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This talk concerns a sequence of Feynman integrals that begins with two
cases related to enumeration of walks on lattices. It contains cases related
to modular forms. L-series associated with Kloosterman sums appear,
with intricate rational relations to determinants of Feynman integrals.
In general there are quadratic relations between integrals encoded by
rational matrices associated with Betti and de Rham cohomology.

1. Walks on a honeycomb with Gauss

2. Walks in a diamond crystal with Bessel

3. Modular forms up to 6 loops

4. Betti and de Rham matrices for all loops

5. L-series up to 22 loops
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1 Walks on a honeycomb with Gauss

Let W3(2k) be the number of returning walks of length 2k on a
honeycomb. In 1960, Cyril Domb (1920–2012) showed that

G3(y) =
∞∑
k=0

W3(2k)y2k = 1 + 3y2 + 15y4 + 93y6 + 639y8 + 4653y10 +O(y12)

is the reciprocal of an arithmetic-geometric mean (AGM).

For positive real (a0, b0), Gauss evaluated the elliptic integral

2

π

∫ π/2
0

dθ√
(a0 sin θ)2 + (b0 cos θ)2

=
1

agm(a0, b0)

by the rapidly converging process of his AGM:

an+1 =
an + bn

2
, bn+1 =

√
anbn, agm(a0, b0) ≡ a∞ = b∞.

The honeycomb problem is solved by

G3(y) =
1

agm
(√

(1− y)3(1 + 3y),
√

(1 + y)3(1− 3y)
) .



1.1 Two-loop sunrise diagram with Bessel and Gauss

The two-loop massive sunrise diagram in two spacetime dimensions, with
external energy w and internal masses (a, b, c), gives the Bessel moment

I(w, a, b, c) = 4
∫ ∞
0
I0(wt)K0(at)K0(bt)K0(ct)tdt

=
∫ ∞
0

∫ ∞
0

dx dy

P (x, y, 1)

with P (x, y, z) = (a2x+ b2y + c2z)(xy + yz + zx)− w2xyz obtained from
Schwinger parameters. Bailey, Borwein, Broadhurst and Glasser obtained

I(w, a, b, c) = 8π
∫ ∞
a+b+c

A(v)vdv

v2 − w2
,

A(w) = 1/agm
(√
F (w),

√
16abcw

)
,

F (w) ≡ (w + a+ b+ c)(w + a− b− c)(w − a+ b− c)(w − a− b+ c).

Since F (w)− 16abcw = F (−w), the complementary elliptic integral is

B(w) = 1/agm
(√
F (w),

√
F (−w)

)
.



1.2 The equal-mass case

With a = b = c = 1, we have F (w) = (w − 1)3(w + 3) and hence

w2B(w) = G3(1/w), w2A(w) = G̃3(1/w)

are given by complementary pair of honeycomb solutions

G3(y) = 1/agm
(√

(1− y)3(1 + 3y),
√

(1 + y)3(1− 3y)
)
,

G̃3(y) = 1/agm
(√

(1− y)3(1 + 3y), 4y
√
y
)
.

Defining the elliptic nome q = exp(−πB(w)/A(w)), we have

−
(
q

d

dq

)2 I(w, 1, 1, 1)

24
√

3A(w)

 =
w2(w2 − 1)(w2 − 9)A(w)3

9
√

3

as the differential equation, found by Broadhurst, Fleischer and Tarasov.
Regarding w and A(w) as functions of q, we obtain the modular functions

w

3
=

(
η3
η1

)4 (η2
η6

)2
, 4
√

3A =
η61η6
η32η

2
3

,

ηn = qn/24
∏
k>0

(1− qnk) =
∑
k∈Z

(−1)kqn(6k+1)2/24.



The two algebraic relations between {η1, η2, η3, η6} give

w2 − 1

8
=

(
η2
η1

)9 (η3
η6

)3
,

w2 − 9

72
=

(
η6
η1

)5 η2
η3
.

Hence the BFT equation reduces to

−
(
q

d

dq

)2 ( I

24
√

3A

)
=
w

3
f3,12 =

η33
η1

3

+

η36
η2

3

where f3,12 ≡ (η2η6)
3 is a weight-3 level-12 modular form. Let χ(n) = ±1

for n = ±1 mod 6 and χ(n) = 0 otherwise. Then

−
(
q

d

dq

)2 ( I

24
√

3A

)
=

∑
n>0

n2(qn − q5n)
1− q6n

=
∑
n>0

∑
k>0

n2χ(k)qnk.

