LIST OF CITATIONS of publications by Goulnara N. ARZHANTSEVA
more then 469 citations in total, excluding self-citations and citations of the paper with A. Yu. Ol'shanskii (PhD supervisor).
Last update: March 6th, 2017

Papers already published or accepted: 
Summary and comments to my list of publications

[1] G.N. Arzhantseva, L. Paunescu, Linear sofic groups and algebras
Transactions of the American Mathematical Society, 369 (2017), 2285-2310.    pdf  NEW !
14 citations by

V. Capraro, M. Lupini, Introduction to sofic and hyperlinear groups and Connes' embedding conjecture, Lecture Notes in Mathematics 2136, Springer 2015.
T. Ceccherini-Silberstein, M. Coornaert, On sofic monoids, Semigroup Forum 89 (2014), no. 3, 546–570.

M. Doucha, Metric topological groups: their metric approximation and metric ultraproducts, (2016),
arXiv:1601.07449
G. Elek, Convergence and limits of linear representations of finite groups. J. Algebra 450 (2016), 588-615.

G. Elek, Gabor Elek, Infinite dimensional representations of finite dimensional algebras and amenability, (2015),
arXiv:1512.03959.
L. Glebsky, Approximations of groups, characterizations of sofic groups, and equations over groups, J. Algebra 477 (2017), 147-162.

M. Gromov,
Number of questions, 2014, http://www.ihes.fr/~gromov/PDF/Problems-marc6-11-2014.pdf
B. Hayes, A. Sale, Metric approximations of wreath products,(2016), arXiv:1608.02610

D. F. Holt, S. Rees, Some closure results for C-approximable groups, (2016),
arXiv:1601.01836

A. Ivanov, Sofic metric groups and continuous logic, (2016), arXiv:1604.08446

A.Ivanov, Metric ultraproducts of finite groups with respect to some length functions, (2014),
arXiv:1401.0857
A. Stolz,
Linear approximation of groups and ultraproducts of compact simple groups, PhD thesis, 2013, Universität Leipzig.
A. Stolz, Properties of linearily sofic groups, (2013), arXiv:1309.7830.
S. Virili, A point-free approach to L-Surjunctivity and stable finiteness, (2014), arXiv:1410.164

[2] G.N. Arzhantseva, Ch. Cashen, J. Tao, Growth tight actions,
Pacific Journal of Mathematics, 278(1) (2015), 1-49.    pdf
4 citations by

C. Cashen, J. Tao, Growth tight actions of product groups, Groups Geom. Dyn. 10 (2016), no. 2, 753-770.
F. Dahmani, D. Futer, D. T. Wise, Growth of quasiconvex subgroups (2016), arXiv:1602.08085
S. Das, M. Mj, Controlled Floyd separation and non relatively hyperbolic groups, J. Ramanujan Math. Soc. 30 (2015), no. 3, 267-294.

W. Yang, Statistically convex-cocompact actions of groups with contracting elements, (2016),
arXiv:1612.03648

[3] G.N. Arzhantseva, L. Paunescu, Almost commuting permutations are near commuting permutations,
Journal of Functional Analysis, 269(3) (2015), 745-757.    pdf
5 citations by

V. Capraro, M. Lupini, Introduction to sofic and hyperlinear groups and Connes' embedding conjecture, Lecture Notes in Mathematics 2136, Springer 2015.
H. A. Helfgott, K. Juschenko, Soficity, short cycles and the Higman group (2015),
arXiv:1512.02135
R. Moreno, L.M. Rivera, Blocks in cycles and k-commuting permutations, SpringerPlus (2016) 5: 1949.
L. Paunescu, F. Radulescu, A generalisation to Birkhoff-von Neumann theorem (2015),
arXiv:1506.01685
L. M. Rivera, Integer sequences and k-commuting permutations, Integers 15 (2015), Paper No. A46, 22 pp.

[4] G.N. Arzhantseva, D. Osajda, Infinitely presented small cancellation groups have Haagerup property,
Journal of Topology and Analysis, 7(3) (2015), 389-406
.     pdf
6 citations by

Y. Cornulier, Group actions with commensurated subsets, wallings and cubings, (2013), arXiv:1302.5982v2
M. Finn-Sell, Almost quasi-isometries and more non-exact groups (2015), arXiv:1506.08424
D. Gruber, Infinitely presented C(6)-groups are SQ-universal, J. Lond. Math. Soc. (2) 92 (2015), no. 1, 178-201.
S. Knudby, On connected Lie groups and the approximation property, C. R. Math. Acad. Sci. Paris 354 (2016), no. 7, 697-699.

A. Martin, Complexes of groups and geometric small cancellation over graphs of groups, (2013), arXiv:1306.6847v2
D. Osajda, Small cancellation labellings of some infinite graphs and applications, (2014),
arXiv:1406.5015

[5] G.N. Arzhantseva, R. Tessera, Relative expanders,

Geometric and Functional Analysis [GAFA], 25(2) (2015), 317-341.
   pdf
3 citations by

K. Das, From the geometry of box spaces to the geometry and measured couplings of groups, (2015), arXiv:1512.08828
T. Delabie, A. Khukhro, Box spaces of the free group that neither contain expanders nor embed into a Hilbert space, (2016), arXiv:1611.08451

D. Hume, A continuum of expanders (2014),
arXiv:1410.0246

[6]
G.N. Arzhantseva, Asymptotic approximations of finitely generated groups,
in Research Perspectives CRM Barcelona-Fall 2012 (Trends in Mathematics),
Birkhäuser, Basel, vol. 1, 2014, 7-16.     pdf    book    
2 citations

V. Capraro, M. Lupini, Introduction to sofic and hyperlinear groups and Connes' embedding conjecture, Lecture Notes in Mathematics 2136, Springer 2015.
M. Cavaleri, Algorithms and quantifications in amenable and sofic groups, PhD Thesis, 2016, the Sapienza University of Rome.

[7] G.N. Arzhantseva, J.-F. Lafont, A. Minasyan, Isomorphism versus commensurability for a class of finitely presented groups,
Journal of Group Theory, 17(2) (2014), 361-378.    
pdf

5 citations

Y. Antolín, A. Minasyan, Tits alternatives for graph products, J. Reine Angew. Math. 704 (2015), 55-83.
J. Belk, C. Bleak, Some undecidability results for asynchronous transducers and the Brin-Thompson group 2V, Trans. Amer. Math. Soc. 369 (2017), no. 5, 3157-3172.
F. Dahmani, On suspensions and conjugacy of hyperbolic automorphisms, Trans. Amer. Math. Soc. 368 (2016), no. 8, 5565-5577.
A.D. Logan, On the outer automorphism groups of finitely generated, residually finite groups, J. Algebra 423 (2015), 890-901.
J. R. Peters, P. Sanyatit, Isomorphism of uniform algebras on the 2-torus, (2016),
arXiv.org:1608.06316

[8] G.N. Arzhantseva, E. Guentner, J. Spakula, Coarse non-amenability and coarse embeddings,
Geometric and Functional Analysis [GAFA], 22(1) (2012), 22-36.    
pdf
24 citations

V. Alekseev, M. Finn-Sell, Sofic boundaries of groups and coarse geometry of sofic approximations, (2016),
arXiv.org:1608.02242.
C. Anantharaman-Delaroche, Amenability and exactness for groups, group actions and operator algebras, ESI 2007, (version of 2015).

P. Baum, E. Guentner, R. Willett, Exactness and the Kadison-Kaplansky conjecture, Operator algebras and their applications, 1-33, Contemp. Math., 671, Amer. Math. Soc., Providence, RI, 2016.
J. Brodzki, G. Niblo, J. Špakula, R. Willett, N. Wright, Uniform local amenability, J. Noncommut. Geom. 7 (2013), no. 2, 583-603.
C. Cave, D. Dreesen, A. Khukhro, Embeddability of generalized wreath products and box spaces, (2013),
arXiv.org:1307.3122
M. Cencelj, J. Dydak, A. Vavpetič, Coarse amenability versus paracompactness, J. Topol. Anal. 6 (2014), no. 1, 125-152.
M. Cencelj, J. Dydak, A. Vavpetič, Large scale versus small scale, Recent progress in general topology. III, 165-203, Atlantis Press, Paris, 2014.
X. Chen, Q. Wang, X. Wang, Characterization of the Haagerup property by fibred coarse embedding into Hilbert space, Bull. Lond. Math. Soc. 45 (2013), no. 5, 1091-1099.
Y. Cornulier, P. de la Harpe, Metric geometry of locally compact groups, EMS Tracts in Mathematics Vol. 25, 2016.

