Instead of using the index sets I and J
we also write A0 if I ={i,i+1,... .k} and J={j,5+1,...,1}.

2.2 Boxes

A box x = [z,T], i.e., the Cartesian product of the closed real intervals x; := [z;,%;],
represents a (bounded or unbounded) axiparallel box in R™. IR" denotes the set of all
n-dimensional boxes. To take care of one-sided bounds on variables, the values —oo
and oo are allowed as lower and upper bounds of a box, respectively. The condition
T € X is equivalent to the collection of simple bounds

z, <z; <% (i=1,...,n),
or, with inequalities on vectors and matrices interpreted component-wise, to the two-
sided vector inequality z < x < Z. Apart from two-sided constraints, this includes
fixed variables z; = a in case x; = [a, a], upper bounding z; > a if x; = [a, 00], lower
bounding z; < a if x; = [—00, a] and free variables if x; = [—o0, 00].

For the notation in interval analysis we mostly follow [20]. The box

(S := [inf(S), sup(9)]
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is called the interval hull of a set S of points in R™. We also define the minimal
point

rifr >0,
u(r) =< 7if 7 <0, (7
0 otherwise,

of an interval r. The notation extends componentwise to boxes.

2.3 Optimization problems

With the notation introduced, the traditional continuous, single-objective optimiza-
tion problem consisting of smooth equality and inequality constraints may be writ-
ten in the compact interval form

min f(x)
st. F(zx) eF, zex, (8)

where f:x — R and F : x — R™ are functions defined on the box x, and F € IR
is a box defining two-sided constraints for the components of F(z); again, equality
constraints and one-sided inequality constraints are included. A point x € x is called
a feasible point of (8) if F(z) € F is satisfied. If F(z) ¢ F for all + € x the
constraints are called inconsistent and the problem is called infeasible.

For reasons of efficiency, we shall consider in place of (8|) the slightly more complex
formulation

min o7 F(x) ()
st. BF(z) € b,z €x,

F:x—RY and a € R¥, b e R™, B € R™*%, This is both a special case of (8 and
a generalization of it, as the traditional formulation is obtained from (9)) if we
take w =m + 1, ({,) in place of F, u=1, a = ((1)), B =(01) and b = F. From the
point of view of solvability, and @[) are therefore equivalent, as one can redefine
f(z) :=aTF(z) and F(z) := BF(z). However, from a computational point of view,
the form @ has advantages that typically lead to improved linear relaxations once

(a;) has more than one entry in some column. As we shall see in Section this
form also allows a natural formulation of problems with uncertain coefficients.

If the objective function is missing or it is constant, then and @D take the
form

find z € x
st. F(x) €F, (10)
find z € x
s.t. BF(z)€b, (11)

respectively, of a constraint satisfaction problem (CSP).
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2.4 Lagrange multipliers

We now consider the first order optimality conditions for a minimizer  of an opti-
mization problem of the form (9, where f(z) and F(z) are continuously differen-
tiable. Let

Lb = {Z ‘ Z; :@ <TZ‘},

Ut = {i|z, <7 =7}, (12)

Nb = {i|z, <7 <7},

B = {j|b; = bj}, ~
Le = {j|b; = BF;(x) < b;}, (13)
U :={j|b; < BFj(z) =b;},

and write y and z for the interval vectors with components

— if j € E°
%0 OO:]OO] lfj c Lc’ [0, o] ifieLb,
, 00 i , o
y; = . j . z; := { [—00,0] ifie€ U, (14)
[—o00,0] if j e US, o b
] 0 if i € N°,
0 otherwise.

The necessary optimality conditions say that there are multipliers v € R and y € y,
not both zero, such that

Z(v,z,y) = F'(2)" (va — BTy) € 2, (15)

and the complementarity conditions

max((BFj;(x) — b;)y;, (BFj(z) — b;)y;) =0 (16)
hold for j =1,...,m.

These conditions comprise the Karush-John optimality conditions for the
problem @D; cf. the derivation and discussion of the history in SCHICHL & NEUMAIER
[32].

If v # 0 we may rescale the multipliers to have v = 1, leading to the Kuhn-
Tucker optimality conditions. We normalize instead by rescaling so that

max(v, [[yfle) = 1,

which is possible even when v = 0, and leads to bounded multipliers. This is achieved
by
1
max(L, [|y[lo)’
The following result suggests a way to define Lagrange multipliers y € R™ (for
the constraints) and v € R (for the objective) at an arbitrary point = (intended to
be an approximate local minimizer).

V4 Y — vy. (17)

Theorem 1 If, for some T € R™, the constrained optimization problem
min g(y) = [4(Z(L.7y) - 2)|3 18)
st. yey

(with Z from and p from @) has a solution y with g(y) = 0 then (Z,7y) satis-
fies the Kuhn-Tucker conditions for @D, and defines the associated normalized
multipliers satisfying the Karush-John conditions.



8 Ferenc Domes, Arnold Neumaier

Proof From ¢(y ) = 0 it follows that ,u(Z(l z,y)—z) =0 unplymg Z(1,z,y) € z,
and therefore ( is satisfied. Since ¥ € y, the definition of y implies that the
complementary conditions

max(ci,c2) =0, ¢1:= (BF;(%) —bj)@# c2 = (BF;(2) _Ej)yj)v

are satisfied:

If BF;(z) = b; < bj then yj > 0 therefore ¢; = 0 and ¢z < 0.

