
Constraint propagation on quadratic
constraints

Ferenc Domes, Arnold Neumaier
Faculty of Mathematics, University of Vienna
Nordbergstrasse 15, A-1090 Vienna, Austria

April 5, 2010

Abstract. This paper considers constraint propagation methods for continuous constraint
satisfaction problems consisting of linear and quadratic constraints. All methods can be
applied after suitable preprocessing to arbitrary algebraic constraints.

The basic new techniques consist in eliminating bilinear entries from a quadratic con-
straint, and solving the resulting separable quadratic constraints by means of a sequence of
univariate quadratic problems. Care is taken to ensure that all methods correctly account
for rounding errors in the computations.

Various tests and examples illustrate the advantage of the presented method.
Keywords. Constraint propagation, constraint programming, continuous constraints,

quadratic constraint satisfaction problems, rounding error control, verified computation,
quadratic programming, constrained optimization.

1 Introduction

Context. This paper contributes some new solution techniques for continuous constraint
satisfaction problems. A constraint satisfaction problem is the task of finding one or all
points satisfying a given family of equations and/or inequalities, called constraints. Many
real word problems are continuous constraint satisfaction problems, often high dimensional
ones. Typical applications include robotics Grandon et al. [19], Merlet [36], localization
and map building Jaulin [28], Jaulin et al. [29], biomedicine Cruz & Barahona [13], or
the protein folding problem Krippahl & Barahona [32].

Solving constrained global optimization problems is typically reduced to solving a se-
quence of constraint satisfaction problems, each obtained by adding a constraint f(x) ≤ fbest

to the original constraints, where f is the objective function and fbest the function value of
the best feasible point found. Thus all techniques for solving constraint satisfaction problems
have immediate impact on global optimization (see Neumaier [39]).

Constraint satisfaction problems are solved in practice by a combination of a variety
of techniques, almost always involving as key components constraint propagation combined
with either some form of stochastic search or a branch and prune scheme for a complete
search. These techniques are often complemented by filtering or reduction techniques based
on techniques borrowed from optimization, such as convex relaxations Lebbah et al. [34].
For filtering, relaxation, branching and other techniques also see Jaulin [27], Sahinidis &
Tawarmalani [41], [34].

Filtering techniques that tighten a box – the Cartesian product of intervals defined by the
bounds on the variables – are called constraint propagation if they are based on a sequence
of steps, each using a single constraint only. Forward propagation uses the bound constraints
to improve the bounds on the general constraints; backward propagation uses the bounds on
the general constraints to improve the bounds on the variables. In order to avoid a loss of
feasible points, constraint propagation methods are usually implemented with rigorous error

1

control, taking care that all reductions are valid even though the calculations are done with
floating-point arithmetic only.

In practice, constraint propagation repeats the reduction of a box by means of a suitably
chosen constraint, navigating through the network of constraints connected by the variables,
until no further significant reduction takes place. In particular, if the initial search box is
unbounded but the feasible domain is bounded, constraint propagation methods may be able
to find finite bounds on all variables. Since many methods require finite box constraints,
this makes constraint propagation a valuable preprocessing tool.

In a stochastic search procedure, constraint propagation on the initial box may result in
a much smaller search domain. In a branch and prune procedure, where a tree of subboxes
is generated, constraint propagation may result in a quick elimination of subboxes, or a
significant reduction before more complex reduction techniques are applied. This shows that
constraint propagation has a wide range of applicability, and is a very useful optimization
technique.

Prior work. A number of software packages for solving constraint satisfaction prob-
lems make extensive use of constraint propagation. The Numerica software Hentenryck
[23], Hentenryck et al. [25] uses branch and prune methods and interval constraint pro-
gramming to solve constraint satisfaction problems. The ICOS solver by Lebbah [33] is a
software package for solving nonlinear and continuous constraints, based on constraint pro-
gramming and interval analysis techniques. Realpaver by Granvilliers & Benhamou
[20] combines interval methods, with constraint satisfaction techniques to solve systems
given by sets of equations or inequality constraints over integer and real variables. Ceberio
& Granvilliers [10] solves nonlinear systems by using interval extension and constraint
inversion.

The price winning solver Baron by Sahinidis & Tawarmalani [42] also uses constraint
propagation techniques. Initiated by the development of interval analysis on DAGs (Directed
Acyclic Graphs) by Schichl & Neumaier [45], advanced constraint propagation techniques
for solving numerical constraint satisfaction problems have been given in Vu et al. [47, 48],
which is an efficient implementation of basic constraint propagation algorithms for individ-
ual operations. It is included in the global optimization software platform COCONUT
Environment [43, 44].

Historically, constraint propagation was pioneered in constraint logic, first for discrete
constraints by Cleary [12], later for continuous constraints (Older & Vellino [40], see
also [3, 7, 8, 11, 14, 21, 23–26, 31]), but has also forerunners in presolve techniques in mathe-
matical programming (Anderson & Anderson [1], Lodwick [35]). They can be modeled
by narrowing Benhamou [4] or chaotic iterations Apt [2], i.e., sequences of application of
contracting and monotonic functions on domains. The level of work involved and quality
obtained in constraint propagation methods may be characterized by local consistency no-
tions; see Benhamou et al. [5, 6], Jermann et al. [30]. An in-depth treatment of continuous
constraint propagation from the point of view of constraint programming can be found in
the COCONUT report (Bliek et al. [9]). The global optimization survey of Neumaier
[39] also discusses continuous constraint propagation without the need to decompose the
constraints into single operations.

Contents. In this paper, we consider constraint propagation methods for continuous
constraint satisfaction problems consisting of linear and quadratic constraints. Care is taken
to ensure that all methods correctly account for rounding errors in the computations. We only
present techniques for improving the inferences from single constraints. These techniques

2

can be easily combined with our new constraint propagation method. In general constraint
propagation on single constraints only is not efficient enough for solving constraint satis-
faction problems. As is well known (see, e.g., [34]), future significant improvements can be
obtained by using the information from several constraints simultaneously. This can be done
in various ways, e.g., by using linear relaxations ([33]), probing ([46]) or other, new methods
in our GloptLab environment ([16]) where all constraint propagation methods introduced
in this paper are implemented, too.

All our methods can be applied after suitable preprocessing to arbitrary algebraic con-
straints. We can always transform a polynomial constraint to a collection of quadratic
constraints by introducing explicit intermediate variables. The same holds for constraints
involving roots, provided that we also add nonnegativity constraints to the intermediate vari-
ables representing the roots. Rewriting an algebraic constraint satisfaction problem as an
equivalent problem with linear and quadratic constraints increases the number of variables
and can result in loss of structural information which is used by some constraint propagation
techniques but makes possible to apply the methods discussed in this paper. Of course, all
techniques can be applied to the subset of quadratic (or algebraic) constraints in an arbi-
trary constraint satisfaction problem. However, in practice care should be taken that the
dimension of the transformed problem does not exceed the reasonable maximum.

We represent simple bounds as box constraint x ∈ x. A box (or interval vector) is a
Cartesian product

x = [x, x] := (x1, . . . ,xn)T

of (bounded or unbounded) closed, real intervals xi := [xi, xi]. Thus the condition x ∈ x is
equivalent to the collection of simple bounds

xi ≤ xi ≤ xi (i = 1, . . . , n),

or, with inequalities on vectors and matrices interpreted component-wise, to the two-sided
vector inequality x ≤ x ≤ x. Apart from two-sided constraints, this includes with xi = [a, a]
variables xi fixed at a particular value xi = a, with xi = [a,∞] lower bounds xi ≥ a, with
xi = [−∞, a] upper bounds xi ≤ a, and with xi = [−∞,∞] free variables. A bound is
large, if its absolute value is larger than a configurable constant (whose default value is 106).
Decisions are based on ’if a bound is large’ rather than on ’if a bound is infinite’.

In Section 2 we derive rigorous bounds for univariate quadratic expressions, relevant for
forward propagation, while in Section 3 we find bounds on the arguments in a constraint,
relevant for backward propagation. The propagation of separable quadratic constraints (con-
taining no bilinear entries) is discussed in Section 4, and in Section 5, we give an effective
method to bound and eliminate bilinear entries from a constraint. This allows the reduc-
tion of the nonseparable constraints to separable ones, leading in Section 6 to a constraint
propagation method for quadratic constraint satisfaction problems.

2 Bounds for univariate quadratic expressions

For use in forward propagation, we derive rigorous bounds for univariate quadratic expres-
sions. We analyze the possible extrema of the expression inside a given interval, and derive
the general solution of the problem.