T. Delabie, A. Khukhro, Box spaces of the free group that neither contain expanders nor embed into a Hilbert space, (2016), arXiv:1611.08451

M. Finn-Sell, Fibred coarse embeddings, a-T-menability and the coarse analogue of the Novikov conjecture, J. Funct. Anal. 267 (2014), no. 10, 3758-3782.

M. Finn-Sell, Almost quasi-isometries and more non-exact groups, (2015), arXiv.org:1506.08424
R. Ji, C. Ogle, B. Ramsey, Strong embeddability and extensions of groups, (2013), arXiv.org:1307.1935
A. Khukhro, Box spaces, group extensions and coarse embeddings into Hilbert space, J. Funct. Anal. 263 (2012), no. 1, 115-128.
A. Khukhro, Embeddable box spaces of free groups, Math. Ann. 360 (2014), no. 1-2, 53-66.
M. Mimura, H. Sako, Group approximation in Cayley topology and coarse geometry, Part I: Coarse embeddings of amenable groups, (2013),
arXiv.org:1310.4736
D. Osajda, Small cancellation labellings of some infinite graphs and applications, (2014),
arXiv.org:1406.5015

M. Ostrovskii, Low-distortion embeddings of graphs with large girth, J. Funct. Anal. 262 (2012), no. 8, 3548-3555.

M. Ostrovskii, Metric Embeddings: Bilipschitz and coarse embeddings into Banach spaces, de Gruyter Studies in Mathematics, Vol. 49, 2013.
D. Pawlik, A (co)homological crieterion for Property A of metric space, Uniwersytet Warszawski, Praca semestralna nr 2, 2011/2012.

J. Roe, R. Willett, Ghostbusting and property A, J. Funct. Anal. 266 (2014), no. 3, 1674-1684.
H. Sako, A generalization of expander graphs and local reflexivity of uniform Roe algebras, J. Funct. Anal. 265 (2013), no. 7, 1367-1391.
J. Špakula, R. Willett, A metric approach to limit operators, Trans. Amer. Math. Soc. 369 (2017), no. 1, 263-308.

R. Willett, Property A and graphs with large girth, J. Topol. Anal. 3 (2011), no. 3, 377-384.

[9] G.N. Arzhantseva and E. Guentner, Coarse non-amenability and covers with small eigenvalues,
Mathematische Annalen, 354(3) (2012), 863-870.    
pdf

[10] G.N. Arzhantseva, M. Bridson, T. Januszkiewicz, I. Leary, A. Minasyan, J. Swiatkowski,
Infinite groups with fixed point properties, Geometry & Topology, 13 (2009), 1229-1263.    pdf
15 citations by

I. Belegradek, Topology of open nonpositively curved manifolds, Geometry, topology, and dynamics in negative curvature, 32-83,
London Math. Soc. Lecture Note Ser., 425, Cambridge Univ. Press, Cambridge, 2016.
I. Belegradek, Ph. Nguyễn, T. Tâm, Non-aspherical ends and non-positive curvature, Trans. Amer. Math. Soc. 368 (2016), no. 8, 5363-5376.
M. Bridson, On the dimension of CAT(0) spaces where mapping class groups act,  J. Reine Angew. Math. 673 (2012), 55-68.
M. Bridson, K. Vogtmann, Actions of automorphism groups of free groups on homology spheres and acyclic manifolds, Comment. Math. Helv. 86 (2011), no. 1, 73-90.
I. Chatterji, M. Kassabov, New examples of finitely presented groups with strong fixed point properties, J. Topol. Anal. 1 (2009), no. 1, 1-12.
G. Gandini, Bounding the homological finiteness length, Bull. Lond. Math. Soc. 44 (2012), no. 6, 1209-1214.
G. Gandini, Cohomological invariants and the classifying space for proper actions, Groups Geom. Dyn. 6 (2012), no. 4, 659-675.
D. Fisher, L. Silberman, Groups not acting on manifolds, Int. Math. Res. Not. 16 (2008), 11 pp.
D. Futer, A. Thomas, Surface quotients of hyperbolic buildings, Int. Math. Res. Not. IMRN 2012, no. 2, 437-477.
T. Januszkiewicz, P.H. Kropholler, I.J. Leary, Groups possessing extensive hierarchical decompositions,  Bull. Lond. Math. Soc. 42 (2010), no. 5, 896-904.
A. Naor, L. Silberman, Poincaré inequalities, embeddings, and wild groups, Compos. Math. 147 (2011), no. 5, 1546-1572.
D. Osajda, A construction of hyperbolic Coxeter groups, Comment. Math. Helv. 88 (2013), no. 2, 353-367.
D. Osajda, P. Przytycki, Boundaries of systolic groups, Geom. Topol. 13 (2009), no. 5, 2807-2880.
D. Osin, Small cancellations over relatively hyperbolic groups and embedding theorems, Annals of Mathematics, 172 (2010), 1-39.
Sh. Weinberger, Some remarks inspired by the C0 Zimmer program, Geometry, rigidity, and group actions, 262-282, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011.

[11] G.N. Arzhantseva, C. Drutu, and M. Sapir, Compression functions of uniform embeddings of groups into
Hilbert and Banach spaces, Journal für die Reine und Angewandte Mathematik, [Crelle's Journal], 633 (2009), 213-235.     pdf
23 citations by

C. Anantharaman-Delaroche, Amenability and exactness for groups, group actions and operator algebras, (2007)
http://www.univ-orleans.fr/mapmo/membres/anantharaman/publications/ESI07.pdf
T. Austin, A. Naor, Y. Peres, The wreath product of  Z with Z has Hilbert compression exponent 2/3, Proc. Amer. Math. Soc. 137 (2009), no. 1, 85-90.
T. Austin, Amenable groups with very poor compression into Lebesgue spaces. Duke Math. J. 159 (2011), no. 2, 187–222.
L. Bartholdi, A. Erschler, Distortion of imbeddings of groups of intermediate growth into metric spaces. Proc. Amer. Math. Soc. 145 (2017), no. 5, 1943–1952.
F. P. Baudier, Quantitative nonlinear embeddings into Lebesgue sequence spaces, J. Topol. Anal. 8 (2016), no. 1, 117–150.
F. P. Baudier, On the metric geometry of stable metric spaces (2014), arXiv:1409.7738
J.-C. Birget, One-way permutations, computational asymmetry and distortion, J. Algebra 320 (2008), no. 11, 4030-4062.
J. Brieussel, T. Zheng, Speed of random walks, isoperimetry and compression of finitely generated groups (2015), arXiv:1510.08040
Ch. Cave, D. Dreesen, Equivariant compression of certain direct limit groups and amalgamated free products, Glasg. Math. J. 58 (2016), no. 3, 739–752.
J. Cheeger, B. Kleiner, A. Naor, Compression bounds for Lipschitz maps from the Heisenberg group to L1, Acta Math. 207 (2011), no. 2, 291–373.
A. Dranishnikov, M. Sapir, On the dimension growth of groups. J. Algebra 347 (2011), 23–39.
D. Dreesen, Hilbert space compression for free products and HNN-extensions. J. Funct. Anal. 261 (2011), no. 12, 3585–3611.
S. Gal, Asymptotic dimension and uniform embeddings, Groups Geom. Dyn. 2 (2008), no. 1, 63-84. MR2367208 (2009d:20105)
J. Higes, I. Peng, Assouad-Nagata dimension of connected Lie groups, Math. Z. 273 (2013), no. 1-2, 283–302.
P.-N. Jolissaint, Embeddings of groups into Banach spaces, PhD thesis, 2015, University of Neuchatel.
M. Kraus, Quantitative coarse embeddings of quasi-Banach spaces into a Hilbert space (2015), arXiv:1511.05214
A. Naor, An introduction to the Ribe program. Jpn. J. Math. 7 (2012), no. 2, 167–233.
A. Naor, Y. Peres, Embeddings of discrete groups and the speed of random walks, Int. Math. Res. Not. IMRN (2008), Art. ID rnn 076, 34 pp.
A. Naor, Y. Peres, Lp compression, traveling salesmen, and stable walks. Duke Math. J. 157 (2011), no. 1, 53–108.
P. Nowak, G. Yu, Large-scale geometry, (2010), EMS publishing house, to appear, http://www.math.tamu.edu/~pnowak/book_etb/book_etb.pdf
A. Yu. Olshanskii, D.V. Osin, A quasi-isometric embedding theorem for groups,  Duke Math. J. 162 (2013), no. 9, 1621–1648.
J.C. Robinson, Log-Lipschitz embeddings of homogeneous sets with sharp logarithmic exponents and slicing products of balls, Proc. Amer. Math. Soc. 142 (2014), no. 4, 1275–1288.
M. Sapir, Some group theory problems, Internat. J. Algebra Comput. 17 (2007), no. 5-6, 1189-1214. 