If BF;(Z) =b; > b; then y; <0 therefore ¢; < 0 and ¢; = 0.

If BF;(x) = b; = b; then y; is arbitrary and ¢; = 0, ca = 0.

Ifb; < BF;(Z) < b; then y; = 0 therefore ¢; = 0 and ¢; = 0.

In each case, max(cy,cz) = 0. Therefore the Kuhn-Tucker conditions are satisfied
and Z must be a critical point of (9). O

Note that if Z is a Kuhn-Tucker point, then the (possibly underdetermined) system
of equations

F'(@)%.BYyy = Fr(@)’a, y-v =0, V=E°UL°UU®, (19)
must have a solution y. If, in addition to this, § € y, and the inequalities
Z(1,2,y); > 0fori € L°, Z(1,2,7); <0 for i € U, (20)

are satisfied, then 7 is a Lagrange multiplier corresponding to £, and defines the
associated normalized multipliers. If it works, this method gives a cheaper alternative
for computing ¥; otherwise the more expensive constrained non-linear optimization
problem must be solved.

Algorithm 1: Computing the Lagrange multipliers

Input: A point z eR" approxlmately satlsfymg the bound constraint = € x of @ and
a small tolerance § <1 (e.g., 6 := 10~ 9).

Output: The Lagrange multlphers v for the ob]ectlve and y for the constraints.

Compute 6% = min(4, wid(x;)/10) for i = 1,...,m;

if 7; < min(z; + 5?,@) then 7; + ;5

if max(z;,T; - 2 < 7, then z; < T;;

Form the index sets L, U?, and N as defined in ;

Compute 6% = min(, Wld(b )/10) forj=1,...,m;

Form the 1ndex sets from by
_{g\b 7b]§6} LC-—{]¢E“|BF (x) < min(b; + 65,5;)},
— {j ¢ B° | BF;(@) > max(b,,b; — 6%)}.

7 Construct the boxes z and y as given by ;

8 Solve the linear system of equations in order to obtain ?,/\;

9 if 5;\¢ y or one of the conditions 1’ is not satisfied then
10 Solve the problem ll by using a bound constrained solver;

S Uk W N =

(21)

11 if the solver found the solution y with g(g) =0 then set y « ¥;
12 else T cannot satisfy the Kuhn-Tucker conditions, therefore signal failure;
13 end

14 Compute and return 7 and @\ according to ;
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In floating point arithmetic, the equalities and inequalities from above are often
not satisfied exactly but only by a small tolerance §. Algorithm [I] describes the
solution process suitable for numerical computations.

2.5 Uncertain vectors and matrices

To rigorously account for inaccuracies in computed entries of a matrix, we use interval
matrices, standing for uncertain real matrices whose coeflicients are between given
lower and upper bounds. Note that all boxes may be considered as interval vectors,
i.,e., column vectors (n X 1 matrices) with uncertain components, whose values are
known only to lie withing given intervals. The midpoint, width and the radius of an
interval matrix A are the scalar matrices defined by

mid(A) == (A+ A)/2, wid(A):=A—-A, rad(A):=wid(A)/2,

respectively. An interval, interval vector, or interval matrix is called thin or de-
generate if its width is zero, and thick if its width is positive. A real matrix A is
identified with the thin interval matrix with A = A = A.

The expression A = [4,4] € IR"" denotes an m x n interval matrix with

lower bound A and upper bound A. A € R " is symmetric if A, = Ay, for
all 3,k € {1,...,n}. Given an expression p(z) in = (x1,...,2,)" such that the
evaluation at any x € x is a real number, there are a number of methods for defining
an interval enclosure of p(z), i.e., a box p(x) such that p(z) € p(x) holds for all
x € x. The simplest is the interval evaluation, where one substitutes x; for each
occurrence of z; in p(x). More sophisticated (and often, but not always, better)
possibilities include centered forms (for details, see, e.g., [25]).

2.6 Uncertain optimization problems

Traditionally, the coefficients of f(z) and F(z) are taken to be exactly known. To
be able to rigorously account for uncertainties due to one of the following sources:

— measurements of limited accuracy,
— conversion errors from an original representation to our normal form,
— rounding errors when creating new constraints by relaxation techniques,

we allow the coefficients to vary in narrow intervals. All uncertainties can be con-
veniently expressed if we formulate an arbitrary optimization problem with uncer-
tain coefficients as an instance of the following uncertain optimization problem
(UOP)

min al F(x)

s.t. BF(z) € b, z € x, (22)

for some a € a, B € B.

Here F : x — R is defined on the box x e IR, anda € a € IR”, be IR, B €
B ¢ IR™*"™. The entries of a and B are not variables but uncertain constants, whose
precise values within the bounds a € a and B € B are not known. Thus whether
a particular vector x is a solution of the UOP may depend on which a € a and
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B € B is the true value. This ambiguity makes working with uncertain constraints
nontrivial. It requires great care in the derivation of methods to ensure the validity
of an enclosure no matter which value a € a and B € B is the true value.

If a and B are thin, reduces to the exact optimization problem (EOP)

If a = 0 then becomes the uncertain constraint satisfaction problem
(UCSP)
find TEX
s.t. BF(z) €b (23)
for some a € a, B € B.