Integrating twice and using the known imaginary part on the cut, we get

I(w2, 1, 1, 1)

4A(w)
= E2(q) = −π log(−q)− 3

√
3
∑
k>0

χ(k)

k2
1 + qk

1− qk
= −E2(1/q).

This elliptic dilogarithm was obtained by Bloch and Vanhove.



2 Walks in a diamond crystal with Bessel

boob redder testes teammate reappear intestines interessierten

are abelian squares: words whose second halves are permutations of
their first halves. There is a bijection between abelian squares of length 2k
in an n-letter alphabet and returning walks of length 2k on the regular
lattice in n− 1 dimensions with n-valent vertices. Thus the number
Wn(2k) of walks of length 2k in n− 1 dimensions is generated by

(I0(2y))n =
∞∑
k=0

Wn(2k)

yk
k!

2

i.e. by the n-th power of the Bessel function I0(2y) =
∑
k≥0(y

k/k!)2.

Identity for diamond: It was shown by Geoffrey Joyce in 1973 that

G4(z) =
∞∑
k=0

W4(2k)z2k = (1− y2)(1− 9y2)G2
3(y), z2 =

−y2

(1− y2)(1− 9y2)
.



2.1 Three-loop sunrise with Bessel and Gauss

Joyce’s transformation of G4(z) to the square of G3(y) enables progress
with the equal-mass three-loop sunrise diagram

J(w) = 8
∫ ∞
0
I0(wt)K

4
0(t)tdt

using the transformation

w2

64
=

−y2

(1− y2)(1− 9y2)

which is solved by

y =
2√

4− w2 +
√

16− w2

with singularities at the pseudo-threshold w = 2 and the physical threshold
w = 4. Then the solutions to the third-order homogeneous equation for
J(w) are (yG3(y))2, (yG̃3(y))2 and y2G3(y)G̃3(y). Thus a strategy for best
presenting the inhomogeneous equation is to divide J by one of these 3
and to operate with (qd/dq)3, where log(q) is proportional to the ratio of a
pair of solutions. If the result is expressible as a simple q series, then the
problem may be solved in the same manner as at two loops.



Let y = 2/(
√

4− w2 +
√

16− w2) and q = exp(−2
3πG̃3(y)/G3(y)) with

G3(y) =
1

agm
(√

(1− y)3(1 + 3y),
√

(1 + y)3(1− 3y)
) ,

G̃3(y) =
1

agm
(√

(1− y)3(1 + 3y), 4y
√
y
) .

Then the differential equation is

(
q

d

dq

)3  2J(w)

y2G2
3(y)

 = −48 + 2
∑
n>0

∑
k>0

n3ψ(k)qnk

with ψ(k) = ψ(k + 6) = ψ(6− k), and integers ψ(1) = −48, ψ(2) = 720,
ψ(3) = 384, ψ(6) = −5760, that were found by Bloch, Kerr and Vanhove.
We now integrate integrate 3 times. The constants of integration are
determined by J(0) = 7ζ(3). The result is an elliptic trilogarithm:

2J(w)

y2G2
3(y)

= E3(q) = (−2 log(q))3 +
∑
k>0

ψ(k)

k3
1 + qk

1− qk
= −E3(1/q).



3 Modular forms up to 6 loops

With N = a+ b Bessel functions and c ≥ 0, I define moments

M(a, b, c) ≡
∫ ∞
0
Ia0 (t)Kb

0(t)t
cdt

that converge for b > a ≥ 0. For b = a = N/2, we have convergence for
b > c+ 1. The L-loop on-shell sunrise diagram in D = 2 dimensions gives

2LM(1, L+ 1, 1) =
∫ ∞
0
. . .

∫ ∞
0

∏L
k=1 dxk/xk

(1 +
∑L
i=1 xi)(1 +

∑L
j=1 1/xj)− 1

as an integral over Schwinger parameters. M(2, L, 1) is obtained by cutting
an internal line. To obtain M(1, L+ 1, 3) and M(2, L, 3), we differentiate
w.r.t. an external momentum, before taking the on-shell limit.

Recently, in [arXiv:1706.08308], Yajun Zhou gave a complete proof of
my 10-year-old conjecture on the 5-Bessel matrix:

M5 ≡
 M(1, 4, 1) M(1, 4, 3)
M(2, 3, 1) M(2, 3, 3)

 =

 π2C π2
(
2
15

)2 (
13C − 1

10C

)
√
15π
2 C

√
15π
2

(
2
15

)2 (
13C + 1

10C

)
 .