Example. 2.1 Let f(x) denote an univariate quadratic expression, with

f(x) = x2 − 2x, x ∈ [−7, 5] := x. (1)

3

We look for the best interval f such that for all x ∈ x, f(x) ∈ f holds: we find that the
minimum of f is attained at x = 1 which is inside of the interval x. The maximum of f
must be attained at the boundary of x. We have f(1) = −1 and the function values on the
boundary of x are 63 and 15. Therefore, we find that f = [−1, 63].

In general, we want to find a rigorous upper bound on

u = sup {ax2 + bx | x ∈ x}.

We note that u = max {x(ax+ b), x(ax+ b)}, except in case that ax2 + bx attains its global
maximum in the interior of x. This is the case iff a < 0 and t = −b/(2a) is in the interior of
x, in which case u = b2/(−4a) is attained at t.

If x ≥ 0, we get a rigorous upper bound in finite precision arithmetic by computing with
upward rounding as follows (xl = x, xu = x):

Algorithm: 2.2 (Rigorous upper bound for a univariate quadratic expression)
roundup;

if a == 0,

u=max(xl*b,xu*b);

else

u=max(xl*(a*xl+b),xu*(a*xu+b));

s=b/2; t=s/(-a);

if t>xl,

r=(-2*a)*xu;

if r>b, u=max(u,s*t); end;

end;

end;

With some extra analysis, it could be determined in most cases which of the three cases
is the worst case; however, if the unconstrained maximum of the quadratic is very close to
a bound (or to both bounds), two (or three) of the cases might apply due to uncertainty
caused by rounding errors.

Finding a rigorous enclosure for the interval

c = {sup{ax2 + bx | x ∈ x} | a ∈ a, b ∈ b}

can be reduced to the above for x ≥ 0, using

c = sup {ax2 + bx | x ∈ x}, c = − sup {−ax2 − bx | x ∈ x}.

The case x ≤ 0 can be reduced to this by changing the sign of x, and the general case by
splitting x at zero if necessary.

Essentially the same analysis holds for rigorous upper bounds on

u = sup
{ n∑

i=1

aix
i
∣∣∣ x ∈ x

}
and for rigorous enclosures of

c = sup
{ n∑

i=1

aix
i
∣∣∣ x ∈ x, a ∈ a

}
,

except that finding the interior extrema is more involved. It can be done with closed formulas
for n ≤ 5 (though already n = 4 is quite cumbersome and not recommended). In general,
for n > 3 we recommend to use a root enclosure algorithm for the derivative, such as that
in Neumaier [38].

4

3 Solving univariate quadratic expressions

If we have bounds on an univariate quadratic expression, we can find the range for the vari-
able, for which the expression satisfies the given bounds. An in depth analysis of quadratic
equations leads to the general solution, relevant for backward propagation.

The present approach, based on directed rounding only, provides an efficient alternative to
the interval arithmetic based procedures discussed by Dimitrova & Markov [15, Section 4]
and later by Hansen & Walster [22] (who only treat the solution of a quadratic equation
with interval coefficients).

Example. 3.1 Let f(x) denote an univariate quadratic expression, with

f(x) = x2 − 2x ∈ [−1, 8]. (2)

We look for the best interval x such that for all x ∈ x, (2) holds. The inequality

x2 − 2x+ 1 = (x− 1)2 ≥ 0,

arising from the lower bound, always holds, while the inequality

x2 − 2x− 8 ≤ 0,

arises from the upper bound. Therefore we find that x = [−2, 4]. We note that, while x is
by definition always an interval, sometimes the set of all x satisfying the constraint may be
strictly smaller, containing an interior gap.

In general, we want to find the set

X = {x ≥ 0 | ax2 + 2bx ≥ c},

and we proceed as follows. If a = 0, the constraint is in fact linear, and we have

X =


∅ if b ≤ 0, c > 0,
[0, 0.5c/b] if b < 0, c ≤ 0,
[0.5c/b,∞] if b > 0, c ≥ 0,
[0,∞] if b ≥ 0, c ≤ 0,

which can be nested such that only two comparisons are needed in any particular case. For a
rigorous enclosure in finite precision arithmetic, rounding must be downwards in the second
case, and upwards in the third case.

If a 6= 0, the behavior is governed by the zeros of the quadratic equation ax2+2bx−c = 0,
given by

t1 =
−b−

√
∆

a
=

c

b−
√

∆
, t2 =

−b+
√

∆

a
=

c

b+
√

∆
,

where ∆ := b2 + ac. If ∆ ≥ 0, the zeros are real, and the nonnegative zeros determine

X =

{
[0,∞] \]t1, t2[if a > 0,
[0,∞] ∩ [t2, t1] if a < 0.

5

Depending on the signs of a, b and c we find

X =



∅ if a < 0, b ≤ 0, c > 0, (case 1)
[z/a,∞] if a > 0, b ≤ 0, c > 0, (case 2)
[0,−(c/z)] if a < 0, b ≤ 0, c ≤ 0, (case 3)
[0,−(c/z)][∪ [z/a,∞] if a > 0, b ≤ 0, c ≤ 0, (case 4)
[− ((−c)/z), z/(−a)] if a < 0, b ≥ 0, c > 0, (case 5)
[− ((−c)/z),∞] if a > 0, b ≥ 0, c > 0, (case 6)
[0, z/(−a)] if a < 0, b ≥ 0, c ≤ 0, (case 7)
[0,∞] if a > 0, b ≥ 0, c ≤ 0, (case 8)

where
z = |b|+

√
∆.

These formulas are numerically stable, and can be nested such that only three comparisons
are needed in any particular case. (There are avoidable overflow problems for huge |b|, which
can be cured by using for huge |b| instead of

√
b2 + ac the formula |b|

√
1 + ac/b2.)

Rigorous results in the presence of rounding errors are obtained if lower bounds are
rounded downwards, and upper bounds are rounded upwards. With the bracketing as given,
this happens if all computations (including those of ∆ =

√
b2 + ac and z = |b| +

√
∆) are

done with rounding upwards if b ≥ 0, and with rounding downwards if b ≤ 0. (However, this
does not hold for the version guarded against overflow, where further care is needed for the
directed rounding of

√
∆ = |b|

√
1 + ac/b2.)

If (the exact) ∆ is negative, there is no real solution, and X is empty if c > 0 and [0,∞]
otherwise. The case when the sign of ∆ cannot be determined due to rounding errors needs
special consideration. In the first and last case, the conclusion holds independent of the sign
of ∆, so that the latter need only be computed for cases 2–7 in the definition of X. In the
cases 2, 3, 6, and 7 we have ac ≥ 0, so that ∆ ≥ 0 automatically. This leaves cases 4 and 5.
Now it is easily checked that with the recommended rounding and, in place of cases 4 and 5,

X =


[0,−(c/z)] ∪ [z/a,∞] if a > 0, b ≤ 0, c ≤ 0, ∆ ≥ 0,
[0,∞] if a > 0, b ≤ 0, c ≤ 0, ∆ < 0,
∅ if a < 0, b ≥ 0, c > 0, ∆ < 0,
[− ((−c)/z), z/(−a)] if a < 0, b ≥ 0, c > 0, ∆ ≥ 0,

(3)

a rigorous enclosure is computed in all cases. Finding the set

X ′ = {x ≥ 0 | ax2 + 2bx ∈ c for any a ∈ a, b ∈ b}

can be reduced to the previous task since

X ′ = {x ≥ 0 | ax2 + 2bx ≤ c} ∩ {x ≥ 0 | ax2 + 2bx ≥ c}.

The sets
X ′′ = {x ∈ x0 | ax2 + 2bx ≥ c}

and
X ′′′ = {x ∈ x0 | ax2 + 2bx ∈ c for some a ∈ a, b ∈ b}

can be obtained by intersecting the result of the above tasks with x0 if x0 ≥ 0, by negating
x, x0, and b if x0 ≤ 0, and by splitting x0 at zero if 0 is in the interior of x0. By modifying

6

the code appropriately, one can also avoid computing roots which can be seen to lie outside
x0.

With minor changes, these formulas also apply for strict inequalities and interior enclo-
sures. Also, it is clear that polynomial inequalities and inclusions of interval polynomials
can be solved by a straightforward adaptation of the above arguments.

We end the section with Matlab code for computing the enclosure

X = [xl, xu] ∪ [x2l, x2u] \ {∞}

according to (3).