If, in addition, a and B contain only a single matrix, reduces to the exact
constraint satisfaction problem (ECSP) (11]).

Any optimization problem with uncertain coefficients can be brought into the
UOP form by introducing new variables for every subexpression composed of a
product with an uncertain coefficient or a linear combination in which a coefficient
is uncertain. The transformation to this form will be done automatically in the
upcoming version of GLOPTLAB (DOMES [5]).

As an example we consider the nonlinear, exact optimization problem

min X1 + To (24)
sty + eV let0.223 < 1, 1 € [-1,1], 22 € [-2,0].

Since not all decimal numbers occurring in the problem are exactly representable as
floating-point numbers, must be represented internally as an UOP by introduc-
ing the intermediate variable z3 = 0.1z1 + 0.235%. Thus we have

min Tr1 + X9
s.t. 0.1xy — a3+ O.2:c§ =0, z1+e" <1,
z1 € [-1,1], x3 €[-2,0], z3 € [—00,00],

ending up in
min o7 F(x)

s.t. BF(xz) €b, ze€x, (25)

where

F(z) = (z1, 22, x3, m%, e‘”3)7:

o (01 0-1020
a’:=(11000), B._(l 0 00 1)

— T e [07 O]
x:=([-1,1] [ 2,0] [ — o0,¢])", b:= ([—oo, 1]>

In binary floating point arithmetic, the coefficient 0.1 cannot be represented. To
ensure that the problem can be solved rigorously even in floating point arithmetic,
we rewrite the unrepresentable exact problem as the representable uncertain
problem

min al F(x)

s.t. BF(z) €b, zex, (26)

for some B € B,
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where a, x and F(z) are as before, and

B . <[V0.17A0.1] [0,0] [—1,—-1] [V0.2,A0.2] {070}>
- [1,1] [0,0]  [0,0] 0,0  [1,1] )"

where Va denotes the largest vector of floating point numbers with Va < z, and Ax
denotes the smallest vector of floating point number with Az > x.

2.7 Feasibility

The traditional definition of feasibility for an optimization problem does not make
sense for the uncertain constraint satisfaction problem . For example, in case of
the UOP

min X + )
s.t. 1 +are =1, x; € [0,2], To € [072} (27)
for some a € a :=[0.79,0.81],

no single point can be feasible since it cannot satisfy for all a € a. But the
problem should not be classified as infeasible since, e.g., z1 = 1 — a, 2 = 1 should
be considered as a coefficient-dependent solution. Since a is uncertain, this "solution”
comprises the set {z € R? | x1 € [0.19,0.21], 22 = 1}. Therefore we must generalize
the definition:

A set Z C x is called feasible for the uncertain optimization problem if for
all B € B there is an ¢ € Z with BF(z) € F, infeasible if BF(z) ¢ F for all B € B
and x € Z, and partially feasible otherwise. The problem is called feasible
(infeasible) if x is feasible (infeasible). The feasible set of is the set

Z:={z € x| BF(z) € b for some B € B}

of all feasible or partially feasible points of .

The definition implies that if the set Z is feasible then all sets Z’ C x containing
Z are also feasible. In particular, the definition applies to boxes Z = z, and a feasible
set exists iff the box x is feasible, i.e., iff the problem itself is feasible. The solution
set is nonempty iff x is feasible or partially feasible.

For example in the case of , the box z; := ([1.2,1.27] [0,0])7 is feasible, the
box zy := ([0.9,0.95] [0,0])T is infeasible and the box z3 := ([1.25,1.25] [0,0])7 is
partially feasible. The problem is feasible since z; is feasible, z; C x and thus
the box x is feasible.

Given the uncertain optimization or constraint satisfaction problem (23)),
we use the minimal point to define the vector-valued feasibility measure

d(x) = p(BF(x) — b) (28)

of a point x € R™. For a given positive definite, diagonal scaling matrix D, the
number ||d(x)||, is called the feasibility distance of z for the problem .

A point z is called §-feasible if € x and ||d(z)||% < 6, where § > 0 is a
feasibility tolerance. In particular, feasible points are d-feasible for every § >
0, and in an UCSP, a point is O-feasible iff it is feasible for some choice of the
uncertainties.



12 Ferenc Domes, Arnold Neumaier

2.8 Bounds on the objective and verification of feasible points

To take account of the best known upper and lower bound in the objective function
of an UOP we define
min aTF(z) €er
s.t. BF(z) € b, x € x, (29)
for some a € a, B € B,

as shorthand for

min aTF(x)
s.t. a’F(z) er, BF(z) €b, z €x,
for some a € a, B € B,

and similarly
min " F(x) €r

s.t. BF(z) €b, z € x, (30)

as shorthand for
min a” F(x)
st. a’F(x) €r, BF(z) €b, z € x.

Finding a good upper bound on the optimal objective function value is essential
for efficiently solving global optimization problems. Using an upper bound from a
feasible (and ideally nearly optimal) point eliminates most of the search space —
leaving a CSP with a tiny feasible region only — and therefore usually saves a large
amount of time by speeding up the branch and bound process.

To find a rigorously valid upper bound requires the verification of feasible points.
Verification techniques usually consist of finding a narrow box centered at a given
approximately feasible point, for which it was verified that it contains a feasible
point. An upper bound on the function value over this box, computed by interval
evaluation, then gives a rigorous upper bound on the objective function value. Of
course, there may be no close feasible point, in which case a verification attempt will
return without a result.