The determinant detM5 = 2π3/
√

3355 is free of the 3-loop constant

C ≡ π

16

(
1− 1√

5

) ∞∑
n=−∞

e−n
2π
√
15

4

=
1

240
√

5π2

3∏
k=0

Γ

2k

15


with Γ values from the square of an elliptic integral [arXiv:0801.0891] at
the 15th singular value. The L-series for N = 5 Bessel functions comes
from a modular form of weight 3 and level 15 [arXiv:1604.03057]:

ηn ≡ qn/24
∏
k>0

(1− qnk)

f3,15 ≡ (η3η5)
3 + (η1η15)

3 =
∑
n>0

A5(n)qn

L5(s) ≡
∑
n>0

A5(n)

ns
for s > 2

Λ5(s) ≡
(

15

π2

)s/2
Γ

(
s

2

)
Γ

(
s+ 1

2

)
L5(s) = Λ5(3− s)

L5(1) =
∑
n>0

A5(n)

n

2 +

√
15

2πn

 exp

(
− 2πn√

15

)

= 5C =
5

π2

∫ ∞
0
I0(t)K

4
0(t)tdt .



3.1 Magnetic moment of the electron at N = 6

Here the modular form, found with Francis Brown in 2010, is

f4,6 ≡ (η1η2η3η6)
2

with weight 4 and level 6. I discovered and Zhou proved that

2M(3, 3, 1) = 3L6(2), 2M(2, 4, 1) = 3L6(3), 2M(1, 5, 1) = π2L6(2).

Stefano Laporta has evaluated 4-loop contributions to the magnetic
moment of the electron. These engage the first row of the
determinant [arXiv:1604.03057]

det

 M(1, 5, 1) M(1, 5, 3)
M(2, 4, 1) M(2, 4, 3)

 =
5ζ(4)

32
.

It is notable that the hypergeometric series in

L6(3) =
π2

15
4F3

 1
3 ,

1
2 ,

1
2 ,

2
3

5
6 , 1, 7

6

∣∣∣∣∣∣ 1


does not appear in Laporta’s final result, though it was present at
intermediate stages.



3.2 Kloosterman sums over finite fields

For a ∈ Fq, with q = pk, we define Kloosterman sums

K(a) ≡
∑
x∈F∗

q

exp

(
2πi

p
Trace

(
x+

a

x

))

with a trace of Frobenius in Fq over Fp. Then we obtain integers

cN(q) ≡ −1 + SN(q)

q2
, SN(q) ≡

∑
a∈F∗

q

N∑
k=0

[g(a)]k[h(a)]N−k

with K(a) = −g(a)− h(a) and g(a)h(a) = q. Then

ZN(p, T ) = exp

−∑
k>0

cN(pk)

k
T k


is a polynomial in T . For N < 8 and s > (N − 1)/2, the L-series is

LN(s) =
∏
p

1

ZN(p, p−s)
.



With N = 7 Bessel functions, the local factors at the primes in

L7(s) =
∏
p

1

Z7(p, p−s)
for s > 3

are given, for the good primes p coprime to 105, by the cubic

Z7(p, T ) =

(
1−

(
p

105

)
p2T

) (
1 +

(
p

105

)
(2p2 − |λp|2)T + p4T 2

)

where ( p
105) = ±1 is a Kronecker symbol and λp is a Hecke eigenvalue of

a weight-3 newform with level 525. For the primes of bad reduction, I
obtained quadratics from Kloosterman moments in finite fields:

Z7(3, T ) = 1−10T + 34T 2, Z7(5, T ) = 1−54T 2, Z7(7, T ) = 1 + 70T + 74T 2.

Then Anton Mellit suggested a functional equation

Λ7(s) ≡
(

105

π3

)s/2
Γ

(
s− 1

2

)
Γ

(
s

2

)
Γ

(
s+ 1

2

)
L7(s) = Λ7(5− s)

that was validated at high precision and gave us the empirical result

24M(2, 5, 1) = 5π2L7(2).



