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Abstract Three rejection tests for multi-objective optimization problems based
on first order optimality conditions are proposed. These tests can certify that
a box does not contain any local minimizer, and thus it can be excluded from
the search process. They generalize previously proposed rejection tests in several
regards: Their scope include inequality and equality constrained smooth or non-
smooth multiple objective problems. Reported experiments show that they allow
quite efficiently removing the cluster effect in mono-objective and multi-objective
problems, which is one of the key issues in continuous global deterministic opti-
mization.

Keywords Multi-objective deterministic global optimization · first order
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effect

1 Introduction

We consider the nonlinear multi-objective problem of minimizing f(x) subject to
the constraints g(x) ≤ 0 and h(x) = 0, where f : Rn → R

m, g : Rn → R
p and

h : Rn → R
q are Lipschitz continuous near every point of Rn (inequalities holding

component wise). First oder optimality conditions, like Karush-John or Karush-
Kuhn-Tucker conditions (see e.g. [4,26,36,29]), play a key role in the theory and
practice of solving such nonlinear problems by standard numerical analysis meth-
ods. Karush-John conditions state that for any local Pareto optimal (or efficient,
or non-dominated) solutions x∗ of the previous problem, there exist multipliers
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0 ≤ λ ∈ R
m, 0 ≤ r ∈ R

p and s ∈ R
q not all 0 such that

∂f(x∗)λ+ ∂g(x∗) r + ∂h(x∗) s ∋ 0 (1)

(∀1 ≤ i ≤ p) ri gi(x∗) = 0 (2)

(∀1 ≤ i ≤ q) hi(x∗) = 0 , (3)

where ∂f is the generalized gradient of f1. See e.g. [4] for the definition of gener-
alized gradients and related first order conditions. A normalization equation can
be added since multipliers are not all 0, e.g.

∑

1≤i≤m

λi +
∑

1≤i≤p

ri +
∑

1≤i≤q

s2i = 1. (4)

In the case where functions are differentiable, so generalized gradients coincide
with gradients and (1) becomes an equality, the first order conditions (1)–(4) give
rise to a system of n+m+ p+ q unknowns and n+ p+ q+1 equations. Therefore,
generically its solution set is a manifold of dimension m − 1. This matches the
generic dimension of the Pareto front of such a problem (noteworthily in the case
of mono-objective optimization, Pareto optimality is equivalent to the usual order
between reals, and the solution set is generically zero dimensional).

In the context of interval branch and bound algorithms, first order conditions
allow rejecting parts of the search space that are difficult to reject with other
techniques (in particular when exploring the region close to the global optimum
where the so-called cluster effect2 dramatically slows the search, see the discussions
about the cluster effect in [6,34], and in Subsection 5.1 below). Their importance
in branch and bound algorithm dedicated to mono-objective optimization is well-
known, where the well-constrained system of equations (1)–(4) is solved using the
interval Newton [18,12,24] or other techniques coming from numerical constraint
programming [11]. This presents the drawbacks of solving a system with dimension
higher than the original problem, one additional variable for each multiplier, and
of requiring sharp initial domains for multipliers. This is balanced by the very
sharp enclosure of computed local or global optima.

Subdivision methods (among which interval based branch and bound algo-
rithms) recently started to be developed for solving nonlinear multi-objective prob-
lems [14,3,2,31,15,22,38,23,39]. Techniques related to first order conditions are
used in [31,22,23] to reject parts of the search space that contain no Pareto optimal
solution. As in the context of mono-objective optimization, the system (1)–(4) can
be solved using constraints techniques. However, the additional difficulty is that
the system (1)–(4) is under-constrained in the multi-objective case, while interval
techniques like the interval Newton are efficient only for well-constrained systems:
A componentwise Newton operator is used to solve (1)–(4) in [23] but this operator
is much less efficient than the traditional Newton operator, which benefits from
preconditioning techniques to tackle globally the system of equations.

Rejection tests like the one proposed in [31,22] do not solve explicitly the sys-
tem (1)–(4) but instead use it to prove that a given region does not contain any

1 In the case of vector valued functions f = (f1, . . . , fm), ∂f is a matrix whose columns are
∂fi, so ∂f(x∗)λ =

∑
i
λi∂fi(x∗).

2 Clusters of small boxes appear around local or global minimizers due to excessive splitting
and failure to remove the resulting boxes because too close to these minimizers. This behavior
is generic and one of the main issues in deterministic global optimization.
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local optimum. The main disadvantage of such test is that they are useless when
applied to domains that contain a local optimum, while solving (1)–(4) allows
potentially reducing such a domain, hence providing a sharp enclosure of the con-
tained optimum, without any additional subdivision. Nevertheless, rejection tests
still allow efficiently tackling the cluster effect. Since they are computationally
much cheaper than solving (1)–(4) and easy to implement, they can be used as a
preliminary test before solving explicitly the system. They are even more impor-
tant in the context of multi-objective optimization where traditional techniques
for solving (1)–(4) are inefficient.

In this paper, three rejection tests based on first order necessary conditions
are proposed. While they are more general and powerful than previously proposed
tests [31,22], they are very simple and hence easily included in any branch and
bound algorithm dedicated to mono or multi-objective optimization. Section 2
recalls the basics of interval analysis that will be used in Section 3 to develop the
proposed rejection test. An analysis of related works is given in Section 4. Finally
Section 5 reports experiments that show the usefulness of the proposed rejection
tests for decreasing the cluster effect.

2 Interval Analysis

2.1 Interval Analysis

Interval analysis is a branch of numerical analysis that was born in the 1960’s. It
consists of computing with intervals of reals instead of reals, providing a frame-
work for handling uncertainties and verified computations (see e.g. [27,1,28] and
[17] for a survey). Interval analysis is a key ingredient for numerical constraint
programming (see e.g. [16]) and global optimization (see e.g. [12,19]).

An interval is a closed connected subset of R, the set of intervals being denoted
by IR (which includes the empty set as well as unbounded intervals). Intervals are
denoted by boldface symbols, e.g. x ⊆ R. There are two equivalent ways of defining
interval vectors, the set of such n dimensional interval vectors being denoted by
IR

n. On the one hand, given two vectors x ≤ x ∈ R
n (where the inequality is

defined componentwise), an interval of vectors is obtained by considering x := {x ∈
R
n : x ≤ x ≤ x}. On the other hand, given intervals xi ∈ IR for i ∈ {1, . . . , n}, a

vector of intervals is obtained by considering x := {x ∈ R
n : ∀i ∈ {1, . . . n}, xi ∈ xi}.