Various verification techniques are discussed by HANSEN [I4], Section 12] and
KEARFOTT [I7HI9]; they where summarized and improved by DOMES & NEUMAIER
[11]. These verification techniques do not require to have an approximate local so-
lution of the UOP or the EOP @; in principle, an arbitrary approximately
feasible point suffices. But although finding a local optimizer takes more time, it is
usually preferable over just finding an arbitrary approximately feasible point.

3 Constraint aggregation

In this section we generalize the ideas of Example [I} and present novel and efficient
filtering method called constraint aggregation. The method proceeds in the following
way:

e We start with the uncertain constraint satisfaction problem or the uncertain
optimization problem .
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e Similar to of Example [1} the first step of the method is to generate a linear
combination of constraints (including constraints on the objective), called the
aggregated constraint. The resulting new constraint satisfaction problem (which
includes the original constraints and the new aggregated constraint) can be used
to contract the starting box by means of arbitrary filtering methods. This step
is discussed in Subsection 3.1}

e In case the original problem only contains linear and quadratic constraints (an
arbitrary number of them), the aggregated constraint is also quadratic. By lin-
early relaxing the original constraints a singly quadratic constraint satisfaction
problem is obtained. This subproblem can be efficiently solved by the method
presented in Subsection [3:2] which generalizes the idea presented in Example [T}

e Finally, the aggregator, i.e., the vector of coefficients of the linear combination,
can in favorable cases be determined such that the resulting constraint intersects
the box in a point or even not at all. Choosing the aggregator is the topic of
Section @

e If the whole box was reduced the method can be repeated with a new aggregated
constraint, until no further improvement is possible.

As demonstrated by our later numerical results, the resulting aggregation filtering
method often leads to far better improvements than traditional filtering based on a
quadratic constraint and bound constraints only.

We concentrate on quadratic problems; algebraic problems can be transformed to
quadratic ones by introducing intermediate variables (as it is done, e.g., in GLOPT-
LaB [5]). If quadratic underestimation techniques such as those discussed in SCHICHL
& MARKOT [30] page 13] are used, all results can even be extended to work for gen-
eral nonlinear programs.

3.1 Filtering by constraint aggregation

An aggregator of the uncertain constraint satisfaction problem is a nonzero
vector y € R™. The corresponding constraint aggregation of is the uncertain
constraint

u'F(z) € v:=yTb for some u € u := BTy. (31)

Let Ex < d a linear relaxation of the constraints of over the box x and let P be
a pruning method. The vector y is a certificate of infeasibility if P is applied to
the constraint 7 the polyhedron defined by Ez € d, and the bound constraints
z € x result in the elimination of x.

Using centered form the two-sided inequality with interval coefficients can
be transformed into a single scalar inequality

s(z) <7, s(zx):=u'F(z), v:=sup{v— (u—u)'F(z) |ucu,xzecx} (32)

(A lower bound on s(z) could also be considered, but by construction of the aggre-
gator, usually only the upper bound will have a significant effect.) Note that if B is
the identity matrix then v = v. Now together with Fx € d and = € x defines a
singly-nonlinear constraint satisfaction problem as in .

If a valid bound on the objective of an uncertain optimization problem is known,
the problem can be represented as in . An aggregator of the uncertain op-
timization problem is a pair (v,y) with v € R, y € R™. The corresponding
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constraint aggregation of is the uncertain constraint
T __ T — a7 .— BT
wf(zx)+u F(r) ev:i=vr+y bforsomewew:=a v, ucu:=B"y, (33)

and changes to

s(z) <7, s(z) =wf(x) + 0" F(), 34
v = sup{? — (w — ) f(z) — (u—u)TF(z) | w € w,u € u,z € x}. (34)
Using rigorous filtering methods (e.g., constraint propagation [7] or linear relaxations
[8]) on may yield tighter bounds = € X C x. Since each solution of the original
problem is also a solution of and X was obtained by rigorous methods, z € X
can be used as improved bound constraints without losing feasible points. This gives
a cheap filtering method that reuses the information obtained from the local search
procedure.

If the above method result in a ’significant’ bound improvement the point  may
lie outside the new box X. In this case it may be worth starting a new local search
in order to find a feasible point or to further improve the bounds. In this case the
point  could be projected into the new box and taken as the starting point of the
local search.

3.2 Filtering a singly-quadratic constraint satisfaction problem

We now introduce a new method for enclosing the feasible set of constraint satis-
faction problems with linear constraints and a single quadratic constraint. In par-
ticular, it can be applied to an aggregated constraint if it is quadratic (or, if not, to
a quadratic relaxation of it). In this case, the linear constraints will be those of a
linear relaxation of all constraints.

We consider the uncertain singly-quadratic constraint satisfaction prob-

lem (SQCSP)

find T EX
s.t. e+ %xTG:v <7,
Exred (35)

for some G G, F€E, cec,

where x € IR" is a bounded box, G € IR"*" is symmetric, E € IR™*", ¢ € IR",
and d € IR™. Intersecting d with Ex if necessary, we may assume without loss of
generality that d C Ex is bounded, too.