[12] G.N. Arzhantseva, V.S. Guba, M. Lustig and J.-Ph. Préaux, Testing Cayley graph densities,
Annales mathematiques Blaise Pascal, 15(2) (2008), 169-221.    abs   pdf
6 citations by

J. Cannon, Amenability, Folner sets, and cooling Functions, (2009).
M. Elder, A. Rechnitzer, E. J. Janse van Rensburg, Random sampling of trivial words in finitely presented groups. Exp. Math. 24 (2015), no. 4, 391–409.
M. Elder, C. Rogers, Sub-dominant cogrowth behaviour and the viability of deciding amenability numerically (2016), arXiv:1608.06703
M. Elder, A. Rechnitzer, T. Wong, On the cogrowth of Thompson's group F. Groups Complex. Cryptol. 4 (2012), no. 2, 301–320.
M. Elder and A. Rechnitzer and E. J. Janse van Rensburg and T. Wong, On trivial words in finitely presented groups (2012), arXiv:1210.3425
S. Haagerup, U. Haagerup, M. Ramirez-Solano, A computational approach to the Thompson group F. Internat. J. Algebra Comput. 25 (2015), no. 3, 381–432. 

[13] G.N. Arzhantseva, A. Minasyan and D. Osin, The SQ-universality and residual properties of
relatively hyperbolic groups, Journal of Algebra, 315(1)  (2007), 165-177.    pdf
33 citations by

O. Bogopolski, K.-U. Bux, From local to global conjugacy of subgroups of relatively hyperbolic groups (2016), arXiv:1605.01795
I. Belegradek, Rigidity and relative hyperbolicity of real hyperbolic hyperplane complements. Pure Appl. Math. Q. 8 (2012), no. 1, 15–51.
I. Belegradek, D. Osin, Rips construction and Kazhdan property (T), Groups Geom. Dyn. 2 (2008), no. 1, 1-12. MR2367206 (2009c:20076)
I. Belegradek, A. Szczepanski, Endomorphisms of relatively hyperbolic groups, with an appendix by Oleg V. Belegradek. Internat. J. Algebra Comput. 18 (2008), no. 1, 97-110.
I. Belegradek, T. Tâm Nguyễn Phan, Non-aspherical ends and non-positive curvature, Trans. Amer. Math. Soc. 368 (2016), 5363-5376.
D. Bisch, R. Nicoara, S. Popa, Continuous families of hyperfinite subfactors with the same standard invariant, Internat. J. Math. 18 (2007), no.3, 255-267. 
I. Bumagin, M. M. Zhang, On fully residually-R groups. Comm. Algebra 44 (2016), no. 7, 2813–2827.
J. O. Button, Large groups of deficiency 1, Israel J. Math. 167 (2008), 111-140.
J. O. Button, Acylindrical hyperbolicity, non-simplicity and SQ-universality of groups splitting over ℤ, J. Group Theory, 20(2), 371–383.
J. O. Button, R. P. Kropholler, Nonhyperbolic free-by-cyclic and one-relator groups. New York J. Math. 22 (2016), 755–774.
P.-E. Caprace, N. Monod, Isometry groups of non-positively curved spaces: discrete subgroups, J. Topology 2 (2009), no. 4, 701-746.
F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.
M. Edjvet, A. Vdovina, On the SQ-universality of groups with special presentations, J. Group Theory (2010), 1433-5883.
R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of high dimensional graph manifolds. Astérisque No. 372 (2015), xxi+177 pp.
D. Fisher, L. Silberman, Groups not acting on manifolds, Int. Math. Res. Not. IMRN 2008, no. 16, Art. ID rnn060, 11 pp. MR2435750 (2009f:57059)
Le Thi Giang, The relative hyperbolicity of one-relator relative presentations, J. Group Theory 12 (2009), no. 6, 949-959.
M. Hull, D. Osin, Conjugacy growth of finitely generated groups. Adv. Math. 235 (2013), 361–389.
T. Januszkiewicz, P. Kropholler, I. Leary, Groups possessing extensive hierarchical decompositions. Bull. Lond. Math. Soc. 42 (2010), no. 5, 896–904.
Ant. A. Klyachko, SQ-universality of one-relator relative presentations, Sb. Math. 197 (2006), no. 9-10, 1489-1508. MR2310117 (2008a:20040)
Ant. A. Klyachko, D. E. Lurye, Relative hyperbolicity and similar properties of one-generator one-relator relative presentations with powered unimodular relator. J. Pure Appl. Algebra 216 (2012), no. 3, 524–534.
E. Martinez-Pedroza, On quasiconvexity and relatively hyperbolic structures on groups. Geom. Dedicata 157 (2012), 269–290.

Y. Matsuda, O. Shin-ichi, On Cannon-Thurston maps for relatively hyperbolic groups. J. Group Theory 17 (2014), no. 1, 41–47.
Y. Matsuda, O. Shin-ichi, Y. Saeko, The universal relatively hyperbolic structure on a group and relative quasiconvexity for subgroups (2011), arXiv:1106.5288

Y. Matsuda, O. Shin-ichi, Y. Saeko,
C∗-simplicity for groups with non-elementary convergence group actions. Houston J. Math. 39 (2013), no. 4, 1291–1299.
A. Minasyan, Groups with finitely many conjugacy classes and their automorphisms, Comment. Math. Helv. 84 (2009), no. 2, 259-296. MR2495795
A. Minasyan, D. Osin, Normal automorphisms of relatively hyperbolic groups, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6079-6103. MR2661509
A. Minasyan, D. Osin, Acylindrical hyperbolicity of groups acting on trees. Math. Ann. 362 (2015), no. 3-4, 1055–1105.
A. Ol'shanskii, D. Osin, C∗-simple groups without free subgroups. Groups Geom. Dyn. 8 (2014), no. 3, 933–983.
A. Ol'shanskii, D. Osin, M. Sapir, Lacunary hyperbolic groups, Geom. Topol. 13 (2009), no. 4, 2051-2140. MR2507115
D. Osin, Small cancellations over relatively hyperbolic groups and embedding theorems, Annals of Mathematics, 172 (2010), 1-39.
D. Osin, On the universal theory of torsion and lacunary hyperbolic groups, (2009), arXiv.org:0903.3978
D. Osin, A. Thom, Normal generation and ℓ2-Betti numbers of groups. Math. Ann. 355 (2013), no. 4, 1331–1347.