These two definitions are obviously equivalent following the notational convention
x = (xi), x = (xi) and [xi] = [xi, xi], and will be used interchangeably. Interval
matrices are defined similarly to interval vectors as either intervals of matrices or
matrices of intervals, the set of n×m interval matrices being denoted by IR

n×m. A
real number x ∈ R (respectively a real vector x ∈ R

n or a real matrix A ∈ R
n×m)

will be identified with the degenerate interval [x, x] (respectively a degenerated
interval vector [x, x] or a degenerated interval matrix [A,A]).

Operations ◦ ∈ {+,×,−,÷} are extended to intervals in the following way:
x ◦ y := {x ◦ y : x ∈ x, y ∈ y} (which is an interval since these functions are
continuous). The division is defined for intervals [y, y] that do not contain zero.
Unary elementary functions f(x) like exp(x), ln(x), sin(x), etc., are also extended
to intervals similarly: f(x) = {f(x) : x ∈ x}. All these elementary interval ex-
tensions form the interval arithmetic (IA). As real numbers are identified to de-
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generated intervals, the IA actually generalizes the real arithmetic, and mixed
operations like 1 + [1, 2] = [2, 3] are interpreted as interval operations, e.g. in
this case [1, 1] + [1, 2] = [2, 3]. An interval function f : IR

n −→ IR
m is an in-

terval extension of the real function f : Rn −→ R
m if for all x ∈ IR

n we have
f(x) ⊇ {f(x) : x ∈ x}. Thus interval extensions allow computing enclosures of
real functions range over boxes. So called natural interval extensions of a function
are obtained by evaluating an expression of this function for interval arguments
using the IA. In particular when every variable has one unique occurrence in the
function’s expression the natural interval extension is optimal, i.e. it computes the
exact function range. However, when a function expression has several occurrences
of some variable, its interval evaluation may be pessimistic. The pessimism of in-
terval evaluation is one of the critical issue to be tackled when applying interval
analysis. Finally, interval vectors and matrices arithmetic operations are also ex-
tended to intervals using IA, e.g. Ax = y with yi =

∑

k Aikxk with the enclosure
property y ⊇ {Ax : A ∈ A, x ∈ x} (note that since the expression of yi contains
only one occurrence of each involved interval, y is actually the smallest interval
vector satisfying this enclosure). Finally, given A ∈ IR

n×m and b ∈ IR
n, the united

solution set {x ∈ R
m : ∃A ∈ A,∃b ∈ b, Ax = b} is denoted by Σ(A,b) and is often

called an interval linear system of equations.
Interval evaluations of the function derivatives or gradients are of particular

interest in the present paper. Such interval evaluations can be performed whenever
an explicit expression of the derivatives is available, or using automatic differentia-
tion with IA [28,33,25]. Subgradients [4] are convex hulls of sets of representative
gradients, and can also be enclosed inside interval evaluations. For example, in
case the function expression contains some absolute value, the following rule can
be used for enclosing its generalized gradient: ∂abs(x) = −1 if x ≤ 0, ∂abs(x) = 1
if x ≥ 0 and ∂abs(x) = [−1, 1] otherwise (see [28] for details).

Rounded Computations As real numbers are approximately represented by float-
ing point numbers [9], the IA cannot match the real definitions of interval ex-
tensions exactly. In order to preserve the inclusion property, the IA has to be
implemented using an outward rounding. For example, the exact definition of
IA is [1, 3]/[10, 10] = [0.1, 0.3], but both 0.1 and 0.3 cannot be exactly repre-
sented with standard floating point numbers. Therefore, the computed result will
be [0.1−, 0.3+] where 0.1− (respectively 0.3+) is a floating point number smaller
than 0.1 (respectively greater than 0.3). We expect actually the greatest floating
point number smaller than 0.1 and the smallest floating point number greater
than 0.3 which is often achieved by IA implementations. Among numerous imple-
mentations of IA, we can cite the C/C++ libraries PROFIL/BIAS [20] and Gaol
[10], the Matlab toolbox INTLAB [33] and Mathematica [41]. The developments
presented in the rest of the paper use the ideal real IA. The algorithms are finally
implemented using outwardly rounded floating point IA.

3 Rejection Tests Based On First Order Conditions

Given a box x ∈ IR
n, three rejection tests are proposed that allow proving that

this box does not contain any local minimum, and hence needs not to be explored
anymore by the branch and bound algorithm. Inactive inequality constraints don’t
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play any role in optimality check. It is therefore critical to identify them before
applying any test (see Example 1 in Subsection 3.1). An inequality constraint
gi(x) ≤ 0 is said active inside x if and only if there exists x ∈ x such that gi(x) = 0.
Some interval extensions gi for each gi allows identifying rigorously inequality
constraints that are inactive inside x, their indices being denoted by

I(x) := {i ∈ N : 1 ≤ i ≤ p ∧ 0 /∈ gi(x)}. (5)

Its complement

A(x) := {i ∈ N : 1 ≤ i ≤ p ∧ 0 ∈ gi(x)} (6)

contains indices of inequality constraints that are potentially3 active inside x, the
number of such constraint being denoted by p•. In the following, ∂f(x) ∈ IR

n×m,
∂g•(x) ∈ IR

n×p• and ∂h(x) ∈ IR
n×q are some interval enclosure over the box

x of the generalized gradients objectives, potentially active inequality constraints
and equality constraints respectively. Also, G(x) ∈ IR

n×(m+p•+q) is the interval
matrix made of all these interval vectors:

G(x) :=
(

∂f(x) | ∂g•(x) | ∂h(x)
)

. (7)

Remark 1 When g includes bound constraints, some specific treatment may turn
out to be more efficient than simply include them in G(x) (e.g. a pivoting strat-
egy can start using this bound constraint gradient, see also Remark 3 in Subsec-
tion 4.1).

3.1 Full Column Rank Test

Theorem 1 If G(x) is full column rank then x contains no local optimum.