We compute an approximate local minimizer  of the quadratic program

min ¢’z + %mTG:c (36)
st. FPx=d, x€x,

where G, F, ¢, and d are approximate midpoints of G, E, ¢, and d. If v is close
to or less than the associated objective function value, one expects that the feasible
domain of is tiny or empty. Our goal is to transform the problem into an
uncertain CSP where the single quadratic constraint becomes separable, in such a
way that it becomes obvious that under the stated conditions constraint propagation
will reduce the box to a narrow or empty domain.
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To handle the equality constraint, we construct a rigorous null space represen-
tation as follows. We use 7 to find an estimate N of the set of indices of variables
that are free at the exact minimizer of . We fix the variables estimated active
(with indices in the complement —N) at the values determined by 7, and consider
the remaining uncertain linear system

Enxy=e¢ forsome Ec€E, ece:=d—E._yT_y.

Later we require |[N| > m which is only possible if the index set =N of estimated
active variables has a size at most n —m. Since the minimizer  and therefore which
bound constraints are active is only approximative, we can build the index set of the
active variables

NO = {’L | El ng or 52 Zfl},

and the index set N C —NO of the most approximately active variables such that
IN| <n—m —|N°. Then we define =NV := N° U N! which satisfies [-N| <n—m
and therefore we have |N| > m. We then redefine = exactly with respect to these
active bound constraints.

The Gauss-Jordan algorithm from DoOMES & NEUMAIER [8] Section 4] is applied
to an approximate midpoint of E.p, with scaling factors

§ =k, U =diag(u), and V = diag(v) (37)

determined such that the equations matching the constraints with tighter bounds
are preferred as pivot rows, and columns of F matching the variables with tighter
bounds are preferred as pivot columns. Here ¢ denotes the machine precision and

u=(e—e¢)+dle—Enxy|, w:=max{—z;, T,;]|1j€ N},
w=xy N [~w,w]N v = (T —w)/ max{wy —w,, | k=1,...,|N|}.

This produces an index list P C N of size p := |P| and a matrix C € RP*™ such
that
CE:PR\J'IG]RPXP.

By construction, E.p is likely to be invertible, and we compute enclosures X, S of
X = E:}l ERP*P §:=XFge€ RP*(n—P)

where @ := {1,...,n} \ P is the complementary index list of size |Q| = n — p. This
may be done, e.g., by computing

X := (CE.p)°C, S:=XEq, (38)

where A®B is the interval matrix obtained by applying interval Gauss elimination
(see, e.g., NEUMAIER [20] pp. 152-166]) to the uncertain linear equation AX = B
for some A € A and some B € B. Note that in the present case, the coefficient
matrix is nearly the identity, so that interval Gauss elimination should not suffer
from excessive overestimation. If interval Gauss elimination fails, the problem is
considered degenerate, and no relaxation is computed.

The columns of the matrix Z € R™*("P) defined by Zp. = =S and Zg. = 1
form a basis of the null space of the matrix F; indeed, we have

XEZ =XE.p(—-S)+XEqgl =-S5+ 5=0,
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hence EZ = 0. Assuming for the moment that the P indices are sorted before the @
indices, we have Z = (}S), and the reduced Hessian Gregq € R P)*("=D) takes the
form

Gpp G -8
Grea :=2TGZ = (=ST ) [ PP 7PQ .
d ( ) <GQP GQQ I

It can be easily seen that the resulting equation

Gred = STGPPS - STGPQ - GQPS + GQQ

remains valid even when the indices are not sorted. From a directed modified Cholesky
factorization (cf. DOMES & NEUMAIER [9]) of the enclosure

Greq = ST(GPPS — GPQ) — GQPS + GQQ (39)

of Greq With M := {i | Q; € N} and ¢ = 10~%, we may obtain a nonsingular matrix
R e R(m=p)x(n=p) and a diagonal matrix D € R(»=P)*(n=p) gych that the residual
matrix

A:=Gq+D—-R'R (40)

is positive semidefinite and tiny. Note that the bracketing in improves the enclo-
sure, which can be improved further by intersecting G,eq with its transpose, which
is valid since Gyeq is symmetric.

With the approximate solution z found by a local solver, we form

d:=Ex—-Eicd:=d—EZ~0. (41)
For any feasible x, the correction vector
si=x—=x

satisfies o
Es=ded, ses:=x-1. (42)

Moreover, since sp + Ssg = X(E.psp + E.gsqg) = XEs = th we have

(Zsq)p = Zp:sq = —Ssq = sp — Xd, (ZsqQ)q = Za:5q = sq,

hence
ri=s5—Zsgecr=0,
where _
rp:=Xd, rg:=10,0]. (43)
Thus =2 + s = 2’ + Zsg, where
¥ =T+rex =7+r, (44)
and _
o :=2cTr +2TGx — (272 + 2'TGa')
= QgTZsQ + (ZSQ)TGZSQ
= hTSQ + ngredsz
where

g =c+Gx' €g:=c+Gx/, (45)
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h:=2Z"g=2(g9q — STgp) € h:=2(gg — STgp). (46)
Since
ngredsQ + sg(RTR —D)sg + sgAsQ > (Rsg)" (Rsq) — sgDsQ,

we may introduce
z:= Rsg € z := Rsq, (47)

and find the separable quadratic relaxation
2Tz — SgDSQ +hTsg < o:=sup (27 —(c+ g)Tx/)7 (48)
where o bounds &, and the linear constraints
Esecf7 sp+Ssg€rp, Rsg—2=0, s€s, z€az. (49)