D. Witte Morris, Introduction to arithmetic groups, 2015. xii+475 pp.

[14] G. N. Arzhantseva and Z.Sunic, Construction of elements in the closure of Grigorchuk group, Geometriae Dedicata, 124(1)  (2007), 17-26.    pdf
3 citations by

M. Saltan, The relation between adding machne and p-adic integers, Konuralp Journal of Mathematics, 1(2) (2013), 41-49.
B. Demir, M. Saltan, On p-adic integers and the adding machine group, (2010), arXiv:1007.0366

O. Siegenthaler, Discrete and profinite groups acting on regular rooted trees, PhD thesis, Georg-August-Universität Göttingen, 2009,
http://webdoc.sub.gwdg.de/diss/2010/siegenthaler/siegenthaler.pdf

[15]  G.N. Arzhantseva, A. Minasyan, Relatively hyperbolic groups are C*-simple,
Journal of Functional Analysis, 243(1)  (2007), 345-351.    pdf
15 citations by

S.I. Adyan, V.S. Atabekyan, C∗-simplicity of n-periodic products. (Russian) ; translated from Mat. Zametki 99 (2016), no. 5, 643--648 Math. Notes 99 (2016), no. 5-6, 631–635.
F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.
A. Fel'shtyn, E. Troitsky, Twisted conjugacy classes in residually finite groups (2012), arXiv:1204.3175
R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of high dimensional graph manifolds. Astérisque No. 372 (2015), xxi+177 pp.
Sh. Gong, Property RD and the classification of traces on reduced group C*-algebras of hyperbolic groups (2014), arXiv:1402.0135
P. de la Harpe, On simplicity of reduced C*-algebras of groups, Bull. Lond. Math. Soc. 39 (2007), no. 1, 1-26. MR2303514 (2008a:22004)
Sh. Hejazian, S. Pooya, Simple reduced Lp-operator crossed products with unique trace. J. Operator Theory 74 (2015), no. 1, 133–147.
A. Kar, M. Sageev, Ping pong on CAT(0) cube complexes. Comment. Math. Helv. 91 (2016), no. 3, 543–561.
A. Le Boudec, C*-simplicity and the amenable radical (2015), arXiv:1507.03452
M. Kalantar, M. Kennedy, Boundaries of reduced C*-algebras of discrete groups (2014), arXiv:1405.4359
E. Martínez-Pedroza, Combination of quasiconvex subgroups of relatively hyperbolic groups, Groups Geom. Dyn. 3 (2009), no. 2, 317-342. MR2486802
E. Martinez-Pedroza, On quasiconvexity and relatively hyperbolic structures on groups. Geom. Dedicata 157 (2012), 269–290.
Y. Matsuda, S. Oguni,  S. Yamagata, C∗-simplicity for groups with non-elementary convergence group actions. Houston J. Math. 39 (2013), no. 4, 1291–1299.
A. Yu. Olshanskii, D. V. Osin, C∗-simple groups without free subgroups. Groups Geom. Dyn. 8 (2014), no. 3, 933–983.
R. D. Tucker-Drob, Shift-minimal groups, fixed price 1, and the unique trace property (2012), arXiv:1211.6395

[16] G.N. Arzhantseva, P. de la Harpe, D. Kahrobaei, The true prosoluble completion of a group:
Examples and open problems, Geometriae Dedicata, 124(1)  (2007), 5-17.    abs   pdf.
9 citations by

F. Berlai, Residual properties of free products. Comm. Algebra 44 (2016), no. 7, 2959–2980.
K. Bencsath, A. Douglas, D. Kahrobaei, Some residually solvable one-relator groups, Irish Math. Soc. Bulletin 65 (2010), 23-31.
S. Friedl, S.Vidussi, Twisted Alexander polynomials detect fibered 3-manifolds. Ann. of Math. (2) 173 (2011), no. 3, 1587–1643.
D. Kahrobaei, Doubles of residually solvable groups in B. Fine, G. Rosenberger, D. Spellman (eds), Aspects of Infinite Group Theory, Algebra and Discrete Mathematics, World Scientific, 1 (2008), 192-200.
D. Kahrobaei, On the residual solvability of generalized free products of finitely generated nilpotent groups. Comm. Algebra 39 (2011), no. 2, 647–656.
D. Kahrobaei, S. Majewicz, On the residual solvability of generalized free products of solvable groups. Discrete Math. Theor. Comput. Sci. 13 (2011), no. 4, 45–50.
Yu. Leonov, On the closure of the first Grigorchuk group. (Russian); translated from Ukr. Mat. Visn. 7 (2010), no. 1, 39--48, 135 J. Math. Sci. (N.Y.) 173 (2011), no. 4, 371–377
O. Siegenthaler, A. Zugadi-Reizabal, The equations satisfied by GGS-groups and the abelian group structure of the Gupta-Sidki group. European J. Combin. 33 (2012), no. 7, 1672–1690.
O. Siegenthaler, Discrete and profinite groups acting on regular rooted trees, PhD thesis, Georg-August-Universität Göttingen, 2009,
http://webdoc.sub.gwdg.de/diss/2010/siegenthaler/siegenthaler.pdf

[17] G.N. Arzhantseva, V.S. Guba, M.V. Sapir, Metrics on diagram groups and uniform embeddings in a Hilbert space
Commentarii Mathematici Helvetici, 81(4) (2006), 911-929.   abs  pdf.  
37 citations by

C. Anantharaman-Delaroche, Amenability and exactness for groups, group actions and operator algebras, (2007)
http://www.univ-orleans.fr/mapmo/membres/anantharaman/publications/ESI07.pdf
T. Austin, A. Naor, Y. Peres, The wreath product of Z with Z has Hilbert compression exponent 2/3, Proc. Amer. Math. Soc. 137 (2009), no. 1, 85-90.
T. Austin, Amenable groups with very poor compression into Lebesgue spaces. Duke Math. J. 159 (2011), no. 2, 187–222.,
J.-C. Birget, One-way permutations, computational asymmetry and distortion, J. Algebra 320 (2008), no. 11, 4030-4062.
J. Brieussel, T. Zheng, Speed of random walks, isoperimetry and compression of finitely generated groups (2015), arXiv:1510.08040
N. Brodskiy, D. Sonkin, Compression of uniform embeddings into Hilbert space, Topology Appl. 155 (2008), no. 7, 725-732. MR2395586 (2009b:20078)
N. Brown, E. Guentner, New C∗-completions of discrete groups and related spaces. Bull. Lond. Math. Soc. 45 (2013), no. 6, 1181–1193.
S. J. Campbell, Property A and affine buildings, J. Funct. Anal. 256 (2009), no. 2, 409-431.
Ch. Cave, D. Dreesen, Equivariant compression of certain direct limit groups and amalgamated free products. Glasg. Math. J. 58 (2016), no. 3, 739–752.
Y. de Cornulier, Y. Stalder, A. Valette, Proper actions of wreath products and generalizations. Trans. Amer. Math. Soc. 364 (2012), no. 6, 3159–3184.
A. Dranishnikov, M. Sapir, On the dimension growth of groups. J. Algebra 347 (2011), 23–39.
D. Dreesen, Hilbert space compression under direct limits and certain group extensions. Proc. Amer. Math. Soc. 141 (2013), no. 2, 421–436.
S. Gal, Asymptotic dimension and uniform embeddings, Groups Geom. Dyn. 2 (2008), no. 1, 63-84.
A. Genevois, Hyperplanes of Squier's cube complexes (2015), arXiv:1507.01667
R. Gray, A. Malheiro, S. Pride, Homotopy bases and finite derivation type for Schützenberger groups of monoids. J. Symbolic Comput. 50 (2013), 50–78.
R. Gray, A. Malheiro, S. Pride, On properties not inherited by monoids from their Schützenberger groups. Inform. and Comput. 209 (2011), no. 7, 1120–1134.
G. Golan, M. Sapir, On the stabilizers of finite sets of numbers in the R. Thompson group F (2016), arXiv:1605.05387
A. Gournay, The Liouville property and Hilbertian compression. Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2435–2454.
V. Guba, M.Sapir, Diagram groups and directed 2-complexes: homotopy and homology, J. Pure Appl. Algebra 205 (2006), no. 1, 1-47.
V. Guba, M. Sapir, On the conjugacy growth functions of groups. Illinois J. Math. 54 (2010), no. 1, 301–313.
U. Haagerup, G. Picioroaga, New presentations of Thompson's groups and applications. J. Operator Theory 66 (2011), no. 1, 217–232.
P.-N. Jolissaint, Embeddings of groups into Banach spaces, PhD thesis, 2015, University of Neuchatel.
V. Kaimanovich, Thompson's group F is not Liouville (2016), arXiv:1602.02971
S. Li, Compression bounds for wreath products, Proc. Amer. Math. Soc. 138 (2010), no. 8, 2701-2714.
A. Naor, Y. Peres, Lp compression, traveling salesmen, and stable walks. Duke Math. J. 157 (2011), no. 1, 53–108.
A. Naor, Y. Peres,  Embeddings of discrete groups and the speed of random walks, Int. Math. Res. Not. IMRN 2008, Art. ID rnn 076, 34 pp.
P. Nowak, On exactness and isoperimetric profiles of discrete groups, J. Funct. Anal. 243 (2007), no. 1, 323-344.
P. Nowak, G. Yu, Large-scale geometry, (2010), EMS publishing house, to appear, http://www.math.tamu.edu/~pnowak/book_etb/book_etb.pdf
A. Olshanskii, D. Osin, A quasi-isometric embedding theorem for groups. Duke Math. J. 162 (2013), no. 9, 1621–1648.
S. Passidis, A. Weston, Manifestations of non linear roundness in analysis, discrete geometry and topology, in Limits of graphs in group theory and computer science by G. Arzhantseva, A.Valette (eds.), EPFL press, 2009.
S. Pride, Universal diagram groups with identical Poincaré series. Groups Geom. Dyn. 4 (2010), no. 4, 901–908.
A. Sale, Metric behaviour of the Magnus embedding. Geom. Dedicata 176 (2015), 305–313.
M. Sapir, Some group theory problems, Internat. J. Algebra Comput. 17 (2007), no. 5-6, 1189-1214.
Y. Stalder, A. Valette, Wreath products with the integers, proper actions and Hilbert space compression, Geom. Dedicata 124 (2007), 199-211.
R. Tessera, Quantitative property A, Poincaré inequalities, Lp-compression and Lp-distortion for metric measure spaces, Geom. Dedicata 136 (2008), 203-220.
R. Tessera, Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces. Comment. Math. Helv. 86 (2011), no. 3, 499–535.
G. Yu, Higher index theory of elliptic operators and geometry of groups, International Congress of Mathematicians. Vol. II, 1623-1639, Eur. Math. Soc., Zürich, 2006. 