Proof Consider an arbitrary x ∈ x and some 0 ≤ λ ∈ R
m, 0 ≤ r ∈ R

p and s ∈ R
q

satisfying (1)–(3). For i ∈ I(x), 0 /∈ gi(x) so gi(x) 6= 0 and hence (2) entails ri = 0.
Therefore (1) becomes

∂f(x)λ+ ∂g•(x) r• + ∂h(x) s ∋ 0, (8)

where ∂g•(x) ∈ R
n×p• and r• ∈ R

p• are restrictions to potentially active inequality
constraints. Now, (8) implies that there exists (u|v|w) ∈

(

∂f(x)|∂g•(x)|∂h(x)
)

⊆
G(x) such that uλ + vr• + ws = 0. Since G(x) is fullrank, so is (u|v|w), and
therefore uλ+vr•+ws = 0 implies that all multipliers are zero, thus contradicting
the Karush-John conditions. Therefore x is eventually not a local optimum. ⊓⊔

Remark 2 Note that G(x) is full column rank implies that
(

∂g•(x) | ∂h(x)
)

is also
full column rank. Therefore Theorem 1 can reject a box x only in the case where
the constraints satisfy the linear independence constraint qualification in this box.

3 These inequality constraints are only potentially active because interval extensions are
generally pessimistic. All rejection tests proposed remain correct when a potentially active
constraint is actually inactive, although they are more efficient as inactive constraints are
more accurately detected.
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Fig. 1 Left: Feasible set and boxes involved in Example 1 and Example 2. Right: The image
of the feasible set in the two objective space of Example 3 is the gray disk (among which the
black circle satisfy the Fritz John conditions).

Checking if an interval matrix is full column rank is NP-hard (since checking
the regularity of square interval matrices is NP-hard, see e.g. [30] and references
therein). However, when the interval entries of the matrix are thin enough (which
is generally the case when the cluster effect appears), two sufficient conditions
can be used to check if G(x) is full column rank: The interval Gauss elimina-
tion (see e.g. [28,8]) and checking strict diagonal dominance of CG(x), where
C ∈ R

(m+p•+q)×n is e.g. some approximate midpoint pseudo-inverse precondi-
tioner. Both methods complexity is cubic, while our experiments seem to show
that the interval Gauss elimination is generally stronger. In Section 5, Theorem 1
is implemented using the interval Gauss elimination technique.

The following three examples illustrate the application of Theorem 1 to a dif-
ferentiable mono-objective problem, a non differentiable mono-objective problem,
and to a differentiable multi-objective problem respectively.

Example 1 Consider the problem of minimizing x1 subject to g1(x) ≤ 0 and g2(x) ≤
0 where g1(x) := x21 + (x2 − 10)2 − 202 and g2(x) := x21 + (x2 + 10)2 − 202, whose
global minimum is attained at (−10

√
3, 0)T . The feasible set of this problem is

depicted on the left graphic of Figure 1.

Consider the box x = ([−2, 2], [8, 12]), also depicted on Figure 1. In order to
check constraints activity, we first consider the trivial interval extensions g1(x) =
[−∞,+∞] and g2(x) = [−∞,+∞], that is we consider all constraints are poten-
tially active. In this case, G(x) has two lines and three columns, and hence cannot
be full column rank. Theorem 1 fails rejecting the box. Consider now the natural
interval extensions of the constraints, that gives rise to g1(x) = [−400,−392] and
g2(x) = [−76, 88]. This proves that g1(x) ≤ 0 is not active (while g2 is potentially
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active, and even active since the interval evaluation is optimal), therefore

G(x) =
(

∇f(x) | ∇g2(x)
)

=

(

1 [−4, 4]
0 [36, 44]

)

. (9)

This interval matrix being obviously full column rank, Theorem 1 now allows
rejecting the box, hence the critical importance of preliminary checking the con-
straint activity.

Consider now the box x = ([15, 19], [−2, 2]), also depicted on Figure 1. The
natural interval extensions of the constraints give rise to the following enclosures:
g1(x) = [−111, 105] and g2(x) = [−111, 105]. Hence the two constraints are poten-
tially active, while we can see on Figure 1 that they are actually both active inside
x. Thus Theorem 1 fails rejecting the box (a 2 × 3 matrix cannot be full column
rank), which is normal since this box contains a local maximum that also satisfies
the Karush-John conditions.

Example 2 Consider the problem of minimizing x2 subject to g(x) ≤ 0 where g(x) =
x21+(|x2|+10)2−202. The feasible set of this problem is the same as in Example 1,
and its optimum is attained at (0,−10)T . As in Example 1, consider the box
x = ([15, 19], [−2, 2]). Then g(x) = [−75, 105] so the constraint is potentially active
inside x (even active since the interval evaluation is optimal), so

G(x) =
(

∇f(x) | ∂g(x)
)

=

(

0 [30, 38]
1 [−24, 24]

)

. (10)

The enclosure of the generalized gradient of g is computed as explained in Section 2.
This interval matrix being obviously full column rank, Theorem 1 allows rejecting
the box.

Example 3 Consider the bi-objective problem with three variables that consists in
minimizing f(x) = (x1 + x2, x1 − x2) subject to the constraint x21 + x22 + x23 ≤ 200.
The image of the feasible set by the vectorial objective function is depicted on the
right graphic of Figure 1, together with the image of the solutions that satisfy the
Karush-John conditions in black, among which the Pareto optimal solutions.

Consider the box x = ([−12,−10], [4, 6], [5, 7]). It’s image in the objective space
is depicted as the lower most parallelogram, which does not contain any Pareto
optimal solution although close to the Pareto frontier (hence the box could be
rejected by some rejection test). The interval evaluation of the constraint is g(x) =
[−59, 29], hence it is potentially active (actually it is active since this interval
evaluation is optimal). Hence

G(x) =
(

∇f1(x) | ∇f2(x) | ∇g(x)
)

=





1 1 [−24,−20]
1 −1 [8, 12]
0 0 [10, 14]



 . (11)

This interval matrix is obviously full column rank (note that the inverse midpoint
preconditioning is unable to prove G(x) is full rank because interval entries are too
wide, while interval Gauss elimination is able to provided that the right pivoting
strategy is used), hence the box can be rejected.

Consider the box x = ([13, 15], [−1, 1], [−1, 1]). It’s image in the objective space
is depicted as the upper most parallelogram, which contains some solutions of the
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Karush-John conditions (hence the box should not be rejected by any rejection
test). The interval evaluation of the constraint is g(x) = [−31, 27], hence it is
potentially active (actually it is active since this interval evaluation is optimal).
Hence

G(x) =
(

∇f1(x) | ∇f2(x) | ∇g(x)
)

=





1 1 [26, 30]
1 −1 [−2, 2]
0 0 [−2, 2]



 . (12)

Since the last line of G(x) contains the null vector, G(x) is not full column rank
and the rejection test does not reject it as expected.