Algorithm: 3.2 (Solving an univariate quadratic expression)
xl=0;xu=inf;

x2l=inf;x2u=inf;

if b>=0,

roundup;

if c>0,

% case b>=0, c>0

Delta=b^2+a*c;

if Delta<0,

xl=inf;

elseif a==0 & b==0,

xl=inf;

else

z=b+sqrt(Delta);

xl=-((-c)/z);

if a<0, xu=z/(-a); end;

end

else

% case b>=0, c<=0

if a<0,

Delta=b^2+a*c;

z=b+sqrt(Delta);

xu=z/(-a);

end;

end;

else

rounddn;

if c>0,

% case b<0, c>0

if a>0,

Delta=b^2+a*c;

z=-b+sqrt(Delta);

xl=z/a;

else

xl=inf;

end

else

% case b<0, c<=0

Delta=b^2+a*c;

if Delta>=0,

z=-b+sqrt(Delta);

xu=-(c/z);

if a>0, x2l=z/a; end;

end;

end;

end;

4 Propagating separable quadratic constraints

We now combine the results of the previous two sections.

Example. 4.1 Let f(x) denote an univariate quadratic expression, with

f(x) := x2 − 2x ∈ [−10, 8], x ∈ [−7, 5]. (4)

Example 2.1 produced from the bound on x the new bound f(x) ∈ [−1, 63], hence f(x) ∈
[−1, 8]. Example 3.1 produced from these bounds on f the new bounds x ∈ [−2, 4]. Thus we
end up with the new problem

f(x) := x2 − 2x ∈ [−1, 8], x ∈ [−2, 4]

where the bounds on f and x are tighter than in the original problem (4).

7

This combination of forward and backward propagation for a univariate quadratic expres-
sion can be extended without difficulties to a method of constraint propagation for separable
quadratic constraints in several variables,

n∑
k=1

pk(xk) ≥ c, x ∈ x, (5)

where each term
pk(xk) := akx

2
k + bkxk (6)

depends on a single variable xk and may have uncertain coefficients,

ak ∈ ak, bk ∈ bk.

Example. 4.2 We demonstrate separable quadratic constraint propagation on the constraint

−x2
1 + 2x1 − x2 ≥ −8 with x1 ∈ [−7, 5], x2 ∈ [0,∞]

step by step (see Figure 1):
• We find that for x1 ∈ [−7, 5], x2 ∈ [0,∞], −x2

1 + 2x1 ∈ [−63, 1] and −x2 ∈ [−∞, 0]
holds.
• Therefore, we have −x2

1 + 2x1 − x2 ≤ 1.
• From 0 ≥ −x2, the inequality −x2

1 + 2x1 ≥ −8− 0 = −8 follows.
• Since 1 ≥ −x2

1 + 2x1, the inequality −x2 ≥ −8− 1 = −9 holds.
• Then from −x2

1 + 2x1 ≥ −8, x1 ∈ [−2, 4], and from −x2 ≥ −9, x2 ∈ [−∞, 9] follows.
• Finally, we cut the bounds on the variables with the original bounds, and obtain

−x2
1 + 2x1 − x2 ∈ [−8, 1] with x1 ∈ [−2, 4], x2 ∈ [0, 9].

For xk ∈ xk we denote the enclosure of the quadratic univariate term pk(xk) by

pk(xk) ∈ pk = [pk, pk]. (7)

To find the pk, if 0 ∈ xk, we split xk at zero into a positive part xp
k and a negative part xn

k ,
with xp

k ≥ 0, xn
k ≥ 0, xp

k ∩ −xn
k = {0} and xp

k ∪ −xn
k = xk. If xk ≥ 0 then we set xp

k := xk

and xn
k := ∅, while if xk ≥ 0 then we set xp

k := ∅ and xn
k := −xk. Then we define the bounds

cpk := sup {ax2
k + bxk | xk ∈ xp

k}, cpk := − sup {−ax2
k − bxk | xk ∈ xp

k},
cnk := sup {ax2

k − bxk | xk ∈ xn
k}, cnk := − sup {−ax2

k + bxk | xk ∈ xn
k}.

(8)

Each bound cpk, cpk, cnk , cnk in (8) can be found by applying the results of Section 2 to them
separately. Then the enclosure of pk(xk) is

pk = [min(cpk, c
n
k),max(cpk, c

n
k)] if 0 ∈ xk,

pk = cp
k if xk ≥ 0,

pk = cn
k if xk < 0.

Then we sum the found intervals and obtain

n∑
k=1

pk(xk) ∈ e with e :=
n∑

k=1

pk =
[n∑

k=1

p
k
,

n∑
k=1

pk

]
. (9)

8

Figure 1: Improving the bound constraints in Example 4.2.

We can then use the bounds pk and e to check the consistency of the constraint and obtain
a new bound for it (forward propagation), and to get better box constraints (backward
propagation).

Forward propagation. By (5) and (9), we have

e ≥
n∑

k=1

pk(xk) ≥ c. (10)

Therefore, if (10) does not hold, the constraint is inconsistent. Following this, we pose the
inconsistency condition:

If e− c < 0 then the constraint (5) is inconsistent. (11)

If the constraint is consistent, by (5) and (9) both

n∑
k=1

pk(xk) ≥ c and
n∑

k=1

pk(xk) ≥ e

are satisfied, giving us the combined lower bound

n∑
k=1

pk(xk) ≥ c′ := max(c, e). (12)

Backward propagation. For all i ∈ {1, . . . , n} and all k 6= i, by (7) and (12) we obtain

n∑
k=1, k 6=i

pk + pi(xi) ≥
n∑

k=1, k 6=i

pk(xk) + pi(xi) ≥ c′.

9

Bringing the upper bounds on the pk(xi) to the left hand side and by (6) we get

aix
2
i + bixi ≥ −γi, where γi :=

∑
k 6=i

pk − c′. (13)

The arrangement of the operations is such that upward rounding still gives correct results.
Since the above approximation must be done for each univariate term in the constraint, time
can be saved when n > 2 by avoiding unnecessary work in the summations. The paper
by Dallwig et al. [14] proposes to remove the summations completely, using instead the
identity

γi = e− c′ − pi. (14)

Again, the arrangement of the operations is such that upward rounding still gives correct
results. While fast, this identity must be used with caution: If pi is infinite, γi = c′−∞+∞ is
undefined. And if |pi| is very large, cancellation (together with the always necessary directed
rounding) may lead to unnecessarily pessimistic bounds. Below we give some examples
which demonstrate this behavior. To eliminate these problems, we recommend the use of
the formulas

γi =


γ′ + pmin if pi = pmin =∞,
γ′ + pmin − e if d+ e > 0,
γ′ + pmax − d if d+ e ≤ 0,

(15)

where i, i are distinct indices with pi = pmin, pi = pmax,

γ′ :=
∑
k 6=i,i

pk − c′,

with nonnegative numbers d := pi− pmin and e := pi− pmax. Again, the arrangement of the
operations is such that upward rounding still gives correct results.

Remark. 4.3 Alternatively we could rewrite (6) as

pk(xk) = ak(xk + bk/2ak)2 − b2k/4ak

and use interval arithmetic to enclose ranges (forward propagation) and bounds on x (back-
ward propagation) by using this form. However this would only work if 0 /∈ ak and even in
this case it yields non-optimal bounds if ak is a proper interval and bk is not zero.

Example. 4.4 We denote the sum γi from (13) as γ′i, the sum from (14) as γ′′i and the
sum from (15) as γ′′′i . We give three examples, one for each of the above three possibilities
and put c′ = 0. For simplicity, we perform all calculations with 16 digit decimal arithmetic,
doing the sums from left to right.

Case 1: For p = (1, 1,∞), we get

γ′3 = 1 + 1 = 2,
γ′′3 = (1 + 1 +∞)−∞ = NaN,
γ′′′3 = 1 + 1 = 2.

Case 2: For p = (8 · 10−8, 9 · 10−8, 109), we get

γ′3 = 8 · 10−8 + 9 · 10−8 = 1.7 · 10−7,
γ′′3 = (8 · 10−8 + 9 · 10−8 + 109)− 109 = 0,
γ′′′3 = 9 · 10−8 + 8 · 10−8 − (109 − 109) = 1.7 · 10−7.

10

Case 3: For p = (−109, 8 · 10−8, 9 · 10−8, 109), we get

γ′3 = −109 + 8 · 10−8 + 109 = 10−6,
γ′′3 = (−109 + 8 · 10−8 + 9 · 10−8 + 109)− 9 · 10−8 = −9 · 10−8,
γ′′′3 = (8 · 10−8 + 9 · 10−8) + 109 − (9 · 10−8 + 109) = 0.