With an approximate constraint multiplier y for at z (computed by Algo-
rithm [1} or simply y = 0), we may introduce

h=2(g— ETy) eh’ :=2(g - E"y), (50)
and rewrite the linear term h”sg in as
Wl'sqg=29"Zsqg=(N" +y"E)Zsq=0"Zsq =1"(s—r)
since EZ = 0. This gives the alternative separable quadratic relaxation
2Tz —shDsg+h"'s <o’ =0 +sup(h”r). (51)

Therefore s and z are solutions of the uncertain quadratic constraint satisfaction
problem
find SES, z €z,
s.t. 2Ty — sTDsQ + hTsQ <o,
2Ty — soDsq + WTs <o,
Esed, (CE)s € cd,
sp+Ssqg €rp, Rsg—2=0,
forsome E € E, heh, W eh', SeS,

(52)

depending on the n + (n — p) variables z and z and consisting of two separable
quadratic inequality constraints and m+p+(n—p) = m+n linear equality constraints.

Note that (as as discussed in DOMES & NEUMAIER [§], Section 3]) adding the re-
dundant constraint (C'E)s € Cd in sometimes significantly improves the quality
of the enclosure, though the main effect of the filtering by aggregation is due to the
other constraints.

A constraint propagator that optimally handles single linear and separable quad-
ratic constraints (see DOMES & NEUMAIER [7]) produces an improved enclosure s**%
for s or proves that and therefore is infeasible. In the first case one recovers
an improved enclosure x°V := 7 + sV of solution set of .

Algorithm [2] turns the above considerations into a precise prescription.
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Algorithm 2: Quadratic Filtering (QUADFIL)

Input: An SQCSP given by , the local solver precision § < 1 and an arbitrary
starting point 20 € x.
Output: A reduced box x"¢V C x (or the empty set), containing all solutions of .
1 Solve the quadratic program by an approximate local solver starting from the

point z°, to precision 8, and obtain the optimizer z € R";

if El < min(gi +6,%;) then El — Xy

if max(z;,T; —J) < 7, then z; « T;;

Form the index set N := {i | z;, < T < T;} and compute e :=d — E. . NZ-N;

Use the Gauss-Jordan algorithm for mid(E.y ), with scaling factors U, V and ¢

determined as in l) This results in the index list P C N and the matrix C,

Use the interval Gauss elimination on the interval system of equations (CE.p)X = C

to find the solution set X € IRP*P;

Compute @ :={1,...,n}\ P and S := XE.q;

Partition G and compute the enclosure G,.q for the reduced Hessian as given by ;

Improve the enclosure Goq by computing G eq ¢ Greqg N Gz;d;

10 Use the directed modified Cholesky factorization (DOMES & NEUMAIER [9), Algorithm
ModDirChol]) with M := {i | Q; € N} and ¢ = 1076 to find matrices R and D such
that the residual matrix defined by (40) is positive semidefinite for all G oq € Gpeq;

11 if the directed modified Cholesky factorization failed then return signaling failure;

12 else

13 Compute d by , s by , r by , x’ by , g by Ii h by , z by

and o by ;

14 Find the approximate constraint multiplier y for at = by using Algorithm

and compute h’ by and o’ by ;

S ks WwN

© 0w 3

15 Create the uncertain quadratic constraint satisfaction problem 1)
16 Use a rigorous filtering method (e.g., quadratic separable constraint propagation)

on (52) in order to obtain tighter bounds s"®" and z"®V for the variables s and z;

17 if s or zZ"®V 4s empty then return that x contains no solution of 1 ;
18 else return the box x"eW := g 4 ghew.
19 end

4 Choosing the aggregator

It remains to discuss the choice of aggregators. Clearly, an arbitrary choice is unlikely
to be beneficial; for example if we take as aggregator a (0,1) unit vector, we just
recover the original constraints, without any advantage.

In this section, we discuss two sensible choices. The first choice is based on the
solution of an auxiliary least squares problem and gives under suitable conditions
an aggregator that provides a certificate of infeasibility, reducing the box defining
the bound constraints to the empty set. The second choice utilizes the Lagrange
multipliers of an approximately optimal point.

4.1 Certificates of infeasibility

If for the uncertain optimization or constraint satisfaction problem a local search
yields no (weakly) feasible point but an infeasible z € x, the nonzero, signed feasi-
bility measure vector can be used as an aggregator.

The following theorem gives sufficient conditions under which the appropriate
aggregator may serve as a certificate of infeasibility, proving that the aggregated
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constraint is trivially infeasible. If these conditions are not satisfied by a limited
margin only, one may expect that the aggregated constraint, while usually not suf-
ficient to prove infeasibility, will still be strong enough to reduce the box when the
reduction technique described above is applied.