3.2 Multipliers Sign Test

The second test uses the multiplier non-negativeness and is therefore restricted to
problems with only inequality constraints.

Theorem 2 If the problem has only inequality constraints (i.e. q = 0) and G(x) has a
line where all interval entries don’t contain zero and have the same sign then x contains

no local optimum.

Proof Consider an arbitrary x ∈ x. Hence, (∂f(x)|∂g•(x)) ⊆ G(x) so the ith line of
(∂f(x)|∂g•(x)) has only strictly positive (respectively negative) entries. Since the
vector (λ, r) is nonnegative, with at least a strictly positive component, the ith

component of ∂f(x)λ+∂g•(x) r• is strictly positive (respectively negative). Hence
Equation (8) cannot hold, so Equation (1) does not hold neither, and x is not a
local optimum. ⊓⊔

Example 4 Consider the last case of Example 1, i.e. the box x = ([15, 19], [−2, 2]).
Using the natural interval extension, we have seen that the two constraints are
potentially active inside x (they are actually active inside x) and thus using the
natural interval extension of the gradients we obtain

G(x) =

(

1 [30, 38] [30, 38]
0 [−24,−16] [16, 24]

)

. (13)

As seen in Example 1 it is not full column rank and thus Theorem 1 does not apply.
However, its first line contains only strictly positive entries, and thus Theorem 2
allows rejecting the box.

Example 5 Consider the last case of Example 3. As seen in Example 3 it is not full
column rank and thus Theorem 1 does not apply. However, its first line contains
only strictly positive entries, and thus Theorem 2 allows rejecting the box.

Theorem 2 has a different aim from Theorem 1: While the latter aims at
rejecting boxes close to local minima (hence helping fighting the cluster effect),
Theorem 2 will allow rejecting boxes that contain e.g. maxima. In the context of
mono-objective optimization, the usual strategy that consists in exploring regions
where the objective function is potentially low does lower the impact of Theorem 2.
However, its usefulness in the context of multiple objective optimization could
turn out to be greater (as pointed out e.g. in [22] where a weaker test is used, see
Subsection 4.1).
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3.3 Multipliers Domain Test

The preconditioning method for checking the rank of G(x) can be adapted to
enclose the multipliers domains in view of applying an interval Newton operator
to the first order conditions system when the matrix G(x) turns out to be non full
column rank. We introduce the interval matrix G∗(x) ∈ IR

(n+1)×(m+p•+q) where
one last line made of 1 and 0 is added to G(x):

G∗(x) :=

(

∂f(x) ∂g•(x) ∂h(x)

1T 0T 0T

)

, (14)

where 1T and 0T are horizontal vectors made of 1 and 0 respectively. This last
line intends normalizing the multipliers λ by

∑

λi = 1, which is a valid normaliza-
tion provided that

(

∂g•(x)|∂h(x)
)

is full rank. This is formalized in the following
theorem.

Theorem 3 Let k = p• + q, C ∈ R
(m+k)×(n+1) be a matrix4, and define A :=

CG∗(x). Consider the following block representations of these matrices:

C =

(

C11 C12

C21 C22

)

and A =

(

A11 A12

A21 A22

)

(15)

with C11 ∈ R
m×n, C12 ∈ R

m×1, C21 ∈ R
k×n, C22 ∈ R

k×1, A11 ∈ IR
m×m, A12 ∈

IR
m×k, A21 ∈ IR

k×m and A22 ∈ IR
k×k, so that

A11 = C11 ∂f(x) + C12 1
T (16)

A12 = C11 (∂g(x) | ∂h(x)) (17)

A21 = C21 ∂f(x) + C22 1
T (18)

A22 = C21 (∂g(x) | ∂h(x)). (19)

Note that C12 1
T and C22 1

T are actually vector outer products. Suppose that A22 is

strictly diagonally dominant. Then:

(i)
(

∂g•(x) | ∂h(x)
)

is full column rank, and any local minimizer inside x satisfy

the Karush-John conditions with multipliers (λ, r•, s) satisfying
∑

1≤i≤m λi = 1,
called normalized multipliers below (multipliers of inactive inequality constraints

being 0).

(ii) The normalized multipliers (λ, r•, s) belong to both united solution sets Σ(G∗, e) ⊆
Σ(A, Ce), with e = (0, . . . , 0, 1)T ∈ R

n+1.

(iii) The normalized multipliers λ of the objectives have the initial domains λi =
[0, 1]. When m = 1, the domain of the single objective multiplier is reduced to

λ1 = [1, 1]. The normalized multipliers (r•, s) of the constraints have the initial

domains (r•, s) = C22+‖C22−A21λ−A22C22‖∞(±1), where (±1) ∈ IR
k is the

interval vector whose components are [−1, 1]. Furthermore, the initial domains ri
of inequality constraints multiplier are intersected with [0,+∞[.

4 Typically, an approximate generalized inverse of the midpoint of G∗(x).
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(iv) The normalized multipliers domains can be improved contracting them by apply-

ing the interval Gauss-Seidel iteration to the united solution sets Σ(G∗, e) and

Σ(A, Ce)5. When the Gauss-Seidel iteration proves that one of the the united

solution sets is empty, the box x does not contain any local minimizer, and hence

can be rejected.

Proof From the block representation of the product CG(x), we see that CG(x)
strictly diagonally dominant entails that A22 = C21 (∂g(x) ∂h(x)) is also strictly
diagonally dominant. Therefore, (∂g(x) ∂h(x)) is full column rank. Now, any local
minimizer inside x satisfies the Karush-John conditions, i.e. G (λ, r•, s)

T = 0 for
some G ∈ G(x), the multipliers being not all 0 and λ, r• ≥ 0. Since (∂g(x) ∂h(x))
is full column rank, all λi cannot be zero (otherwise all multipliers would be 0
contradicting the Karush-John conditions), and since they are nonnegative we
have

∑

1≤i≤m λi > 0. Therefore, all multipliers can be scaled by (
∑

1≤i≤m λi)
−1,

and any local minimizer inside x has some multipliers that satisfy
∑

1≤i≤m λi = 1,
hence (i).