In the two first cases our formula (15) reproduces (13), while the formula (14) fails in the first
case, and suffers from severe cancellation in the second case. In the third case all formulas
suffer from cancellation.

Since (13) is a univariate, quadratic expression, the results of Section 3 can be applied.
This may result in an improved bound x′i on the variable xi. If we cut it with the original
bound on xi we obtain xi ∈ x′i ∩ xi. Since we approximate all univariate expression pi(xi),
i ∈ {1, . . . , n}, we obtain the new bound constraints

x ∈ x′ ∩ x.

In general, separable quadratic constraints can be written as

n∑
k=1

pk(xk) ∈ c, (16)

since they have both a lower bound c and an upper bound c. The inequalities

n∑
k=1

pk(xk) ≥ c and
n∑

k=1

−pk(xk) ≥ −c,

represent (16), and for them all the results of this section can be applied.

5 Nonseparable quadratic constraints

In this section we discuss a method for removing a bilinear term from nonseparable quadratic
constraints. This is important since by removing all bilinear terms in turn, the problem is
transformed to a separable one, to which the results of the previous sections can be applied.

Example. 5.1 (i) For some positive constant k, we consider the quadratic constraint

f(x) := kx2
1 + kx2

2 + kx2
3 + 2x1x2 + 2x1x3 + 2x2x3 ≤ 1. (17)

This constraint defines a bounded ellipsoid when k > 1, while for k ≤ 1, an unbounded
domain results. Indeed, the Hessian

G = 2

 k 1 1
1 k 1
1 1 k


has the principal sub–determinants G11 = 2k > 0, detG1:2,1:2 = 22(k2 − 1) and detG =
8(k3 − 3k + 2) = 23(k − 1)2(k + 2); hence G is positive definite iff k > 1.

If we rewrite f(x) as

f(x) = (k − 2)(x2
1 + x2

2 + x2
3) + (x1 + x2)

2 + (x1 + x3)
2 + (x2 + x3)

2

11

and drop the (nonnegative) quadratic terms, we find the separable quadratic inequality

(k − 2)(x2
1 + x2

2 + x2
3) ≤ 1. (18)

For k = 3, we find x2
1 + x2

2 + x2
3 ≤ 1, and our separable constraint propagation gives the

bounds xi ∈ [−1, 1] for i = 1, . . . , 3. Similarly, any k > 2 leads to a finite box, which gets
arbitrarily large as k tends to 2. However, for any value of k ≤ 2, (18) is a trivial, non–
informative inequality. On the other hand, we have seen that the original constraint (18)
defines a bounded domain when k > 1. Thus, for k ∈]1, 2], the above method of eliminating
bilinear terms is not able to exploit the full power of (18).

In Domes & Neumaier [17], we describe the ellipsoid hull technique, which always
yields optimal bounds based on more expensive (and much more difficult to rigorously analyze)
linear algebra. For example, when k = 2, we get the finite bounds xi ∈ [−0.86606, 0.86606]
for i = 1, . . . , 3.

(ii) If we add the bound constraints xi = [−1, 5], i = 1, . . . , 3 to the constraint (17) and
set k = 2, we can approximate the bilinear terms xjxk by the interval evaluation of xjxk and
obtain 2xjxk ∈ [−10, 50]. In this case (17) reduces to

2x2
1 + 2x2

2 + 2x2
3 ≤ 31. (19)

Since xk ∈ [−1, 5], we find that x2
k ∈ pk := [0, 25] for all k = 1, . . . , 3. Therefore for all

i = 1, . . . , 3

2x2
i ≤ (31−

∑
k 6=i

p
k
) = 31

holds, yielding the bound xi ≤
√

31/2 ≤ 3.94.
(iii) Suppose we have the same bound constraints as in (ii). We approximate the bilinear

terms by linear and constant ones. Since xi ∈ [−1, 5] for each bilinear term 2xjxk the
inequality

2xj + 2xk − 26 ≤ 2xjxk,

holds. Therefore by (17) we obtain

kx2
1 + kx2

2 + kx2
3 + 4x1 + 4x2 + 4x3 ≤ 79. (20)

Since xk ∈ [−1, 5], we find that 2x2
k + 4xk ∈ pk := [−2, 70] for all k = 1, . . . , 3. Then for all

i = 1, . . . , 3

2x2
i + 4xi ≤ (79−

∑
k 6=i

p
k
) = 83

holds, yielding the bound xi ≤ −1 +
√

85/2 ≤ 5.52.
The example shows that approximating the bilinear entries in different ways can lead to

different results.

We now formalize and extend the methods used in the preceding example. We consider
an arbitrary multivariate quadratic inequality constraint, which we write without loss of
generality in the form ∑

k

(akx
2
k + bkxk) +

∑
j, k

j > k

bjkxjxk ≥ c, x ∈ x, (21)

where the akx
2
k are the quadratic, the bkxk the linear and bjkxjxk the bilinear terms.

12

5.1 Approximation by constants

As in Example 5.1 (ii), we find rigorous bounds for a bilinear term bjkxjxk when xj and xk

are bounded. We evaluate xixj by using the rule for multiplying the intervals xi and xj (see,
e.g., Neumaier [37]) and obtain

bjkxixj ≤
{
bjk min (xixj,xixj,xixj,xixj) if bjk < 0
bjk max (xixj,xixj,xixj,xixj) if bjk ≥ 0.

(22)

Directed rounding when evaluating the right hand side ensures that no feasible points can
be lost during this process.

5.2 Approximation by linear terms

As in Example 5.1 (iii), we approximate each bilinear term bjkxjxk with xj ∈ xj and xk ∈ xk,
by the linear expression

qjk(xjk) := gjkxj + ejkxk + hjk. (23)

If for all x ∈ x the inequality

gjkxj + ejkxk + hjk ≥ bjkxjxk, (24)

holds, by (21) we get∑
k

(akx
2
k + bkxk) +

∑
j, k

j > k

(gjkxj + ejkxk + hjk) ≥
∑

k

(akx
2
k + bkxk) +

∑
j, k

j > k

bjkxjxk ≥ c,

for all x ∈ x. In order to get an optimal qjk(xjk) we set

gjk := bjkzk, ejk := bjkzj

for some zk ∈ xk. By (24) term hjk can be obtained by finding the upper bound of

f(xj, xk) := bjkxjxk − (ejkxk + gjkxj) = (bjkxj − ejk)xk − gjkxj (25)

for xk ∈ xk and xj ∈ xj. There, again the direct interval evaluation of (25) can be used, but
to save computational time we propose:

Proposition. 5.2 Let f(x, y) be monotone in x and y, and suppose that x ∈ x and y ∈ y.
Then

ut{f(x, y) | x ∈ x, y ∈ y} = ut{f(x, y) ∪ f(x, y) ∪ f(x, y) ∪ f(x, y)}

holds.

Proof.

ut{f(x, y) | x ∈ x, y ∈ y} = ut{(ut{f(x, y) | x ∈ x}) | y ∈ y}
= ut{(ut{f(x, y) ∪ f(x, y)}) | y ∈ y} = ut{ut{f(x, y) | y ∈ y} ∪ ut{f(x, y) | y ∈ y}}
= ut{f(x,y) ∪ f(x,y)} = ut{f(x, y) ∪ f(x, y) ∪ f(x, y) ∪ f(x, y)}

(26)

holds. ut

13

In floating point arithmetics, we have to ensure correct upward rounding and therefore
we compute

u1 = ∆f(x, y), u2 = ∆f(x, y), u3 = ∆f(x, y), u4 = ∆f(x, y),
l1 = ∇f(x, y), l2 = ∇f(x, y), l3 = ∇f(x, y), l4 = ∇f(x, y).

and obtain
ut{f(x, y) | x ∈ x, y ∈ y} = [min

i
li, max

i
ui].

Applied to (25), noting that f(x, y) is monotone in both x and y, we find the upper bound

hjk = max
i
ui

with
u1 = ∆bjk((xj − zj)xk − zkxj), u2 = ∆bjk((xj − zj)xk − zkxj),
u3 = ∆bjk((xj − zj)xk − zkxj), u4 = ∆bjk((xj − zj)xk − zkxj).

5.3 Approximation by separable quadratic terms

Alternatively, when a bound for xj or xk is large, but the coefficients aj and ak of the corre-
sponding quadratic terms have negative sign, it is usually better to proceed as in Example
5.1 (i) and relax the bilinear entries by quadratic ones. Note that when the constraint in
that example is rewritten in the form (21), the coefficients of the quadratic terms become
negative. This is a necessary condition for the constraint to lead to a bounded feasible set.