[18] G.N. Arzhantseva, A dichotomy for finitely generated subgroups of word hyperbolic groups,
  Contemporary Mathematics, 394, Amer. Math.Soc., Providence, RI, 2006, 1-11.    abs  intro  ps   
7 citations by

M. Belolipetsky, On 2-systoles of hyperbolic 3-manifolds. Geom. Funct. Anal. 23 (2013), no. 3, 813–827.
M. Gromov, Singularities, expanders and topology of maps. I. Homology versus volume in the spaces of cycles. Geom. Funct. Anal. 19 (2009), no. 3, 743-841.
I. Kapovich, P. Schupp, Random quotients of the modular group are rigid and essentially incompressible, J. Reine Angew. Math. 628 (2009), 91-119.
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii method and the isomorphism problem for one-relator groups, Math. Ann. 331 (2005), no. 1, 1-19.
I. Kapovich, R. Weidmann, Nielsen methods and groups acting on hyperbolic spaces, Geom. Dedicata 98 (2003), 95-121.
T. Koberda, Entropy of automorphisms, homology and the intrinsic polynomial structure of nilpotent groups. (English summary) In the tradition of Ahlfors-Bers. VI, 87–99,
Contemp. Math., 590, Amer. Math. Soc., Providence, RI, 2013.
H. Reza Rostami, About groups with property (U), Armenian journal of mathematics, 3(1) (2008), 14-22.

[19] G.N. Arzhantseva and I.G. Lysenok, A lower bound on the growth of word hyperbolic groups
 Journal of the London Mathematical Society, (2) 73 (2006), 109-125.    abs   pdf
4 citations by

J. Button, Non proper HNN extensions and uniform uniform exponential growth, (2009), arXiv.org:0909.2841
D. Dikranjan, A. Giordano Bruno, Topological Entropy and Algebraic Entropy for group endomorphisms (2013), arXiv:1308.4019
L. Ji, A tale of two groups: arithmetic groups and mapping class groups. Handbook of Teichmüller theory. Volume III, 157–295, IRMA Lect. Math. Theor. Phys., 17, Eur. Math. Soc., Zürich, 2012.
F. Zuddas, Some finiteness results for groups with bounded algebraic entropy, Geom. Dedicata (2009), 49-62.

[20] G.N. Arzhantseva, V.S. Guba, L.Guyot, Growth rates of amenable groups,
Journal of Group Theory, 8 (2005), no.3, 389-394.    abs   ps
5 citations by

I. Benjamini, T. Gelander, An upper bound on the growth of Dirichlet tilings of hyperbolic spaces, (2015), arXiv:1504.05873, online J. Topol. Anal. 0, 1 (2016).
V. Capraro, Amenability, locally finite spaces, and bi-Lipschitz embeddings. Expo. Math. 31 (2013), no. 4, 334–349.
V. Capraro, Topology on locally finite metric spaces (2011), arXiv:1111.0268
T. Ceccherini-Silberstein, R. I. Grigorchuk, and P. de la Harpe, Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces (2016), arXiv:1603.04212
V. Guba, Strict dead-end elements in free soluble groups. Comm. Algebra 36 (2008), no. 5, 1988–1997.

[21] G.N. Arzhantseva, J. Burillo, M. Lustig, L. Reeves, H. Short, E. Ventura, Uniform non-amenability,
 Advances in Mathematics, 197 (2005), no. 2, 499-522.    abs  intro  pdf
27 citations by

S.I. Adyan, V.S. Atabekyan, Characteristic properties and uniform non-amenability of n-periodic products of groups. (Russian) ; translated from Izv. Ross. Akad. Nauk Ser. Mat. 79 (2015), no. 6, 3--17 Izv. Math. 79 (2015), no. 6, 1097–1110
J. Anderson, J. Aramayona, K.J. Shackleton, Amenability and non-uniform growth of some directed automorphism groups of a rooted treeUniformly exponential growth and mapping class groups of surfaces, In the tradition of Ahlfors-Bers. IV, 1-6, Contemp. Math., 432, Amer. Math. Soc., Providence, RI, 2007.  
V. Atabekyan, Uniform nonamenability of subgroups of free Burnside groups of odd period, Math. Notes, 85 (4) (2009), 496-502.
V. Atabekyan, On monomorphisms of free Burnside groups. (Russian) ; translated from Mat. Zametki 86 (2009), no. 4, 483--490 Math. Notes 86 (2009), no. 3-4, 457–462
J. Bannon, M. Ravichandran, A Følner invariant for type II1 factors, Expo. Math. 25 (2007), no. 2, 117-130. MR2319573 (2008c:46090)
L. Bartholdi, A. Erschler, Ordering the space of finitely generated groups. Ann. Inst. Fourier (Grenoble) 65 (2015), no. 5, 2091–2144.
E. Breuillard, T. Gelander, Uniform independence in linear groups, Invent. Math. 173 (2008), no. 2, 225-263. MR2415307 (2009j:20068)
E. Breuillard, T. Gelander, Cheeger constant and algebraic entropy of linear groups, Int. Math. Res. Not. (2005), no. 56, 3511-3523.  MR2200587 (2006m:20061)
E. Breuillard, B. Green, T. Tao, A note on approximate subgroups of GL_n(C) and uniformly nonamenable groups (2011), arXiv:1101.2552
N. Brown, N. Ozawa, C∗-algebras and finite-dimensional approximations. Graduate Studies in Mathematics, 88. American Mathematical Society, Providence, RI, 2008. xvi+509 pp.
J. Burillo, Grups i la paradoxa de Banach-Tarski, Butlletí de la Societat Catalana de Matemàtiques,Vol. 23, núm. 2, 2008. Pàg. 181-199. 
Y. de Cornulier, L. Guyot, W. Pitsch, On the isolated points in the space of groups, J. Algebra 307 (2007), no. 1, 254-277. MR2278053 (2008c:20082)
Y. de Cornulier, L. Guyot. W. Pitsch,  The space of subgroups of an abelian group, (2008), arXiv.org:0811.1549
M. Ershov, Kazhdan quotients of Golod-Shafarevich groups. Proc. Lond. Math. Soc. (3) 102 (2011), no. 4, 599–636.
M. Ershov, A. Jaikin-Zapirain, Kazhdan quotients of Golod-Shafarevich groups, (2009), arXiv:org:0908.3734
L. Guyot, Y. Stalder, Limits of Baumslag-Solitar groups and dimension estimates in the space of marked groups. Groups Geom. Dyn. 6 (2012), no. 3, 533–577.
R. Lyons, M. Pichot, S. Vassout,Uniform non-amenability, cost, and the first l2-Betti number, Groups Geom. Dyn. 2 (2008), no. 4, 595-617. MR2442947 (2009i:20080)
A. Malyshev, Non-amenability of product replacement graphs (2013), arXiv:1305.2408.