Normalized multipliers satisfy G∗ (λ, r•, s)
T = e for some G∗ ∈ G∗(x), that is

(λ, r•, s)
T ∈ Σ(G∗, e). Preconditioning this system with C gives rise to Σ(G∗, e) ⊆

Σ(A, c), hence (ii).
Since normalized multipliers satisfy

∑

1≤i≤m λi = 1 and λi ≥ 0, we have
λi ∈ [0, 1]. In the case of mono-objective problems, the normalization equation
becomes λ1 = 1 and its domains is obviously reduced to [1, 1]. Now, from the block
decomposition of the linear system Σ(A, Ce), the multipliers (r, s) also belong to
Σ(A22, C22 −A21λ). By Lemma 4.2.1 of [28] (with x̃ = C22), we can translate the
solution set as follows: Σ(A22, C22−A21λ) ⊆ C22+Σ(A22, C22−A21λ−A22C22).
Finally, Proposition 4.1.9 of [28] (with C = C′ = I and u = v = 1) provide the
enclosure of (r, s) given in (iii). Since the multipliers of the inequality constraints
are non-negative, their initial domains can be intersected with [0,+∞[.

Finally, (iv) is obvious since by (ii) normalized multipliers belong to the given
linear interval equations, while the interval Gauss-Seidel iteration reduces domains
keeping all solutions of these systems. ⊓⊔

When C is an approximation of some midpoint pseudo-inverse of G(x)∗, the
interval matrix CG∗(x) is approximately centered on the identity matrix, therefore
so is A22 and A21 is centered on 0. As a consequence, the error bound ‖C22 −
A21λ−A22C22‖∞ is expected to be small provided that the interval entries of G
are thin enough, hence a good enclosure of the multipliers domains for small enough
boxes x. Note that the block representation (16)–(19) needs not to be explicitly
formed in practice: The strict diagonal dominance of A22 and the error bound
‖C22 −A21λ−A22C22‖∞ can be both computed directly using A. The following
three examples show the application of Theorem 3 to the problems introduced in
Example 1, Example 2 and Example 3 respectively.

Example 6 Consider the problem of Example 1 with the first box, so the interval
matrix G∗(x) is the interval matrix G(x) given in Equation (9) with one additional
row (1 0). The midpoint Moore-Penrose pseudo-inverse C, and the corresponding

5 Note that Σ(A, Ce) is preconditioned so the Gauss-Seidel iteration needs solving only
diagonal entries of A. On the other hand, Σ(G∗, e) is not preconditioned so all entries of G∗

need to be solved. This can be efficiently performed using inner subtraction.
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preconditioned interval matrix A are

C =

(

0.5 0 0.5

0 0.025 0

)

and A =

(

1 [−2,2]

0 [0.9,1.1]

)

, (20)

where the block decompositions used in Theorem 3 are displayed. The submatrix
A22, which is here a 1× 1 interval matrix, is strictly diagonally dominant. Hence,
the initial domain of λ1 is λ1 = [1, 1], and we proceed by computing ‖C22−A21λ−
A22C22‖∞ which is here equal to 0. Hence the initial domain of r1 is r1 = [0, 0].
Finally, applying one iteration of the interval Gauss-Seidel to the preconditioned
system Σ(A, Ce) proves that there is no normalized multipliers, and thus no local
minimum in x.

Now consider the second box of Example 1, so G∗(x), C and A are respectively
approximately




1 [30,38] [30,38]

0 [−24,−16] [16,24]

1 0 0



 ,





0 0 1

0.0147 −0.025 −0.0147

0.0147 0.025 −0.0147



 and





1 0 0

0 [0.841,1.159] [−0.159,0.159]

0 [−0.159,0.159] [0.841,1.159]



 .

(21)
The submatrix A22, which is here a 2 × 2 interval matrix, is strictly diagonally
dominant. Hence, the initial domain of λ1 is λ1 = [1, 1], and we proceed by com-
puting ‖C22 − A21λ − A22C22‖∞ which is approximately equal to 0.00467. The
initial domains of r1 and r2 are respectively r1 = r2 = [−0.0194,−0.0100]. Fi-
nally, since the normalized multipliers domain are strictly negative, the box can
be rejected (it actually contains a local maximum, as seen on Figure 1).

Example 7 Consider the problem of Example 2, so the interval matrix G∗(x) is the
interval matrix G(x) given in Equation (10) with one additional row (1 0). The
midpoint Moore-Penrose pseudo-inverse C, and the corresponding preconditioned
interval matrix A are

C =

(

0 0.5 0.5

0.294 0 0

)

and A =

(

1 [−12,12]

0 [0.882,0.118]

)

. (22)

The submatrix A22, which is here a 1 × 1 interval matrix, is strictly diagonally
dominant. Hence, the initial domain of λ1 is λ1 = [1, 1], and we proceed by com-
puting ‖C22−A21λ−A22C22‖∞ which is here equal to 0. Hence the initial domain
of r1 is r1 = [0, 0]. Finally, applying one iteration of the interval Gauss-Seidel to
the preconditioned system Σ(A, Ce) proves that there is no normalized multipliers,
and thus no local minimum in x.

Example 8 Consider the problem of Example 3 with the first box, so the inter-
val matrix G∗(x) is the interval matrix G(x) given in Equation (11) with one
additional row (1 1 0). The midpoint Moore-Penrose pseudo-inverse C, and the
corresponding preconditioned interval matrix A are

C =





0.236 0.5 0.0155 0.264

−0.0492 −0.5 0.326 0.549

−0.0285 0 0.0311 0.0285



 and A =





1 0 [−1.51,1.51]

0 1 [−1.76,1.76]

0 0 [0.880,1.120]



 . (23)

The submatrix A22, which is here a 1 × 1 interval matrix, is strictly diagonally
dominant. Hence, the initial domain of λ is λ = ([0, 1], [0, 1]), and we proceed
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by computing ‖C22 − A21λ − A22C22‖∞ which is here approximately equal to
0.0034. Hence the initial domain of r1 is r1 = [0.0251, 0.0319]. Finally, applying
one iteration of the interval Gauss-Seidel to the preconditioned system Σ(A, Ce)
reduces the domains to (λ, r1) = ([0.216, 0.313], [0.493, 0.606], [0.0254, 0.0319]), and
the next application of the interval Gauss-Seidel iteration to Σ(G∗, e) proves the
emptiness of the multipliers domain, allowing rejecting x.