3.3 Subtleties at N = 8

With N = 8 Bessel functions, the L-series comes from the modular form

f6,6 ≡
η32η33
η1η6

3

+

η31η36
η2η3

3

with weight 6 and level 6. I discovered and Zhou proved that

M(4, 4, 1) = L8(3), 4M(3, 5, 1) = 9L8(4), 4M(2, 6, 1) = 27L8(5),

and 4M(1, 7, 1) = 9π2L8(4) for the 6-loop sunrise integral.

There are two subtleties. Kloosterman moments at N = 8 do not deliver
the local factors directly: in L8(s) =

∏
p Z4(p, p

2−s)/Z8(p, p
−s) we remove

factors from N = 4. Secondly, there is an infinite family of sum rules:

a(n) ≡
(

2

π

)4 ∫ ∞
0

(
π2I20(t)−K2

0(t)
)
I0(t)K

5
0(t) (2t)2n−1dt

delivers the integers of http://oeis.org/A262961 as was recently
proved by Zhou in [arXiv:1706.01068].



3.4 Vacuum integrals and non-critical modular L-series

In the modular cases N = 5, 6, 8, L-series outside the critical strip are
empirically related to determinants that contain vacuum integrals:

det
∫ ∞
0
K3

0(t)

 K2
0(t) t2K2

0(t)
I20(t) t2I20(t)

 t dt =
45

8π2
L5(4)

det
∫ ∞
0
K4

0(t)

 K2
0(t) t2K2

0(t)
I20(t) t2I20(t)

 t dt =
27

4π2
L6(5)

det
∫ ∞
0
K6

0(t)

 K2
0(t) t2(1− 2t2)K2

0(t)
I20(t) t2(1− 2t2)I20(t)

 t dt =
6075

128π2
L8(7) .

3.5 Signpost

In work at N > 8 with David Roberts these features are notable:
local factors from Kloosterman moments, sometimes with adjustment;
guesses of Γ factors, signs and conductors in functional equations;
empirical fits of L-series to determinants of Feynman integrals;
quadratic relations between Bessel moments; sum rules when 4|N .



4 Betti and de Rham matrices for all loops

Construction: Let vk and wk be the rational numbers generated by

J2
0 (t)

C(t)
=

∑
k≥0

vk
k!

(
t

2

)2k
= 1− 17t2

54
+

3781t4

186624
+ . . .

2J0(t)J1(t)

tC(t)
=

∑
k≥0

wk
k!

(
t

2

)2k
= 1− 41t2

216
+

325t4

186624
+ . . .

where J0(t) = I0(it), J1(t) = −J ′0(t) and

C(t) ≡ 32(1− J2
0 (t)− tJ0(t)J1(t))

3t4
= 1− 5t2

27
+

35t4

2304
− 7t6

9600
+ . . .

We construct rational bivariate polynomials by the recursion

Hs(y, z) = zHs−1(y, z)− (s− 1)yHs−2(y, z)

−
s−1∑
k=1

s− 1

k

 (vkHs−k(y, z)− wkzHs−k−1(y, z))

for s > 0, with H0(y, z) = 1. We use these to define

ds(N, c) ≡
Hs(3c/2, N + 2− 2c)

4ss!
.



Matrices: We construct rational de Rham matrices, with elements

DN(a, b) ≡
a∑

c=−b
da−c(N,−c)db+c(N, c)cN+1

and a and b running from 1 to k = dN/2− 1e.
We act on those, on the left, with period matrices whose elements are

P2k+1(u, a) ≡ (−1)a−1

πu
M(k + 1− u, k + u, 2a− 1)

P2k+2(u, a) ≡ (−1)a−1

πu+1/2
M(k + 1− u, k + 1 + u, 2a− 1)

and on the right with their transposes, to define Betti matrices

BN ≡ PNDNP
tr
N .

Conjecture: The Betti matrices have rational elements given by

B2k+1(u, v) = (−1)u+k2−2k−2(k + u)!(k + v)!Z(u+ v)

B2k+2(u, v) = (−1)u+k2−2k−3(k + u+ 1)!(k + v + 1)!Z(u+ v + 1)

Z(m) =
1 + (−1)m

(2π)m
ζ(m).