To ensure good scaling behavior, we want to bound bjkxjxk by a multiple of ajx
2
j + akx

2
k:

Proposition. 5.3 Suppose that ak < 0 and aj < 0, and put

vjk := sign(bjk)

√
ak

aj

, djk :=
bjk

2vjk

.

Then

bjkxjxk ≤ djkx
2
j +

bjkvjk

2
x2

k. (27)

Proof. Since bjk and vjk have the same sign, djk =
bjk

2vjk
≥ 0 holds, and thus djk(xj−vjkxk)2 ≥

0 follows. In addition to this,

djk(xj − vjkxk)2 = djkx
2
j + djkv

2
jkx

2
k − 2djkvjkxjxk = djkx

2
j +

bjkvjk

2
x2

k − bjkvjkxjxk

and the inequality (27) follows from

0 ≤ djk(xj − vjkxk)2 =
bjk

2vjk

aj

aj

x2
j +

bjk
2vjk

ak

aj

x2
k − bjkxjxk =

djk

aj

(ajx
2
j + akx

2
k)− bjkxjxk = djkx

2
j +

bjkvjk

2
x2

k − bjkxjxk.

ut

14

5.4 Combining the approximation methods

Since (22) tends to give better bounds on xjxk than (23) or (27) if the boxes xj and xk are
not too wide, but infinite ones if the width of one of the boxes is infinite we combine the
different methods and proceed as follows for each bilinear term with nonzero coefficients bjk:
First, we factor the quadratic, bilinear and linear terms which depend on the variables xj

and xk from (21) and obtain

c(x) + akx
2
k + ajx

2
j + bjkxjxk + bkxk + bjxj ≥ c, (28)

The entries which do not depend on xj or xk are collected in

c(x) :=
∑

i
i 6= k, i 6= j

(aix
2
i + bixi) +

∑
m, i

m > i
(mi) 6= (jk)

bmixmxi.

Then we handle the following cases:

1. If one of the bounds xj, xj, xk, xk is large and both ak and aj are negative, we
quadratically approximate the bilinear term bjkxjxk as described in Subsection 5.3.
By the inequality (27) we obtain the relaxation

c(x) + (ak + djk)x2
k +

(
aj +

bjkvjk

2

)
x2

j + bkxk + bjxj ≥ c, (29)

showing that the bilinear term bjkxjxk has been eliminated from (28). We have sepa-
rated the variables xj and xk in (28), ending up in

c(x) + a′kx
2
k + a′jx

2
j + bkxk + bjxj ≥ c, (30)

with the new quadratic coefficients

a′k := ak + djk, a
′
j := aj +

bjkvjk

2
. (31)

The linear and constant coefficients remain unchanged. If we have uncertainties in the
coefficients; ak ∈ ak and bjk ∈ bjk then (31) is changes to

a′k ∈ a′k, a′j ∈ a′j,

with

a′k = ak + djk, a′j = aj + sup
bjkvjk

2
, vjk = sign(bjk)

√
ak

aj

, djk =
bjk

2vjk

.

2. If we have no large bounds on the variables xj and xk, the expression

p(x) := akx
2
k + ajx

2
j + bjkxjxk + bkxk + bjxj

can be bounded from above by a convex function only if it has a finite global maximum.
This requires that the Hessian

H =

(
2ak bjk
bjk 2aj

)
is negative semidefinite. If bjk 6= 0 this implies that ak and aj are negative. Therefore,
the constraint propagation on this constraint is useful only in this case.

15

3. If all bounds xj, xj, xk, xk are not large we approximate the bilinear term bjkxjxk by
applying the results of Subsection 5.1. In addition to this, if we assume that we have
uncertainties in the coefficient bjk ∈ bjk, we can add the supremum of bjkxjxk to the
right hand side of the inequality (28) obtaining

c(x) + akx
2
k + ajx

2
j + bkxk + bjxj ≥ c′, (32)

where

c′ := c+

{
bjk max{xjxk, xjxk, xjxk, xjxk} if bjk ≥ −bjk
−bjk max{(−xj)xk, (−xj)xk, (−xj)xk, (−xj)xk} if bjk < −bjk.

Thus we have separated the variables xj and xk in (28). The quadratic and linear
coefficients remain unchanged. Note that the signs in the above expression are intended
to save rounding mode switches.

4. If the bounds xj, xj, xk, xk are not large, for special applications (e.g. for computing
linear relaxations as in Domes & Neumaier [18]), it can be suitable to approximate
the bilinear terms by linear expressions. We apply the results of Subsection 5.2; we
choose a z ∈ x (e.g., z = (x + x)/2 is a good choice) and approximate each bjkxjxk

with xj ∈ xj and xk ∈ xk by

bjkzj + bjkzk + d ≥ bjkxjxk, d := max
i
ui

where
u1 = ∆bjk((xj − zj)xk − zkxj), u2 = ∆bjk((xj − zj)xk − zkxj),
u3 = ∆bjk((xj − zj)xk − zkxj), u4 = ∆bjk((xj − zj)xk − zkxj).

(33)

Then by (28) we have

c(x) + akx
2
k + ajx

2
j + (bjkzj + bk)xk + (bjkzk + bj)xj + d

≥ c(x) + akx
2
k + ajx

2
j + bjkxjxk + bkxk + bjxj ≥ c.

Therefore we successfully separated the the variables xj and xk in (28) and obtain

c(x) + akx
2
k + ajx

2
j + b′kxk + b′jxj ≥ c′ (34)

with the new linear and constant coefficients

b′k := bjkzj + bk, b
′
j := bjkzk + bj, c

′ := c−max
i
ui. (35)

The quadratic coefficients remain unchanged. If we have the uncertainties bjk ∈ bjk

and bk ∈ bk in the coefficients, (35) changes to

b′k ∈ b′k, b′j ∈ b′j, c′ = c−max
i
ui,

with

b′k = bjkzj + bk, b′j = bjkzk + bj,
u1 = sup(bjk((xj − zj)xk − zkxj)), u2 = sup(bjk((xj − zj)xk − zkxj)),
u3 = sup(bjk((xj − zj)xk − zkxj)), u4 = sup(bjk((xj − zj)xk − zkxj)).

Applying the above on (28) for all indexes j ∈ {1, . . . , n} and k ∈ {1, . . . , n} with j < k, we
obtain the new separable system∑

k

a′kx
2
k + b′kxk ≥ c′, x ∈ x. (36)

All above bounds should be computed with upward rounding.

16

6 Constraint propagation in GloptLab

This section discusses how the new techniques presented above are implemented in the
GloptLab environment to solve algebraic constraint satisfaction problems. The problems
treated in GloptLab consist (after preliminary transformations) of simple bounds, linear
constraint, and quadratic constraints. We represent simple bounds as box constraint x ∈ x.
The linear and quadratic constraints are represented in a sparse matrix notation. The linear,
quadratic, and bilinear monomials occurring in at least one of the constraint (but not the
constant term) are collected into an nq-dimensional column vector q(x). There we choose

q(x) = (x1, . . . , xn, x
2
1, . . . , x1xn, . . . xnx1, . . . , x

2
n)T

The coefficients of the ith constraint in the resulting monomial basis are collected in the
ith row of a (generally sparse) matrix A, and any constant term (if present) is moved to
the right hand side. Thus the linear and quadratic constraints take the form Ai:q(x) ∈ Fi

(i = 1 . . .m), where Fi is a closed interval, and Aj: denotes the jth row of A.
As in the case of simple bounds, this includes equality constraints and one-sided con-

straints by choosing for the corresponding Fi degenerate or unbounded intervals. In compact
vector notation, the constraints take the form Aq(x) ∈ F.

While traditionally the coefficients in a constraint are taken to be exactly known, we allow
them to vary in (narrow) intervals, to be able to rigorously account for uncertainties due to
measurements of limited accuracy, conversion errors from an original representation to our
normal form, and rounding errors when creating new constraints by relaxation techniques.
Thus the coefficient matrix A is allowed to vary arbitrarily within some interval matrix A.
The m×nq interval matrix A with closed and bounded interval components Aik = [Aik, Aik],
is interpreted as the set of all A ∈ Rm×n such that A ≤ A ≤ A, where A and A are the
matrices containing the lower and upper bounds of the components of A.