Now consider the second box of Example 3, so the interval matrix G∗(x) is the
interval matrix G(x) given in Equation (12) with one additional row (1 1 0). The
midpoint Moore-Penrose pseudo-inverse C, and the corresponding preconditioned
interval matrix A are

C =





0 0.5 0 0.5

0 −0.5 0 0.5

0.0357 0 0 −0.0357



 and A =





1 0 [−1,1]

0 1 [−1,1]

0 0 [0.928,1.072]



 . (24)

The submatrixA22, which is again here a 1×1 interval matrix, is strictly diagonally
dominant. Hence, the initial domain of λ is λ1 = ([0, 1], [0, 1]), and we proceed
by computing ‖C22 − A21λ − A22C22‖∞ which is here approximately equal to
0.0025. Hence the initial domain of r1 is r1 = [−0.0383,−0.0331]. Finally, since
the normalized multipliers domain are strictly negative, the box can be rejected
(it actually contains Pareto solutions for the maximization counterpart of the
problem, as seen on Figure 1).

4 Related Work

4.1 Monotonicity Test For Multiple-Objective Optimization

A simple extension of the mono-objective monotonicity test to multi-objective
optimization was proposed in [22]. Using the notations introduced here, the test
proposed in [22] is restricted to inequality constraints (i.e. q = 0) and consists in
rejecting a box if p• = 0 (i.e. there is no active inequality constraint) and one line
of G(x) has entries that don’t contain zero and have the same sign. Therefore,
Theorem 2 generalizes the rejection test of [22] to possibly active constraints. This
generalization is critical as seen on the typical Example 4 where the test of [22]
does not allow rejecting the box. Note finally that the connection between the
monotonicity test and the sign of the Lagrange multipliers was not mentioned
in [22].

Remark 3 The monotonicity test generally also includes some specific treatment
for bound constraints a ≤ xi ≤ b that consists in reducing the domain xi of the
variable xi to one of its bounds whenever the interval evaluation ∇fi(x) of the ith

component of the gradient has a fixed sign.

4.2 Interval Differential Formulation

A rejection test, called interval differential formulation, was proposed in [31]. Its
scope is unconstrained multiple-objective optimization with an arbitrary number
of variables, although experiments in [31] are restricted to bi-objective problems
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with two variables. Informally, it consists in studying interval evaluations of the
gradients over a given box, aiming proving that some descent direction for all
objectives exists. Then this box can be rejected since all objectives can be im-
proved simultaneously starting from any point inside the box. Although not noted
in [31], this is a direct consequence of unconstrained first order conditions. From
a computational point of view, in the case of two objectives and two variables,
such regions are found intersecting interval angles of the interval evaluations of
the gradients. In the case of more than two variables, projections in two variables
spaces are proposed to be performed, although not formally justified6. The case
of more than two objectives is not detailed in [31]. Bound constraints are han-
dled in [31] by a preliminary partition of the domain into an interior part and 2n
boundary parts. Since the interval Gauss elimination is optimal for checking the
linear independence of two interval vectors, Theorem 1 is strictly stronger in this
case, while it has a much wider scope since it tackles constrained multi-objective
problems. Noteworthily, this rejection test together with the branch and bound
algorithm proposed in [31] are patented, see [32].

4.3 Monotonicity Test Improvement for Mono-Objective Optimization

A rejection test, called the modified monotonicity test (MMT), that cannot be
derived using first order conditions has been proposed in [21], in the restricted
case of inequality constrained mono-objective optimization. The pseudo code given
in Section 4 of [21] consists in rejecting a box x provided that each constraint
gj(x) ≤ 0 is either, inactive inside the box (i.e. gj(x) < 0), or is independent

with respect to a variable xi (i.e.
∂gj

∂xi
(x) = 0) and the objective function is strictly

monotonic with respect to this variable (i.e. 0 /∈ ∂f
∂xi

(x)). This property is incorrect,
as shown by the following counter example: Consider the problem of minimizing
f(x) = (x1 − 1)2 + x22 subject to g(x) ≤ 0 with g(x) = 0 if x1 ≤ 0 and g(x) = x21
otherwise (note that g is smooth). The global optimum of this problem is x∗ =
(0, 0)T . Consider the box x = ([−1, 0], [−1, 1])T . Since ∂f

∂x1
(x) = [−3,−1] < 0 and

∂g
∂x1

(x) = 0, the MMT rejects this box although it contains the global optimum.
An alternative MMT was proposed by the author of [21] in a personal commu-

nication: The property holds if a slightly different assumptions are fulfilled: The

derivative
∂gj

∂xi
(x) is equal to zero not only in the box x, but in a superbox, e.g.,

[x− ε, x+ ε]. This is, in particular, fulfilled, if the derivatives are equal to zero in
the whole domain, i.e., if the formulae for gj do not contain the variable xi. Such
a test and first order condition rejection tests are complementary.

4.4 Multipliers Domain Enclosures for Mono-Objective Optimization

Two different methods for computing bounds on the multipliers in the mono-
objective case are proposed in [13]. The first uses the interval Newton applied to

6 Although not noted in [31], the angle between two gradients interval evaluations g1 and
g2 can be proved not to contain π simply by checking that the scalar product g1 g2 does not
intersect ||g1|| ||g2||. This is sufficient for rejecting the box, and easily computed for arbitrary
dimensions.
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the first order system of equations. By using a specific variable ordering and a sharp
interval evaluation of the gradients over subdomains, the method of [13] applies
the interval Newton without any initial domain for multipliers, and computes some
domains using the interval Gauss elimination as an interval linear solver for the
interval Newton. The second is similar to Theorem 3 in the sense that it tackles
the first order system as an over constrained linear system for the multipliers.
However, both methods proposed in [13] use a different normalization equation
from the one proposed here: In [13] multipliers are normalized using the interval
linear equation

λ1 +
∑

1≤i≤p•

ri +
∑

1≤i≤q

Esi = 1, (25)

with E = [1, 1+ ǫ] where ǫ is the smallest number such that 1+ ǫ is strictly greater
than 1 in the machine number representation. The rational is that if E = 1 then the
normalization equation would be incompatible with some problems, hence leading
to loosing some minimizers in these cases. Consider e.g. the problem of minimizing
x1 under the constraint 0.5−0.5x21−0.5x22 = 0 whose minimum is x = (−1, 0) with
multipliers satisfying λ1 + s1 = 0. These multipliers are incompatible with the
normalization equation λ1+s1 = 1, which would entail rejecting this minimizer. By
using λ1+Es1 = 1, this local minimizer is not rejected. However, this normalization
equation does not allow computing any useful multipliers domain in this case, while
the normalization equation used in Theorem 3 allows computing sharp multipliers
domains in this case too. Note that the normalization equation used here rely on
the fact that constraints gradients interval evaluations are linearly independent,
which is proved during the test. Although the normalization equation used in [13]
does not rely on this constraint qualification, their methods also fails computing
multipliers domains when it does not hold (in fact, multipliers domains would be
useless when no constraint qualification hold since the interval Newton method
would fail in this case).