5 L-series up to 22 loops

Let Ωa,b be the determinant of the r × r matrix with M(a, b, 1) at top
left, size r = d(a+ b)/4− 1e, powers of t2 increasing to the right and
powers of I20(t) increasing downwards. Thus Ω1,23 is a 5× 5 determinant
with the 22-loop sunrise integral M(1, 23, 1) at top left and M(9, 15, 9)
at bottom right. With N = 4r + 4 Bessel functions, we discovered that

L8(4) =
22 Ω1,7

32π2
≡ 4

9π2

∫ ∞
0
I0(t)K

7
0(t)tdt

L12(6) =
26 Ω1,11

34 × 5π6

L16(8) =
214 Ω1,15

37 × 52 × 7π12

L20(10) =
222 × 11× 131 Ω1,19

311 × 56 × 73π20
to 44 digits

L24(12) =
229 × 12558877 Ω1,23

319 × 59 × 73 × 11π30
to 19 digits,

where boldface highlights primes greater than N . 30 GHz-years of work
gave 44-digit precision for L20(10). L24(12) agrees up to 19 digits.



With a cut of a line in the diagram at top left of the matrix, we found

L8(5) =
22 Ω2,6

33
≡ 4

27

∫ ∞
0
I20(t)K6

0(t)tdt

L12(7) =
25 × 11 Ω2,10

36 × 52π2

L16(9) =
214 × 13 Ω2,14

39 × 53 × 72π6

L20(11) =
219 × 17× 19× 23 Ω2,18

313 × 57 × 73π12

L24(13) =
227 × 17× 192 × 232 × 46681 Ω2,22

323 × 512 × 74 × 112π20
.

At N = 12, 16, 20, with an odd sign in the functional equation, we found

−L′12(5) =
24
(
26 × 29 Ω̂2,10 + 3 Ω2,10 log 2

)
32 × 7π6

−L′16(7) =
29
(
27 × 83 Ω̂2,14 + 3× 11 Ω2,14 log 2

)
35 × 5π12

−L′20(9) =
217 × 17× 19

(
29 × 7× 101 Ω̂2,18 + 5× 13 Ω2,18 log 2

)
38 × 54 × 72 × 11π20

for central derivatives, using enlarged determinants Ω̂2,4r+2 of size
r + 1 with regularization of M(2r + 2, 2r + 2, 2r + 1) at bottom right.



In the cases with N = 4r + 2, we obtained

L6(2) =
2 Ω1,5

π2
≡ 2

π2

∫ ∞
0
I0(t)K

5
0(t)tdt

L6(3) =
2 Ω2,4

3
≡ 2

3

∫ ∞
0
I20(t)K4

0(t)tdt

L10(4) =
27 Ω1,9

32π6

L10(5) =
24 Ω2,8

3× 5π2

L14(6) = 0

L14(7) =
210 × 11× 13 Ω2,12

36 × 52 × 7π6

L18(8) =
221 × 17× 19 Ω1,17

35 × 54 × 7π20

L18(9) =
212 × 13× 17× 41 Ω2,16

38 × 53 × 72π12

L22(10) = 0

L22(11) =
223 × 17× 19× 11621 Ω2,20

314 × 57 × 73π20

with central vanishing from an odd sign at N = 14 and N = 22.



For cases with odd N , we obtained

L5(2) =
22 Ω2,3

3
≡ 4

3

∫ ∞
0
I20(t)K3

0(t)tdt

L7(2) =
23 × 3 Ω2,5

5π2
≡ 24

5π2

∫ ∞
0
I20(t)K5

0(t)tdt

L9(4) =
26 Ω2,7

3× 5π2

L11(4) =
28 × 5 Ω2,9

3× 7π6

L13(6) =
27 × 149 Ω2,11

33 × 5× 7π6

L15(6) =
28 × 7× 53 Ω2,13

32 × 5π12
to 43 digits

L17(8) =
215 × 29 Ω2,15

35 × 52 × 7π12
to 23 digits

L19(8) =
214 × 1093× 13171 Ω2,17

34 × 54 × 7× 11π20
to 14 digits.

Comment: We also have results relating Bessel moments M(a, b, c) with
even c to L-series from Kloosterman moments with a quadratic twist.



6 Summary

1. Moments of 4 Bessel functions relate to walks on a honeycomb.

2. Moments of 5 Bessel functions relate to walks in a diamond crystal.

3. The L-series for 5, 6 and 8 Bessel functions are modular.

4. There are quadratic relations of the form PNDNP
tr
N = BN with

period, de Rham and Betti matrices that we have specified.

5. Relations between determinants of Feynman integrals and L-series
have been discovered up to 22 loops and presumably go on for ever.

I thank colleagues and hosts in Creswick (Victoria), Newcastle (NSW),
Mainz, Oxford, Paris, Marseille, Edinburgh, Copenhagen and Vienna.