Theorem 2 Let F be continuously differentiable, and let D be a scaling matriz. Let
7 be a stationary point of

min f(z) := 3||u(BF(z) —b)|[},
(53)
st. rex
and let
y:= Du(BF(Z) —b), u:=BTy. (54)
Then

(i) f(z) is continuously differentiable with

O1®) _ ()T BT pa(), (55)
8£Ek

and g := F'(z)Tu satisfies

g <0 ifz, <T, =T, (56)
gi = ife, <z <7
(ii) If y # 0 the inequality
u'F(z) € y'b < u' F(T) (57)

holds for all feasible x.
(iii) If y =0 then T is feasible.
(iv) If y # 0 and u = 0 then there is no feasible point.
(v) If y # 0 and F is linear then y is a certificate of infeasibility.
Proof D is nonsingular and y = 0; therefore p(BF(Z) — b) = 0, giving
0€ BF(z)—b = BF(z) €b.

Since 7 € x by construction 7 must be feasible.
Write d(x) := u(BF(z) — b). Then

Oz, |0 otherwise,

is a continuous partial derivate except when (BF(z)); € {biji}. Since
1 1
f@) = Slld() [} = @) Dd()

vanishes at each point of discontinuity, the derivative

of(x)  od(x)" B 0di(z)
Orr,  Oxy Dd(m)_;D” Oz, @
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is continuous. follows from

852(;5) = i 8:;;(:) Dj;di(x) = Z[BF/(x)]ikDiidi(x)

(2

= [BF'(2)]% Dd(x) = [F'(2)T BT Dd(z)] 1.

Since y = Dd(%) and u = BTy, we have

78;(;@) = F'@)"B"Dd(z) = F'(7)Tu=g. (58)
x
The first order necessary conditions for optimality now give

M >0 lfQZ:EC\Z < 7,

a’Ek

m <0 1f§2 <£/L'\i:fi,

sz

of(x ~

éfggf) =0 1f§l <z <Tj,

and using , we find .
Let y # 0. Then the constraints can be aggregated, resulting in u? F(z) €

yTb. By construction of y we have

(BE(
(BE(
(BE(

From this it follows that y;(BF(Z)); > sup(y;b;), with equality only if y; = 0. We
conclude that

u"F(2) =y"BF(Z) =Y _yi(BF(Z)); > sup Y _y;b; =sup(y’b),  (59)

with equality only if all y; = 0. However y = 0 leads to a contradiction. Therefore
holds with strict inequality, proving (iil).

(iv) is an immediate consequence of

(v If F is linear then F(z) = Fy + Fjx, F'(z) = F}, and g = F'(Z)Tu = (F})Tu,
leading to

/.T\))Z > gl if y; > 0,
E))Z < bz if Y < 07
?E))l eb,; ify; =0.

uT(F(@) - F(x)) = u” (Fy + Fj@ — (Fo + Fya)) = u" Fy(& — @)

= gT(E— :C) = ZZ gl(fl — l’l) (60)

=gz, = T =2, -1, <0, g >0,

T =7 = Ti—r;=7,-7; >0, <0,

ff,-effx,; — ¢; =0,
In all cases, g;(z; — z;) < 0, and by we conclude that 7 (F(Z) — F(z)) < 0.
On the other hand, gives the inequality 0 < u” (F(z) — F(x)) for all feasible z,
with equality only if y = 0. Therefore y = 0 for all feasible z. a
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4.2 Aggregation heuristics

Theorem [2] suggests that we use the feasibility violation vector as an aggregator.
Indeed, we found it suitable in the case when a box is unlikely to contain a nearly
feasible point. On the other hand, if we know a nearly feasible point, the feasibility
violation vector typically consists of noise only, and we need a different aggregator.
The introductory example suggests that we use in this case a Lagrange multiplier.
Uncertainties can be ignored in the computation of the multipliers, thus we use
approximate midpoints to define the problem passed to Algorithm [f}

Algorithm 3: Aggregator chooser (AGGRCH)

Input: An uncertain optimization problem given by , the point = € x and the
feasibility tolerance 6 > 0.
Output: An objective and constraints aggregator (v,y) as well as the aggregator type
aggrt € { feas, mult}.

1 Compute the feasibility violation vector y := pu(BF(x) — b) and the objective violation
v = p(aT f(x) - r);

2 if || (v,)|2, < 6 then

3 Recompute (v,y) by applying Algorithm to z and the midpoint approximation of

. Also put aggrt=mult;
4 else put aggrt=feas;
5 return (v,y) and aggrt;

5 Numerical results

In this section we present numerical results for the new constraint aggregation
method on a large set of test problems. Our tests simulate the situation in a branch
and bound scheme when a narrow box containing the global solution is processed.
This case is especially interesting since this is the point where the traditional filter-
ing methods usually lose their efficiency, resulting in excessive splitting due to the
cluster effect.

5.1 Testing procedure

We selected from the COCONUT Environment Testset ([33]) all constrained quadratic
optimization problems with no more than 300 variables and no more than 300 con-
straints, resulting in 135 problems. The TEST ENVIRONMENT [6] provides for each
problem an approximate (global) solution z*, the best approximation among those
found by a number of solvers applied to the problem.

We performed two kinds of tests, one to test the contraction properties when a
box contains the global minimizer, and one to test the elimination properties when a
box is close to the global minimizer but does not contain it. Both cases are important
to assess the degree to which the cluster effect can be reduced by our new method.