We therefore pose the general quadratic constraint satisfaction problem in the form

Aq(x) ∈ F, x ∈ x, A ∈ A. (37)

We now summarize the constraint propagation method for the quadratic constraint satisfac-
tion problem (37).

Problem simplification. First we simplify the problem; we remove the constraints
of the form bxj ∈ Fi and modify the corresponding bounds on the variable xj. We also
remove the variables which are fixed from the constraints, and the entries corresponding to
the removed variables from the vector q(x). The dimensions of the coefficient matrix A and
the box x may change in this step.

Resolving the two-sided constraints. We resolve the two-sided constraints of (37)
into inequalities. We define

An :=

(
−AI,:

AJ,:

)
, Ap :=

(
AI,:

−AJ,:

)
, c :=

(
F I

−F J

)
,

where
I := {i ∈ 1, . . . ,m | F i > −∞} and J := {i ∈ 1, . . . ,m | F i <∞}.

The system of quadratic inequalities

Aq(x) ≥ c, x ∈ x, A ∈ A := [−An, Ap], (38)

17

is another representation of the quadratic constraint satisfaction problem (37). The matrix
A is m × nq dimensional, where m := nI + nJ depends on the length nI of the index set I
and on the length nJ of the index set J .

Separating the constraints. We transform the quadratic constraint satisfaction prob-
lem into a separable one. The ith row of (38) matches the form of∑

k

(akx
2
k + bkxk) +

∑
j, k

j > k

bjkxjxk ≥ c, x ∈ x,

of (21), with
ak := Ai,kn+k, bk ∈ Ai,k, bjk ∈ Ai,jn+k and c := ci. (39)

Here we used the upper bounds for the quadratic terms since the sign of x2
k is known. Then

we use the results of Section 5 to remove all bilinear entries from each constraint, obtaining
the new coefficients

a′k ∈ a′k, b′k ∈ bk, bjk = 0 and c = c′i. (40)

Depending on the removal method we have applied either the quadratic coefficients or the
bound c′ or both of them have been changed, ending up in a new system

A′q(x) ≥ c′, x ∈ x, A′ ∈ A′ := [−A′n, A′p] (41)

In (41) all bilinear coefficients are zero, therefore from this point on, the system is separable.

Forward and backward propagation. Since the ith row of (41) matches the form

n∑
k=1

(akx
2
k + bkxk) ≥ c, x ∈ x, ak ∈ ak, bk ∈ bk

of (5), we can apply the forward and the backward propagation steps from Section 4.
We compute the enclosure pk of each univariate quadratic term pk(xk) := akx

2
k + bkxk by

using the theory developed in Section 2, where the uncertainties ak and bk of the constraint
coefficients are also taken into account.

Then we use the pk to verify that the constraint is feasible, to get a new bound on each
pk(xk) and to find a new lower bound for the constraint.

If the constraint has not yet been detected as infeasible, we can apply the backward
propagation step (by using the theory from Section 3), which may yield tighter bounds on
the variables.

7 Tests and Comparison

In this section we compare our quadratic constraint propagation method (QCP) with ele-
mentary constraint propagation (ECP).

The forward propagation step of the elementary constraint propagation finds the range
of each expression in the constraints individually, then for all expressions in a constraint uses
the ranges of all other expressions to get new bounds on them. The backward propagation
step uses the inverse of the expressions to get new bounds on the variables.

18

Example. 7.1 To demonstrate the elementary constraint propagation and simultaneously
compare it to the method presented in this paper we again solve the problem

−x2
1 + 2x1 − x2 ≥ −8 with x1 ∈ [−7, 5], x2 ∈ [0,∞].

from Example 4.2 and give the step by step comparison of the two different approaches:

ECP:

• For x1 ∈ [−7, 5], x2 ∈ [0,∞], we have
−x2

1 ∈ [−49, 0], 2x1 ∈ [−14, 10] and −x2 ∈
[−∞, 0].
• Therefore, −x2

1 + 2x1 − x2 ≤ 10.
• From 0 ≥ −x2, 0 ≥ −x2

1 and 10 ≥ 2x1,
the inequalities −x2

1 ≥ −8 − 0 − 10 = −18
and 2x1 ≥ −8− 0− 0 = −8 follows.
• Since 10 ≥ −x2

1 + 2x1, the inequality
−x2 ≥ −8− 10 = −18 holds.
• From −x2

1 ≥ −18, x1 ∈ [−
√

18,
√

18],
from 2x1 ≥ −8, x1 ∈ [−4,∞], and from
−x2 ≥ −18, x2 ∈ [−∞, 18] follows.
• Intersecting the bounds on the vari-
ables with the original bounds, we obtain
−x2

1 + 2x1 − x2 ∈ [−8, 10] with x1 ∈
[−4,
√

18], x2 ∈ [0, 18].

QCP:

• For x1 ∈ [−7, 5], x2 ∈ [0,∞], we have
−x2

1 + 2x1 ∈ [−63, 1] and −x2 ∈ [−∞, 0].

• Therefore, −x2
1 + 2x1 − x2 ≤ 1.

• From 0 ≥ −x2, the inequality
−x2

1 + 2x1 ≥ −8− 0 = −8 follows.

• Since 1 ≥ −x2
1 + 2x1, the inequality

−x2 ≥ −8− 1 = −9 holds.
• From −x2

1 + 2x1 ≥ −8, x1 ∈ [−2, 4], and
from −x2 ≥ −9, x2 ∈ [−∞, 9] follows.

• Intersecting the bounds on the vari-
ables with the original bounds, we
obtain −x2

1 + 2x1 − x2 ∈ [−8, 1] with
x1 ∈ [−2, 4], x2 ∈ [0, 9].

As the example shows for this problem the quadratic constraint propagation presented
in this paper gives significantly tighter bounds than the elementary constraint propagation
used as the pruning step of several state-of-the-art constraint propagation methods (e.g.
[10, 20, 48]) with hardly any extra work. Probing ([46], also called slicing or shaving) would
yield the same results as QCP, but at a much higher cost.

Strategy. 7.2 (Test strategies)
In order to compare our method with the traditional approaches we reimplemented the ele-
mentary constraint propagation in Matlab, integrated in GloptLab [16] and used branch
and prune to solve random problems. GloptLab executes configurable strategies, for the
comparison we used the following one, with default tuning parameter settings (which are
configurable in GloptLab).

01: Read Problem
02: Begin While
03: Propagate*
04: End While
05: Begin Split
06: Begin While
07: Propagate*
08: End While
09: End Split
11: Finish

Test strategies
name Propagate* method selection
ELEM elementary constraint propagation
SCON quadratic CP with constant bilinear approximation
SLIN quadratic CP with linear bilinear approximation
SQUA quadratic CP with quadratic bilinear approximation
SAUT quadratic CP with automatic bilinear approximation

19

Each strategy from 7.2 first reads the problem then accomplishes a single propagation step
(each of them using different method) until the gain is less than 20% of the original box or
until the number of iterations exceeds 20. Then the branching process follows; the box is split
at the midpoint of a selected component then the same sequence of constraint propagation is
applied to subboxes as before. Infeasible boxes are discarded, feasible boxes are split again if
their maximum width is more than 0.001. Boxes of maximum width smaller than 0.001 are
not split but saved for the final output.

In the first test we use the strategies from 7.2 to test three test sets of 50 random,
infeasible problems. The problems are 2 dimensional in the first, 5 dimensional in the
second, and 10 dimensional in the third test set. Each problem in the test consists of a
single conic inequality constraint with random coefficients and random bound constraints
x ∈ x, choosen such that xi ⊆ [−1, 1] and the problem is infeasible (infeasibility was verified
by using a more complicated strategy; Strategy 5.2 from Domes [16], Section 5.2). The
table below shows the median of the solution times (in seconds) and the median of the splits
required to solve the problems contained in each test set.

Branch and prune test results.
dimension n = 2 n = 5 n = 10

method time splits time splits time splits

ELEM 0.003 0 0.255 3.00 22.58 47.5
SCON 0.001 0 0.033 1.75 0.722 47.3
SLIN 0.003 0 0.039 1.50 0.984 55.0
SQUA 0.001 0 0.045 2.00 1.500 95.5
SAUT 0.002 0 0.035 1.75 0.813 47.3

As the results show, verifying in higher dimensions that the search space does not con-
tain points of single conic inequality constraint consisting of bilinear terms using constraint
propagation is a non-trivial task. The reason is that the approximation error of the bilinear
terms (and in case of the elementary constraint propagation also the approximation of the
separable quadratic expressions) makes the CP incapable to discard the regions of the search
space which are close to region defined by the constraint. Only a division of the search space
into several subboxes leads to a solution.