A. Malyshev, Combinatorics of finitely generated groups (2014), PhD thesis, UCLA.

A. Malyshev, I. Pak, Growth in product replacement graphs of Grigorchuk groups. J. Group Theory 18 (2015), no. 2, 209–234.
P. Nowak, Isoperimetry of group actions, Adv. Math. 219 (2008), no. 1, 1-26. MR2435418 (2009g:20097)
A.Yu. Olshanskii, M.V. Sapir, On k-free-like groups, Algebra and Logic 48 (2)  (2009), 245-257.
D. Osin, Uniform non-amenability of free Burnside groups, Arch. Math. (Basel) 88 (2007), no. 5, 403-412. MR2316885 (2008e:20067) 
D. Osin,  L2-Betti numbers and non-unitarizable groups without free subgroups, Int. Math. Res. Not. IMRN2009, no. 22, 4220-4231. MR2552302 (2010k:22007)
M. Pichot,  Semi-continuity of the first l2-Betti number on the space of finitely generated groups, Comment. Math. Helv. 81 (2006), no. 3, 643-652. MR2250857 (2007e:20089)
Y. Stalder, Convergence of Baumslag-Solitar groups, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 2, 221-233. MR2259902 (2008f:20047)
R. Willett, Property A and graphs with large girth. J. Topol. Anal. 3 (2011), no. 3, 377–384.

[22] G.N. Arzhantseva and P.-A. Cherix, On the Cayley graph of a generic finitely presented group,
 Bulletin of the Belgian Mathematical Society, 11 (2004), no. 4, 589-601.   abs  intro  ps  
10 citations by

T. G. Ceccherini-Silberstein, A. Y. Samet-Vaillant, Asymptotic invariants of finitely generated algebras. A generalization of Gromov's quasi-isometric viewpoint, Journal of Mathematical Sciences, 156 (1) (2009), 56-108.
A. Georgakopoulos, M. Hamann, The planar Cayley graphs are effectively enumerable (2015), arXiv:1506.03361
E. Frenkel, A. Myasnikov, V. Remeslennikov, Amalgamated products of groups II: measures of random normal forms (2011), arXiv:1107.4079
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent groups. J. Algebra 352 (2012), 192–214.
I. Kapovich, P. Schupp, On group-theoretic models of randomness and genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404. MR2415305 (2009k:20102)
Y. Kemper, Problems of enumeration and realizability on matroids, simplicial complexes, and graphs, (2013), PhD thesis, U Calirfornia Davis.
A. Myasnikov, V. Remeslennikov, E. Frenkel′, Free products of groups with amalgamation: stratification of sets of normal forms and estimates. (Russian) ; translated from Fundam. Prikl. Mat. 16 (2010), no. 8, 189--221 J. Math. Sci. (N.Y.) 185 (2012), no. 2, 300–320.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp. 
Y. Ollivier, Sharp phase transition theorems for hyperbolicity,  Geom. Funct. Anal. 14 (2004), no. 3, 595—679. MR2100673 (2005m:20101)
M. Ostrovskii, D. Rosenthal, Metric dimensions of minor excluded graphs and minor exclusion in groups. Internat. J. Algebra Comput. 25 (2015), no. 4, 541–554.

[23] G.N. Arzhantseva and I.G. Lysenok, Growth tightness for word hyperbolic groups,
  Mathematische Zeitschrift, 241 (2002), no. 3, 597--611.   abs  intro  pdf  
28 citations by

L. Bartholdi, R. Grigorchuk, V. Nekrashevych, From fractal groups to fractal sets, Fractals in Graz 2001, 25-118,
Trends Math., Birkhäuser, Basel, 2003. MR2091700 (2005h:20056)
Ch. Cashen, J. Tao, Growth tight actions of product groups. Groups Geom. Dyn. 10 (2016), no. 2, 753–770.
T. Ceccherini-Silberstein, F. Scarabotti, Random walks, entropy and hopfianity of free groups, Random walks and geometry, 413-419, Walter de Gruyter GmbH & Co. KG, Berlin, 2004. MR2087792 (2005h:60131)
T. Ceccherini-Silberstein, W. Woess,  Growth and ergodicity of context-free languages<, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4597-4625. MR1926891 (2003g:68067)
V. Chaynikov, Actions of maximal growth of hyperbolic groups (2012), arXiv:1201.1349
R. Coulon, Growth of periodic quotients of hyperbolic groups. Algebr. Geom. Topol. 13 (2013), no. 6, 3111–3133.
F. Dal’bo, M. Peigné, J.-C. Picaud, A. Sambusetti, On the growth of quotients of Kleinian groups. Ergodic Theory Dynam. Systems 31 (2011), no. 3, 835–851.
F. Dahmani, D. Futer, D. T. Wise, Growth of quasiconvex subgroups (2016), arXiv:1602.08085
A. Erschler, Growth rates of small cancellation groups, Random walks and geometry, 421-430, Walter de Gruyter GmbH & Co. KG, Berlin, 2004. MR2087793 (2005f:20061)
S. Gouezel , F. Matheus, F. Maucourant, Entropy and drift in word hyperbolic groups (2015), arXiv:1501.05082
P. de la Harpe, Uniform growth in groups of exponential growth, Geom. Dedicata 95 (2002), 1-17. MR1950882 (2003k:20031)
P. de la Harpe,  Topics in geometric group theory, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. vi+310 pp. MR1786869 (2001i:20081)
W. Huss, E. Sava, W. Woess, Entropy sensitivity of languages defined by infinite automata, via Markov chains with forbidden transitions. Theoret. Comput. Sci. 411 (2010), no. 44-46, 3917–3922.
J. Jaerisch, K. Matsuzaki, Growth and cogrowth of normal subgroups of a free group (2015), arXiv:1512.04237
B. Mramor, Minimisers of the Allen-Cahn equation and the asymptotic Plateau problem on hyperbolic groups (2015), arXiv:1508.06751
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp. 
Y. Ollivier,  Growth exponent of generic groups, Comment. Math. Helv. 81 (2006), no. 3, 569-593. MR2250854 (2007d:20120)
S. Sabourau, Growth of quotients of groups acting by isometries on Gromov-hyperbolic spaces. J. Mod. Dyn. 7 (2013), no. 2, 269–290.
A. Sambusetti,  Asymptotic properties of coverings in negative curvature, Geom. Topol. 12 (2008), no. 1, 617-637. MR90354 (2009g:53058)
A. Sambusetti,  Growth tightness of negatively curved manifolds, C. R. Math. Acad. Sci. Paris 336 (2003), no. 6, 487-491. MR1975085 (2004a:53048)
A. Sambusetti,  Growth tightness of surface groups, Expo. Math. 20 (2002), no. 4, 345-363. MR1940012 (2003k:57004)
A. Sambusetti, Growth tightness in group theory and Riemannian geometry, in "Recent Advances in Geometry and Topology,'' Cluj Univ. Press, Cluj-Napoca, (2004), 341-352.
A. Talambutsa,  Attainability of the index of exponential growth in free products of cyclic groups, Math. Notes 78 (2005), no. 3-4, 569-572. MR2226734 (2007a:20028)
W. Yang, Growth tightness for groups with contracting elements. Math. Proc. Cambridge Philos. Soc. 157 (2014), no. 2, 297–319.
W. Yang, Patterson-Sullivan measures and growth of relatively hyperbolic groups (2013), arXiv:1308.6326
W. Yang, Growth tightness of groups with nontrivial Floyd boundary (2013), arXiv:1301.5623v1
W. Yang, Statistically convex-cocompact actions of groups with contracting elements (2016), arXiv:1612.03648
W. Yang, Purely exponential growth of cusp-uniform actions (2016), arXiv:1602.07897

[24] G.N. Arzhantseva and D.V. Osin, Solvable groups with polynomial Dehn functions,
 Transactions of the American Mathematical Society, 354 (2002), 3329-3348.    abs  intro  pdf  
15 citations by

N. Brady, W. Dison, T. Riley, Hyperbolic hydra. Groups Geom. Dyn. 7 (2013), no. 4, 961–976.
N. Broaddus, B. Farb, A. Putman, Irreducible Sp-representations and subgroup distortion in the mapping class group. Comment. Math. Helv. 86 (2011), no. 3, 537–556.
M. Cavaleri, Computability of Folner sets (2016), arXiv:1606.04293
S. Cleary, C. Martínez-Pérez, Undistorted embeddings of metabelian groups of finite Prüfer rank. New York J. Math. 21 (2015), 1027–1053.