The first test therefore tests the case of aggregation by multiplier, given an ap-
proximate minimizer x* (which we take as the best point provided by the TEST
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ENVIRONMENT). For each problem, we construct a box with tiny start_box_radius
r around z* and intersect it with the original bound constraints to get the test box
x*. We impose on the objective function the upper bound

fl@) < f= @)+ fe, fe=max(eq,er|f(z7)]),

where 0 < e, < 1 is an absolute, and 0 < e, < 1 a relative error factor. Since x*
(and thus f(2*)) is only an approximately feasible solution these factors have to be
chosen carefully; choosing them too small may result in an infeasible problem and
choosing them too large may prevent the contraction of x* (see Figure . In this
test we first choose them as e, = e, = 0 then increase them (to e, = e, = 10™* and
then by successive multiplication with 10) until the problem becomes feasible for the
constructed box x*. The f. used for each problem can be found in the objsh column
of the detailed results table. Using the objective upper bounds each test problem can
be written in the form of (29) with r := [—oco, f] and x := x*.

f(x?)

f IT. —

1>
x
Xt ---
I

Fig. 2 Choosing a suitable objective upper bound explained on a simple one dimensional
problem. The approximate objective value f(z*) at the approximate minimizer z* has to be
adjusted by fe. If the adjustment is not big enough f would be below the global minimum and
the problem becomes infeasible, if it is too big it is not possible to significantly contract the
box x := [T, z]. With the adjustment shown in the plot the box x can be contracted at most
to the box x’ := [z, z'].

To show that the new method has powerful contraction properties even after
state of the art filtering techniques are applied, constraint propagation and linear
relaxations are used to the solve (29)). The constraint propagation method (which is
especially powerful for quadratic problems) was taken from [7] and the linear relax-
ations from [8] and [22]. This should eliminate the dominant effects of a contraction
obtained by traditional zero and first order filtering methods. This also includes 2B-
consistency, Box-consistency and 3B-consistency which for quadratic problems are
reported to be inferior to the linear relaxations applied here (see [22], Section 6]).

The next step is using a local solver to find an approximately feasible point
Z € x*. If T is not d-feasible, the nonzero, signed feasibility distance vector (28) is
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used to aggregate as in (32). If T is §-feasible, a local search is started from Z to
obtain a local minimum 0 and 7 is replaced by the local minimum found. In this
case, the multipliers (v,y) at the local minimum were used to aggregate as in .
On the aggregated system constraint propagation [7] is used. This step is referred
as the constraint aggregation (AG). Then the constraints are linearly relaxed around
7 inside the box x*, and the new system is solved by linear constraint propagation
(LR). Finally the quadratic filtering Algorithm [2| (QF) is applied.

In the second test we assess the quality of aggregation by feasibility violation,
applied to boxes that are very close to the solution but contain no feasible point. For
each problem we consider the small box x’ around the solution obtained in the first
test and construct 2n (n = problem dimension) boxes

[ —k—2r2, —k]ifk<nand k=14
x®) with xgk) =< T +kKT,+r+2r]ifk>nandk—n=1

!

X otherwise,

where x is a small infeasible box_shift, and r is again the start_box_radius.
Then we apply AG, LR, and QF to each box, and count how often they prove that
the box contains no feasible point. We define the elimination factor elim:= e/n,
where e denotes the number of eliminated boxes.

5.2 Test results

We applied the above test procedures to our 135 quadratic optimization problems.
For 6 of them — due to the poor reference solutions — we could not create an initial
box containing any feasible points. For these 6 problems, we also skipped the second
test. For the rest of the problems we obtained promising results, which can be found
online at:

http://www.mat.univie.ac.at/~dferi/research/AggregateTests.pdf),

while the following table gives the summary of them.

Test Result Summary (135 problems) AG LR QF
First step; arithmetic mean cube-ratio 0.43 | 0.9 | 0.32
First step; arithmetic mean max-width-ratio 0.67 | 0.98 | 0.57
First step; geometric mean cube-ratio 0.2 - 0.32
First step; geometric mean max-width-ratio 0.11 | 0.63 | 0.14
First step; one component width reduced below 1-1078 | 21 3 14
First step; all component widths reduced below 1-10~% 9 1 8
Additional steps; arithmetic mean cube-ratio 0.99 1 0.98
Additional steps; arithmetic mean max-width-ratio 1 1 1
Infeasible problems 6
Elimination test success ratio; arithmetic mean 0.82
Elimination test success ratio; geometric mean 0.79

The summary table shows that the method — and especially the aggregation (AG)
and the quadratic filter (QF) part — strongly contracts most boxes containing the


http://www.mat.univie.ac.at/~dferi/research/AggregateTests.pdf

24 Ferenc Domes, Arnold Neumaier

solution. Performing more than one step of the method does not improve the quality
anymore. Since the boxes to be contracted and the objective upper bound used
depend on the approximate reference solution used (which sometimes was not very
accurate), we did not expect contraction to a single point; however for 18 problems,
all component widths were reduced below 1-1078.

The elimination test shows that for each problem, most of the 2n boxes created
near to the solution were eliminated, hence proved to contain no feasible point. Since
the tests focus on the most difficult problem of filtering boxes very close to the global
solution, this shows that our method is indeed a powerful tool for eliminating the
cluster effect.

The performance of the new techniques within a framework for global optimiza-
tion depends on how these techniques are combined with other, traditional methods.
We intend to report on this in a separate paper [I0] describing the Java implemen-
tation JGloptLab of our earlier GloptLab constraint satisfaction package [5].
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