4.5 Exclusion Regions for Systems of Equations

Exclusion regions (see [34] and references therein) consists in building a region
around a solution of a system of equations where no other solution is proved to lie.
They therefore allow efficiently fighting the cluster effect, which also appears when
solving systems of equations. In the context of global optimization, an exclusion
region for the first order conditions is built. The exclusion region is built only one
time when the local optimum is found, which is an advantage with respect to the
rejection tests proposed here that have to be checked at each node of the search
tree. On the other hand, exclusion regions require third order derivatives of the
objective function and constraints and have a quadratic complexity with respect
to the number of variables, while the rejection test proposed here uses only first
order derivatives and have a cubic complexity. Noteworthily, exclusion regions are
quite difficult to implement contrarily to rejection tests.
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Fig. 2 The solution sets for n = 2 of the constraints from Subsection 5.1 and Subsection 5.1
respectively (in the left graphic, the dashed rectangle represent the cylinder where a cluster
effect is expected).

5 Experiments

Experiments reported in this section are restricted to mono-objective problems,
because of the lack of implementation of branch and bound algorithms dedicated to
multi-objective problems. A smooth and a non smooth mono-objective academic
problems are investigated in Subsection 5.1 and Subsection 5.2 respectively, as
well as a smooth bi-objective academic problem in Subsection 5.3. Finally, the
improvement brought by the rejection tests are illustrated on a standard difficult
mono-objective problem in Subsection 5.4.

5.1 Smooth Mono-Objective Academic Problem

We consider the problem of minimizing f(x) :=
∑

i xi, x ∈ R
n subject to the

constraint g(x) :=
∑

i x
2
i − n ≤ 0. The global optimum x∗ = (−1, . . . ,−1)T is

easily found using a local solver, hence the branch and bound algorithm consists
in solving

f(x) ≤ f(x∗) and g(x) ≤ 0 (26)

(the solution sets of these two constraints are depicted in the left hand side graphic
of Figure 2). In the neighborhood of the global optimum of this problem, the
minimal distance d(x, y) between a feasible point x and its closest point y that
satisfies f(y) ≤ f(x∗) behaves like d(x, y) = O(d(x, x∗)

2) = O(d(y, x∗)
2). Interval

techniques will be able to reject a box x provided that at least one of the constraints
is false inside it. Hence, we expect that using a criteria for stoping the search
when a box is smaller than ǫ should output a paving of such boxes that covers
approximately a cylinder with a base formed of a (n−1)-sphere of radius O(ǫ

1
2 ) (of

measure O(ǫ
n−1

2 )), and a height of O(ǫ) (see the dashed cylinder depicted in the

left hand side graphic of Figure 2). Such a cylinder has a measure of O(ǫ1+
n−1

2 )

and this should result in a cluster of O(ǫ1+
n−1

2 ǫ−n) = O(ǫ−
n−1

2 ) boxes of size ǫ
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Fig. 3 Smooth mono-objective academic problem. Number of boxes of size ǫ, plotted with
respect to ǫ with no rejection test (upper left, for n ∈ {2, . . . , 5}), the multipliers sign and full
rank test (upper right, for n ∈ {2, . . . , 8}), and the multipliers sign and multipliers domain test
(lower left, for n ∈ {2, . . . , 8}). Different markers represent results for different dimensions. In
the upper left graphic, the light gray lines represent the fitted cluster effect model. The lower
right graphic shows the number of splits needed to reach boxes of size ǫ = 0.006 with respect
to the problem dimension, using no rejection test (full line), the full rank test (dashed line)
and the domain enclosure test (dotted line).

(called ǫ-boxes). This asymptotic analysis7 is pretty well confirmed by experiments
carried out using the GloptLab [5]8: The upper left graphic of Figure 3 shows the
number of ǫ-boxes computed for various values of ǫ without any rejection test,
the light gray lines corresponding to the asymptotic models. It clearly shows the
computed boxes follow very accurately the cluster effect model9, which makes this
academic problem unsolvable using a branch and bound algorithm for even quite
small values of n.

The upper right and lower left graphics of Figure 3 show the same graphics in
the case where first order rejection tests are used. It clearly shows that for a fixed n,
the number of computed ǫ-boxes is drastically decreased, and even does not depend
on ǫ anymore: The cluster effect have been canceled allowing tackling problems

7 The asymptotic analyses of the cluster effect provided in [6], in the context of unconstrained
optimization, or in [34], in the context of a system of equations, lead to different models that
do not hold here. In particular both [6] and [34] consider some pessimistic interval evaluations,
while this academic problem suffers from the cluster effect in spite of exact interval evaluations.

8 GloptLab implements here a branch and prune algorithm based on constrain propagation
on DAGs [35,40].

9 Experiments non reported here have shown that the constraint propagation can remove
the cluster effect when n = 2, although the closer to the optimum the slower the convergence
of the propagation, converging to infinitely slow convergence (which requires very expensive
constraint propagation). This is generic in two variables, but not in higher dimensions where
the constraint propagation is not able anymore to remove the cluster effect.
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Fig. 4 Nonsmooth mono-objective academic problem. Same graphics as in Figure 3.

with much higher values of n and with much shaper accuracy. These graphics
seem to show that for a fixed ǫ the number of ǫ-boxes increases exponentially with
respect to n. The lower right graphic of Figure 3 shows the number of splits needed
to reach boxes of size ǫ = 0.006 with respect to the problem dimension. It clearly
shows an exponential dependence for both the full rank and multipliers domain
tests, which would require fully solving the first order optimality conditions to be
removed (e.g. with an interval Newton operator).

Remark 4 The asymptotic analysis carried out for this academic problem can be
generalized to arbitrarily constrained problems, leading to

O(ǫ−
n−m

2 ), (27)

where m is the number of active constraints at the considered strict minimizer
(including equality constraints). This analysis holds only under LICQ and if the
objective function gradient is not null at the local constrained minimizer (otherwise
the exact interval evaluation of the objective function will allow removing the
cluster effect).