Y. de Cornulier, Aspects de la géométrie des groupes, Habilitation thesis, (2014), University of Paris-Sud 11.
Y. de Cornulier, R. Tessera, Metabelian groups with quadratic Dehn function and Baumslag-Solitar groups. Confluentes Math. 2 (2010), no. 4, 431–443.
P. Davidson, Geometric methods in the study of Pride groups and relative presentations,  (2008), PhD thesis, University of Glasgow. http://theses.gla.ac.uk/230/01/2008davidsonphd.pdf
W. Dison, T.R. Riley, Hydra groups. Comment. Math. Helv. 88 (2013), no. 3, 507–540.

C. Drutu, Filling in solvable groups and in lattices in semisimple groups, Topology 43 (2004), no. 5, 983-1033. MR2079992 (2005h:20078)

R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of high dimensional graph manifolds. Astérisque No. 372 (2015), xxi+177 pp.
R. Ji, C. Ogle, B. Ramsey, B-bounded cohomology and applications. Internat. J. Algebra Comput. 23 (2013), no. 1, 147–204.
D. Kahrobaei, M. Anshel, Decision and search in non-abelian Cramer-Shoup public key cryptosystem. Groups Complex. Cryptol. 1 (2009), no. 2, 217–225.
M. Kassabov, T. Riley, The Dehn function of Baumslag's metabelian group. Geom. Dedicata 158 (2012), 109–119.
E. Leuzinger, Ch. Pittet, On quadratic Dehn functions, Math. Z. 248 (2004), no. 4, 725-755. MR2103539 (2005j:20050)
R. Tessera, The large-scale geometry of locally compact solvable groups. Internat. J. Algebra Comput. 26 (2016), no. 2, 249–281.

[25] G.N. Arzhantseva, On quasiconvex subgroups of word hyperbolic groups,
 Geometriae Dedicata, 87 (2001), 191-208.    abs  intro  pdf 
25 citations by  


V. Chaynikov, Actions of maximal growth of hyperbolic groups (2012), arXiv:1201.1349
F. Dahmani, D. Futer, D. T. Wise, Growth of quasiconvex subgroups (2016), arXiv:1602.08085
T. Delzant, M. Gromov, Cuts in Kähler groups, Infinite groups: geometric, combinatorial and dynamical aspects, 31-55, Progr. Math., 248, Birkhäuser, Basel, 2005. MR2195452 (2006j:32023)
F. Dudkin, K. Sviridov, Complementing a subgroup of a hyperbolic group by a free factor. (Russian) ; translated from Algebra Logika 52 (2013), no. 3, 332--351, 395, 398 Algebra Logic 52 (2013), no. 3, 222–235
B. Farb, L. Mosher, Convex cocompact subgroups of mapping class groups, Geom. Topol. 6 (2002), 91-152 (electronic). MR1914566 (2003i:20069)
S. Friedl, D. Silver, S. Williams, Splittings of knot groups. Math. Ann. 362 (2015), no. 1-2, 401–424.
R. Gitik, On intersection of conjugate subgoups (2016), arXiv:1609.07924
Y. Glasner, J. Souto, P. Storm, Normal complements to hyperbolic subgroup, (2009), preprint. https://www.math.bgu.ac.il/~yairgl/Hyp_qc.pdf
P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. vi+310 pp. MR1786869 (2001i:20081)
S. Hersonsky, F. Paulin, On the almost sure spiraling of geodesics in negatively curved manifolds. J. Differential Geom. 85 (2010), no. 2, 271–314.
E. Jabara, Groups that are the union of a finite number of double cosets, Rend. Sem. Mat. Univ. Padova 116 (2006), 41-53. MR2287342 (2008c:20056)
I. Kapovich, R. Weidmann, Kleinian groups and the rank problem, Geom. Topol. 9 (2005), 375-402. MR2140986 (2006d:20079)
I. Kapovich, The Frattini subgroups of subgroups of hyperbolic groups, J. Group Theory 6 (2003), no. 1, 115-126. MR1953799 (2003j:20075)
I. Kapovich, The non-amenability of Schreier graphs for infinite index quasiconvex subgroups of hyperbolic groups, Enseign. Math. (2) 48 (2002), no. 3-4, 359-375. MR1955607 (2003j:20074)
I. Kapovich, The geometry of relative Cayley graphs for subgroups of hyperbolic groups, (2002), arXiv:math/0201045
A. Kar, M. Sageev, Ping pong on CAT(0) cube complexes. Comment. Math. Helv. 91 (2016), no. 3, 543–561.
O. Kharlampovich, A. Vdovina, Linear estimates for solutions of quadratic equations in free groups. Internat. J. Algebra Comput. 22 (2012), no. 1, 1250004, 16 pp.
O. Kharlampovich, A. Mohajeri, A. Taam, A. Vdovina, Quadratic Equations in Hyperbolic Groups are NP-complete (2013), arXiv:1306.0941
E. Martínez-Pedroza, Combination of quasiconvex subgroups of relatively hyperbolic groups, Groups Geom. Dyn. 3 (2009), no. 2, 317-342. MR2486802
A. Minasyan, Some properties of subsets of hyperbolic groups, Comm. Algebra 33 (2005), no. 3, 909-935. MR2128420 (2006c:20088)
A. Minasyan, On products of quasiconvex subgroups in hyperbolic groups, Internat. J. Algebra Comput. 14 (2004), no. 2, 173-195. MR2058319 (2005a:20063)
A. Minasyan, On quasiconvex subsets of hyperbolic groups, (2005), PhD thesis, Vanderbilt University.
M. Ostrovskii, Metric characterizations of superreflexivity in terms of word hyperbolic groups and finite graphs (2013), arXiv:1312.4627
D. Wise, From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry. CBMS Regional Conference Series in Mathematics, 117. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2012. xiv+141 pp.
D. Wise, The structure of groups with a quasiconvex hierarchy, (2011), preprint.

[26] G.N. Arzhantseva, A property of subgroups of infinite index in a free group, Proceedings of the American Mathematical Society, 128 (11) (2000),  3205-3210.   abs  intro  pdf  
26 citations by  