The elementary constraint propagation is slower than the quadratic constraint propaga-
tion, due to the need of more rounding mode switches in the interval arithmetic and the
greater approximation error (see Example 7.1). Since the width of the bound constraint box
is small, the constant approximation performs better than the linear or the quadratic ones.
The automatic method is only slightly slower than the constant approximation, but has the
advantage that it is also performs good when the bound constraints are large.

The following tests show how the constraint propagation method presented in this paper
scales favorably with the complexity of the constraints. The test problems are 9 dimensional,
having linear equality constraints (depending on the variables xi, xi+1 and xi+2, i = 1, . . . , 7)
but the fifth constraint also has some quadratic and bilinear terms in 3 (Test 1), in 4 (Test
2), in 5 (Test 3), or in 6 variables (Test 4). In Test 1-4 the fifth constraint is convex,
while in Test 1’-4’ non-convex. We have chosen 20 random bound constraints x ∈ x such
that xi ∈ [−b, 0] and xi = xi + 2b for i = 1, . . . n, and listed the different bs in the bound

column of the tables. We added the random bounds to the test problems, and solved them
using the ELEM and the SAUT strategy. The median of the solution times (in seconds) are
shown in the following tables:

20

Median of the solution times for convex (Test 1-4) and non-convex
(Test 1’−4’) problems. Problems in each test run: 20, strategy: ELEM.

bound Test 1 Test 1’ Test 2 Test 2’ Test 3 Test 3’ Test 4 Test 4’

1 0.082 0.055 0.094 0.081 0.257 0.171 0.170 0.348
10 1.391 1.031 1.823 1.605 2.772 2.589 4.229 4.597
100 1.416 1.008 1.969 1.894 2.624 2.862 4.688 4.414
1000 1.883 1.481 2.098 2.085 3.217 3.245 5.496 4.749

Median of the solution times for convex (Test 1-4) and non-convex
(Test 1’−4’) problems. Problems in each test run: 20, strategy: SAUT.

bound Test 1 Test 1’ Test 2 Test 2’ Test 3 Test 3’ Test 4 Test 4’

1 0.017 0.028 0.027 0.021 0.025 0.021 0.023 0.040
10 0.244 0.282 0.293 0.256 0.325 0.319 0.339 0.404
100 0.256 0.289 0.286 0.298 0.294 0.335 0.338 0.360
1000 0.406 0.348 0.696 0.390 0.694 0.339 0.919 0.677

Note that the convex problems without additional bound constraints can be solved in
less then 0.12 seconds by adding the ellipsoid hull enclosure method presented in Domes &
Neumaier [17] to the above strategy.

Remark. 7.3 Testing and comparing the above methods with other constraint propagation
methods on standard benchmarks only makes sense when the method is integrated in the same
strategy (combined with branch and bound, shaving, relaxations etc.). Constraint propagation
alone is not powerful enough to solve the most real life problems and the type and quality
of the auxiliary methods does count a lot if we would like to compare our method with the
constraint propagation methods implemented in other solvers like ICOS or Realpaver.
An implementation of the above methods in other programming languages (e.g., in C++,
which is significantly faster than Matlab) or using other representations of the problem
(e.g. using DAGs) should yield a significant reduction of the solution times. However, we
expect that the relative quality of the different methods will approximately remain the same.
A C++ implementation for the COCONUT Environment is in preparation.

Acknowledgment

This research was supported through the research grant FSP 506/003 of the University of
Vienna. Numerous suggestions by the referees, which markedly improved the presentation
of the paper, are gratefully acknowledged.

References

[1] E.D. Anderson and K.D. Anderson. Presolving in linear programming. Math. Program.,
71:221–245, 1995.

[2] K. R. Apt. The essence of constraint propagation. Theoretical Computer Science, 221
(1):179–210, 1999.

[3] A.B. Babichev, O.B. Kadyrova, T.P. Kashevarova, A.S. Leshchenko, and A.L. Semenov.
UniCalc, a novel approach to solving systems of algebraic equations. Interval Compu-
tations, 3:29–47, 1993.

21

[4] F. Benhamou. Heterogeneous constraint solving. In Michael Hanus and Mario Rodrguez-
Artalejo, editors, Proceedings of ALP’96, 5th International Conference on Algebraic and
Logic Programming, vol. 1139 of Lecture Notes in Computer Science, pp. 62–76, Aachen,
Germany, 1996. Springer-Verlag.

[5] F. Benhamou, F. Goualard, L. Granvilliers, and J.F. Puget. Revising hull and box
consistency. In International Conference on Logic Programming, pp. 230–244, 1999.
URL citeseer.ist.psu.edu/benhamou99revising.html.

[6] F. Benhamou, L. Granvilliers, and F. Goualard. Interval constraints: Results and
perspectives. In New Trends in Constraints, pp. 1–16, 1999. URL citeseer.ist.psu.

edu/benhamou99interval.html.

[7] F. Benhamou, D. McAllister, and P. Van Hentenryck. CLP(intervals) revisited. In Proc.
International Symposium on Logic Programming, pp. 124–138. MIT Press, 1994.

[8] F. Benhamou and W.J. Older. Applying interval arithmetic to real, integer, and boolean
constraints. J. Logic Program, 32:1–24, 1997.

[9] C. Bliek, P. Spelucci, L.N. Vicente, A. Neumaier, L. Granvilliers, E. Monfro, F. Ben-
hamou, E. Huens, P. Van Hentenryck, D. Sam-Haround, and B. Faltings. Algorithms
for solving nonlinear constrained and optimization problems: the state of the art, 2000.
URL http://www.mat.univie.ac.at/~neum/ms/StArt.pdf.

[10] M. Ceberio and L. Granvilliers. Solving nonlinear systems by constraint inversion and
interval arithmetic. In AISC, pp. 127–141, 2000. URL http://link.springer.de/

link/service/series/0558/bibs/1930/19300127.htm.

[11] H.M. Chen and M.H. van Emden. Adding interval constraints to the Moore–Skelboe
global optimization algorithm. In V. Kreinovich, editor, Extended Abstracts of APIC’95
of the International Workshop on Applications of Interval Computations, pp. 54–57,
1995.

[12] J.G. Cleary. Logical arithmetic. Future Computing Systems, 2:125–149, 1987.

[13] J. Cruz and P. Barahona. Constraint reasoning in deep biomedical models. Journal
of Artificial Intelligence in Medicine, 34:77–88, 2005. URL http://ssdi.di.fct.unl.

pt/~pb/papers/ludi_constraints.pdf.

[14] S. Dallwig, A. Neumaier, and H. Schichl. GLOPT - a program for constrained global
optimization. In I. Bomze, T. Csendes, R. Horst, and P. M. Pardalos, editors, Develop-
ments in Global Optimization, pp. 19–36. Kluwer, Dordrecht, 1997.

[15] N.S. Dimitrova and S.M. Markov. Über die intervall-arithmetische Berechnung des
Wertebereichs einer Funktion mit Anwendungen, Freiburger Intervall-Berichte. Univ.
Freiburg, 81:1–22, 1981.

[16] F. Domes. GloptLab – a configurable framework for the rigorous global solution of
quadratic constraint satisfaction problems. Optimization Methods and Software, 24:
727–747, 2009. URL http://www.mat.univie.ac.at/~dferi/publ/Gloptlab.pdf.

22

citeseer.ist.psu.edu/benhamou99revising.html
citeseer.ist.psu.edu/benhamou99interval.html
citeseer.ist.psu.edu/benhamou99interval.html
http://www.mat.univie.ac.at/~neum/ms/StArt.pdf
http://link.springer.de/link/service/series/0558/bibs/1930/19300127.htm
http://link.springer.de/link/service/series/0558/bibs/1930/19300127.htm
http://ssdi.di.fct.unl.pt/~pb/papers/ludi_constraints.pdf
http://ssdi.di.fct.unl.pt/~pb/papers/ludi_constraints.pdf
http://www.mat.univie.ac.at/~dferi/publ/Gloptlab.pdf

[17] F. Domes and A. Neumaier. Rigorous enclosures of ellipsoids and directed Cholesky
factorizations. submitted, 2009. URL http://www.mat.univie.ac.at/~dferi/publ/

Cholesky.pdf.

[18] F. Domes and A. Neumaier. Rigorous filtering using linear relaxations. in preparation,
2010. URL http://www.mat.univie.ac.at/~dferi/publ/.