5.2 Nonsmooth Mono-Objective Academic Problem

The problem of minimizing f(x) :=
∑

i xi, x ∈ R
n subject to the constraint g(x) :=

∑

i x
2
i + |x1 + 1| − n ≤ 0 has a smaller feasible set than the previous one, but

has the same global minimizer. Furthermore, the constraint is nonsmooth at the
global minimizer. Its feasible set is depicted in the right hand side diagram of
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Fig. 5 Smooth bi-objective academic problem. Same graphics as in Figure 3 with n ∈ {2, 4, 6}
and ǫ = 0.1 for the lower right graphic.

Figure 2 for n = 2. The nonsmooth edge at the global minimum removes the
tangency between the feasible set and the objective level set, and therefore should
prevent the cluster effect. This is confirmed experimentally: Figure 4 shows the
same graphic as Figure 3 for this nonsmooth academic problem. For n = 2 with
no rejection test (upper left graphic), we see that the number of ǫ-boxes remains
constant, hence the absence of the cluster effect. For higher dimensions, the cluster

effect reappears but following the model O(ǫ−
n−2

2 ) (these models are shown in gray
lines), i.e. the nonsmooth edge removes one dimension of the cluster effect. Still
the cluster effect prevents any attempt of solving this academic problem using a
branch and bound algorithm for even quite small values of n.

The upper right and lower left graphics of Figure 4 show that again the rejec-
tion tests allows drastically reducing the cluster effect, although the exponential
dependence of the number of ǫ-boxes with respect to the dimension is confirmed
in the lower right graphic of Figure 4.

5.3 Smooth Bi-Objective Academic Problem

We consider the bi-objective problem consisting in minimizing f(x) = (aT x, bT x)T ,
with ai = 1 and bi = (−1)i for i ∈ {1, . . . , n}, x ∈ R

n subject to g(x) := xT x−n ≤ 0.
We allow only even n, since we want the vectors a and b to be orthogonal. We
again transform the optimization problem into a constraint satisfaction problem
by computing its global Pareto frontier and enforcing the dominance constraint.
Since the problem is convex, the Pareto frontier can be obtained by minimiz-
ing aggregations of the objectives ft(x) = (1 − t) aT x + t bT x for t ∈ [0, 1]. One
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easily computes the global minimizer xt of this problem, and the corresponding
bi-objective evaluation:

xt = −
√
n

(1− t)a+ tb

‖(1− t)a+ tb‖ and f(xt) = −n

( 1−t√
(1−t)2+t2

t√
(1−t)2+t2

)

(28)

As t varies inside [0, 1], f(xt) follows the quarter of the radius n circle in the
negative quadrant. Therefore, global Pareto dominance can be enforced by the
following constraints:

(aT x)2 + (bT x)2 ≥ n2 , aT x ≤ 0 , bT x ≤ 0 and g(x) ≤ 0. (29)

The constraint (aT x)2 + (bT x)2 ≥ n2 can be reformulated as

(

n
2
∑

i=1

x2i)
2 + (

n
2
∑

i=1

x2i−1)
2 ≥ n

2

2
, (30)

which removes the interval evaluation pessimism (since each variable has only
one occurrence in (30)) and hence allows us to focus only on the cluster effect.
Enforcing (30) is equivalent to enforcing the dominance relation with respect to
every point of the Pareto frontier.

The asymptotic analysis conducted in Subsection 5.1 also holds here, although
since the solution set is now a 1-dimensional manifold the the problem behaves as
it would have one variable less. Furthermore, the contribution of the cluster effect

is along the 1-dimensional manifold, leading to a cluster of O(ǫ−1 ǫ−
(n−1)−1

2 ) =
O(ǫ−

n
2 ) boxes. This behavior is confirmed by the upper left graphic of Figure 5.

The upper right and lower left graphics in the same figure show that the first order
rejection tests drastically reduce the cluster effect, however since we have to cover
a 1-dimensional manifold of fixed length, we also observe that the number of boxes
still increases by O(ǫ−1).

5.4 Benchmark Problem

We finally consider the following nonlinear problem taken from [7]:

min −18 log(x2 + 1)− 19.2 log(x1 − x2 + 1) + 5y1 + 6y2 + 8y3 + 10x1 − 7x3 + 10
s.t. 0.8 log(x2 + 1) + 0.96 log(x1 − x2 + 1)− 0.8x3 ≥ 0

log(x2 + 1) + 1.2 log(x1 − x2 + 1)− x3 − 2y3 + 2 ≥ 0
x2 − x1 ≤ 0
x2 − 2y1 ≤ 0
−x2 + x1 − 2y2 ≤ 0
y1 + y2 − 1 ≤ 0

(31)
with bound constraints x1, x2 ∈ [0, 2] and x3, y1, y2, y3 ∈ [0, 1]. Note that the vari-
ables yi are integers in [7] but we solve here the version proposed in the Co-
conut [37] benchmarks where this integrality constraint is relaxed. Figure 6 shows
that on this problem, both the full column rank rejection test and the multipliers
domains rejection test allow removing the cluster effect. The left hand side graphic
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Fig. 6 Benchmark problem: Width of the objective enclosure with respect to computation
time (left) and number of splits (right). For each figure, full line, dashed line and dotted line
correspond respectively to no rejection test, full column rank rejection test and multipliers
domain rejection test.

shows that the full column rank rejection test is approximately 1.5 quicker than
the multipliers domain rejection test on this problem, while the right hand side
graphic shows that the both achieve the same performance with respect to the
number of splits.

6 Conclusion

Three rejection tests based on first order multi-objective optimality conditions and
interval arithmetic have been proposed. They allow rejecting boxes not containing
any local minimizer. They generalize previously proposed rejection tests and can be
easily implemented and included in any bisection or branch and bound algorithm.
In the context of mono-objective optimization, although less powerful than fully
solving the first order system of equations, they are much simpler to implement and
our experiments have shown that they allow drastically deceasing the cluster effect.
On the other hand, the proposed rejection tests can be used to preprocess and
then solve the first order optimality conditions. In the context of multi-objective
optimization, the first order system of equations is under-constrained and hence
cannot be solved as efficiently as for mono-objective problems. Therefore, these
rejection tests are even more important in the context of multi-objective problems,
which also suffer of the cluster effect as illustrated in Subsection 5.3.
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