[19] C. Grandon, D. Daney, and Y. Papegay. Combining CP and interval methods for solving
the direct kinematic of a parallel robot under uncertainties. IntCP 06 Workshop, 2006.
URL ftp://ftp-sop.inria.fr/coprin/daney/articles/intcp06.pdf.

[20] L. Granvilliers and F. Benhamou. Realpaver: An interval solver using con-
straint satisfaction techniques. ACM Transactions on Mathematical Software, 32:38–
156, 2006. URL http://www.sciences.univ-nantes.fr/info/perso/permanents/

granvil/realpaver/.

[21] G.D. Hager. Solving large systems of nonlinear constraints with application to data
modeling. Interval Computations, 3:169–200, 1993.

[22] E. R. Hansen and G. W. Walster. Sharp bounds on interval polynomial roots. Reliable
Computing, 8:115–122, 2002.

[23] P. Van Hentenryck. A Gentle Introduction to Numerica. Artifical Intelligence, 103:
209–235, 1998.

[24] P. Van Hentenryck, L. Michel, and F. Benhamou. Newton: constraint programming
over non-linear constraints. Sci. Program, 30:83–118, 1997.

[25] P. Van Hentenryck, L. Michel, and Y. Deville. Numerica. A modeling language for global
optimization. MIT Press, 1997.

[26] E. Hyvönen and S. De Pascale. Interval computations on the spreadsheet. In R. B.
Kearfott and V. Kreinovich, editors, Applications of Interval Computations, pp. 169–
209. Kluwer, 1996.

[27] L. Jaulin. Interval constraint propagation with application to bounded-error estimation.
Automatica, 36:1547–1552, 2000. URL https://www.ensieta.fr/e3i2/Jaulin/hull.

pdf.

[28] L. Jaulin. Interval constraints propagation techniques for the simultaneous localization
and map building of an underwater robot, 2006. URL http://www.mat.univie.ac.

at/~neum/glopt/gicolag/talks/jaulin.pdf.

[29] L. Jaulin, M. Kieffer, I. Braems, and E. Walter. Guaranteed nonlinear estimation using
constraint propagation on sets. International Journal of Control, 74:1772–1782, 1999.
URL https://www.ensieta.fr/e3i2/Jaulin/observer.pdf.

[30] C. Jermann, Y. Lebbah, and D. Sam-Haroud. Interval analysis, constraint propagation
and applications. In F. Benhamou, N. Jussien, and B. O’Sullivan, editors, Trends in
Constraint Programming, chapter 4, pp. 223–259. ISTE, 2007.

[31] R. B. Kearfott. Decomposition of arithmetic expressions to improve the behavior of
interval iteration for nonlinear systems. Computing, 47:169–191, 1991.

23

http://www.mat.univie.ac.at/~dferi/publ/Cholesky.pdf
http://www.mat.univie.ac.at/~dferi/publ/Cholesky.pdf
http://www.mat.univie.ac.at/~dferi/publ/
ftp://ftp-sop.inria.fr/coprin/daney/articles/intcp06.pdf
http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver/
http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver/
https://www.ensieta.fr/e3i2/Jaulin/hull.pdf
https://www.ensieta.fr/e3i2/Jaulin/hull.pdf
http://www.mat.univie.ac.at/~neum/glopt/gicolag/talks/jaulin.pdf
http://www.mat.univie.ac.at/~neum/glopt/gicolag/talks/jaulin.pdf
https://www.ensieta.fr/e3i2/Jaulin/observer.pdf

[32] L. Krippahl and P. Barahona. PSICO: Solving protein structures with constraint pro-
gramming and optimization. Constraints, 7:317–331, 2002. URL http://ssdi.di.fct.

unl.pt/~pb/papers/ludi_constraints.pdf.

[33] Y. Lebbah. iCOs – Interval COnstraints Solver, 2003. URL http://ylebbah.

googlepages.com/icos.

[34] Y. Lebbah, C. Michel, and M. Rueher. A rigorous global filtering algorithm for quadratic
constraints. Constraints, 10:47–65, 2005. URL http://ylebbah.googlepages.com/

research.

[35] W. A. Lodwick. Constraint propagation, relational arithmetic in ai systems and math-
ematical programs. Ann. Oper. Res, 21:143–148, 1989.

[36] J-P. Merlet. Solving the forward kinematics of a Gough-type parallel manipulator with
interval analysis. Int. J. of Robotics Research, 23(3):221–235, 2004. URL http://

www-sop.inria.fr/coprin/equipe/merlet/Papers/IJRR2004.pdf.

[37] A. Neumaier. Interval methods for systems of equations, vol. 37 of Encyclopedia of
Mathematics and its Applications. Cambridge Univ. Press, Cambridge, 1990.

[38] A. Neumaier. Enclosing clusters of zeros of polynomials. J. Comput. Appl. Math., 156:
389–401, 2003.

[39] A. Neumaier. Complete search in continuous global optimization and constraint satis-
faction. Acta Numerica, 1004:271–369, 2004.

[40] W. Older and A. Vellino. Constraint arithmetic on real intervals. In F. Benhameou
and A. Colmerauer, editors, Constrained Logic Programming: Selected Research. MIT
Press, 1993.

[41] N. Sahinidis and M. Tawarmalani. Convexification and global optimization in continuous
and mixed–integer nonlinear programming: theory, algorithms, software, and applica-
tions. Kluwer Academic Pub., 2003.

[42] N. V. Sahinidis and M. Tawarmalani. BARON 7.2.5: global optimization of mixed-
integer nonlinear programs, User’s Manual, 2005. URL http://www.gams.com/dd/

docs/solvers/baron.pdf.

[43] H. Schichl. Mathematical modeling and global optimization, habilitation thesis, 2003.
to appear. URL http://www.mat.univie.ac.at/~herman/papers/habil.pdf.

[44] H. Schichl, M. C. Markót, A. Neumaier, O. Shcherbina, E. Monfroy, B. Pajot, Xuan-
Ha Vu, B. Toth, T. Vinko, K. Petras, and C. Keil. The COCONUT Environment,
2000-2010. Software. URL http://www.mat.univie.ac.at/coconut-environment.

[45] H. Schichl and A. Neumaier. Interval Analysis on Directed Acyclic Graphs for Global
Optimization. Journal of Global Optimization, 33(4):541–562, 2005.

[46] M. H. van Emden. Computing functional and relational box consistency by structured
propagation in atomic constraint systems. CoRR, cs.PL/0106008, 2001.

24

http://ssdi.di.fct.unl.pt/~pb/papers/ludi_constraints.pdf
http://ssdi.di.fct.unl.pt/~pb/papers/ludi_constraints.pdf
http://ylebbah.googlepages.com/icos
http://ylebbah.googlepages.com/icos
http://ylebbah.googlepages.com/research
http://ylebbah.googlepages.com/research
http://www-sop.inria.fr/coprin/equipe/merlet/Papers/IJRR2004.pdf
http://www-sop.inria.fr/coprin/equipe/merlet/Papers/IJRR2004.pdf
http://www.gams.com/dd/docs/solvers/baron.pdf
http://www.gams.com/dd/docs/solvers/baron.pdf
http://www.mat.univie.ac.at/~herman/papers/habil.pdf
http://www.mat.univie.ac.at/coconut-environment

[47] Xuan-Ha Vu, H. Schichl, and D. Sam-Haroud. Using directed acyclic graphs to co-
ordinate propagation and search for numerical constraint satisfaction problems. In In
Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI 2004), pp. 72–81, 2004. URL http://www.mat.univie.ac.at/~herman/

papers/ICTAI2004.pdf.

[48] Xuan-Ha Vu, H. Schichl, and D. Sam-Haroud. Interval propagation and search on
directed acyclic graphs for numerical constraint solving. Journal of Global Optimiza-
tion, p. 39, 2007. to appear. URL http://www.mat.univie.ac.at/~herman/papers/

FBPD-Hermann.pdf.

25

http://www.mat.univie.ac.at/~herman/papers/ICTAI2004.pdf
http://www.mat.univie.ac.at/~herman/papers/ICTAI2004.pdf
http://www.mat.univie.ac.at/~herman/papers/FBPD-Hermann.pdf
http://www.mat.univie.ac.at/~herman/papers/FBPD-Hermann.pdf

	Introduction
	Bounds for univariate quadratic expressions
	Solving univariate quadratic expressions
	Propagating separable quadratic constraints
	Nonseparable quadratic constraints
	Constraint propagation in GloptLab
	Tests and Comparison