F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, Statistical properties of subgroups of free groups. Random Structures Algorithms 42 (2013), no. 3, 349–373.
F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, On two distributions of subgroups of free groups, Proceedings of the Seventh Workshop on Analytic Algorithmics and Combinatorics (ANALCO), 82–89, SIAM, Philadelphia, PA, 2010.
F. Bassino, A. Martino, C. Nicaud, P. Weil
, Random presentations and random subgroups: a survey (2017), arXiv:1702.01942
H. Bigdely, A non-quasiconvex embedding of relatively hyperbolic groups, (2012), arXiv:1211.2730
A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, Generic complexity of the conjugacy problem in HNN-extensions and algorithmic stratification of Miller's groups, Internat. J. Algebra Comput. 17 (2007), no. 5-6, 963-997. MR2355678 (2008m:20046)
A.V. Borovik, A.G. Myasnikov, V.N. Remeslennikov, Multiplicative measures on free groups, Internat. J. Algebra Comput. 13 (2003), no. 6, 705-731. MR2028100 (2004k:20051)
A. Borovik, A.G. Myasnikov, V. Shpilrain, Measuring sets in infinite groups, Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001), 21-42, Contemp. Math., 298, Amer. Math. Soc., Providence, RI, 2002. MR1929714 (2003m:20024)
L. Ciobanu, A. Martino, E. Ventura, The generic Hanna Neumann Conjecture and Post correspondence problem, (2008), preprint.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent groups. J. Algebra 352 (2012), 192–214.
J. Friedman, Sheaves on graphs, their homological invariants, and a proof of the Hanna Neumann conjecture: with an appendix by Warren Dicks. With an appendix by Warren Dicks. Mem. Amer. Math. Soc. 233 (2015), no. 1100, xii+106 pp.
J. Friedman, The Strengthened Hanna Neumann Conjecture I: A Combinatorial Proof, (2010), arXiv:1003.5739v3 
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic theorem and generic stretching factors for free group automorphisms, Israel J. Math. 157 (2007), 1-46. MR2342439 (2009d:20099)
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case complexity and decision problems in group theory, Adv. Math. 190 (2005), no. 2, 343-359. MR2102661 (2005i:20053)
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case complexity, decision problems in group theory, and random walks, J. Algebra 264 (2003), no. 2, 665-694. MR1981427 (2005m:20080)
I. Kapovich, P. Schupp, Random quotients of the modular group are rigid and essentially incompressible, J. Reine Angew. Math. 628 (2009), 91-119. MR2503236
I. Kapovich, P. Schupp, On group-theoretic models of randomness and genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404. MR2415305 (2009k:20102)
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups, Pacific J. Math. 223 (2006), no. 1, 113-140. MR2221020 (2007e:20068)
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4, 911-933. MR2182705 (2007d:20062)
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii method and the isomorphism problem for one-relator groups, Math. Ann. 331 (2005), no. 1, 1-19. MR2107437 (2005h:20079)
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups, Artin groups and one-relator groups with torsion, Proc. London Math. Soc. (3) 88 (2004), no. 1, 89-113. MR2018959 (2005a:20061)
O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for quasi-convex subgroups (2014), arXiv:1408.1917
S. Margolis, J. Meakin, Z. Sunik, Distortion functions and the membership problem for submonoids of groups and monoids, Geometric methods in group theory, 109-129, Contemp. Math., 372, Amer. Math. Soc., Providence, RI, 2005. MR2139682 (2005m:20141)
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp.
M. Sapir,
Asymptotic invariants, complexity of groups and related problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.
B. Solie, Genericity of filling elements. Internat. J. Algebra Comput. 22 (2012), no. 2, 1250008, 10 pp.
B. Steinberg, On a conjecture of Karrass and Solitar. J. Group Theory 17 (2014), no. 3, 433–444

[27] G.N. Arzhantseva, Generic properties of finitely presented groups and Howson's Theorem,
 Communications in Algebra, 26 (11) (1998), 3783-3792.    mathscinet  intro  
29 citations by 

V. Araújo, P. Silva, M. Sykiotis, Finiteness results for subgroups of finite extensions. J. Algebra 423 (2015), 592–614.
G. Baumslag, B. Fine, M. Kreuzer, G. Rosenberger, A course in mathematical cryptography. De Gruyter, Berlin, 2015. xiii+376 pp.
I. Bumagin, On small cancellation k-generated groups with (k-1)-generated subgroups all free, Internat. J. Algebra Comput. 11 (2001), no. 5, 507-524. MR1869228 (2003a:20052)
T. G. Ceccherini-Silberstein, A. Y. Samet-Vaillant, Asymptotic invariants of finitely generated algebras. A generalization of Gromov's quasi-isometric viewpoint, Journal of Mathematical Sciences, 156 (1) (2009), 56-108.
B. Fine, M. Habeeb, D. Kahrobaei, G. Rosenberger, Aspects of nonabelian group based cryptography: a survey and open problems. JP J. Algebra Number Theory Appl. 21 (2011), no. 1, 1–40.
B. Fine, A. Myasnikov, G. Rosenberger, Generic subgroups of group amalgams, Groups Complex. Cryptol. 1 (2009), no. 1, 51-61. MR2502936
E. Frenkel, A.G. Myasnikov, V.N. Remeslennikov, Regular sets and counting in free groups. Combinatorial and geometric group theory, 93–118, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2010.
R. Gilman, A. Miasnikov, D. Osin, Exponentially generic subsets of groups. Illinois J. Math. 54 (2010), no. 1, 371–388. (2010),
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent groups. J. Algebra 352 (2012), 192–214.
E. Ghys, Random groups (following Misha Gromov, ...), Astérisque No. 294 (2004), viii, 173-204. MR2111644 (2005j:20049)
P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000. vi+310 pp. MR1786869 (2001i:20081)
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic theorem and generic stretching factors for free group automorphisms, Israel J. Math. 157 (2007), 1-46. MR2342439 (2009d:20099)
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case complexity and decision problems in group theory, Adv. Math. 190 (2005), no. 2, 343-359. MR2102661 (2005i:20053)
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case complexity, decision problems in group theory, and random walks, J. Algebra 264 (2003), no. 2, 665-694. MR1981427 (2005m:20080)
I. Kapovich, I. Rivin, P. Schupp, V. Shpilrain, Densities in free groups and Zk, visible points and test elements, Math. Res. Lett. 14 (2007), no. 2, 263-284.
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4, 911-933. MR2182705 (2007d:20062)
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii method and the isomorphism problem for one-relator groups, Math. Ann. 331 (2005), no. 1, 1-19. MR2107437 (2005h:20079)
I. Kapovich, P. Schupp, On group-theoretic models of randomness and genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404. MR2415305 (2009k:20102)
I. Kapovich, P. Schupp, Random quotients of the modular group are rigid and essentially incompressible, J. Reine Angew. Math. 628 (2009), 91-119. MR2503236
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups, Artin groups and one-relator groups with torsion, Proc. London Math. Soc. (3) 88 (2004), no. 1, 89-113. MR2018959 (2005a:20061)
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups, Pacific J. Math. 223 (2006), no. 1, 113-140. MR2221020 (2007e:20068)
I. Kapovich, R. Weidmann, Freely indecomposable groups acting on hyperbolic spaces, Internat. J. Algebra Comput. 14 (2004), no. 2, 115-171. MR2058318 (2005f:20079)

O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for quasi-convex subgroups (2014), arXiv:1408.1917
M. Lustig, Y. Moriah, Horizontal Dehn surgery and genericity in the curve complex. J. Topol. 3 (2010), no. 3, 691–712.
A. Miasnikov, A. Ushakov, Generic case completeness. J. Comput. System Sci. 82 (2016), no. 8, 1268–1282.
Y. Ollivier, Sharp phase transition theorems for hyperbolicity,  Geom. Funct. Anal. 14 (2004), no. 3, 595-679. MR2100673 (2005m:20101)
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp. 
Y. Ollivier, Critical densities for random quotients of hyperbolic groups, C. R. Math. Acad. Sci. Paris 336 (2003), no. 5, 391-394.
B. Solie, Genericity of filling elements, Internat. J. Algebra Comput. 22 (2012), no. 2, 1250008, 10 pp.

[28] G.N.Arzhantseva, On groups in which subgroups with a fixed number of generators are free,
 Fundamental and Applied Mathematics,  3(3) (1997), 675-683 (in Russian).     abs  
19 citations by

Yu. Bahturin, A. Olshanskii, Actions of maximal growth, Proc. London Math. Soc. (2010) 101(1): 27-72
I. Bumagin, On small cancellation k-generated groups with (k-1)-generated subgroups all free, Internat. J. Algebra Comput. 11 (2001), no. 5, 507-524. MR1869228 (2003a:20052)
S. Cleary, M. Elder, A. Rechnitzer, J. Taback, Random subgroups of Thompson's group F. Groups Geom. Dyn. 4 (2010), no. 1, 91–126.
E. Frenkel, A.G. Myasnikov, V.N. Remeslennikov, Regular sets and counting in free groups, (2009), arXiv:0906.2850
R. Gilman, A. Miasnikov, D. Osin, Exponentially generic subsets of groups, Illinois J. Math. 54 (2010), no. 1, 371–388.
E. Ghys, Random groups (following Misha Gromov, ...), Astérisque No. 294 (2004), viii, 173-204. MR2111644 (2005j:20049)
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic theorem and generic stretching factors for free group automorphisms, Israel J. Math. 157 (2007), 1-46. MR2342439 (2009d:20099) 
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case complexity and decision problems in group theory, Adv. Math. 190 (2005), no. 2, 343-359. MR2102661 (2005i:20053)
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case complexity, decision problems in group theory, and random walks, J. Algebra 264 (2003), no. 2, 665-694. MR1981427 (2005m:20080)
I. Kapovich, I. Rivin, P. Schupp, V. Shpilrain, Densities in free groups and Zk, visible points and test elements, Math. Res. Lett. 14 (2007), no. 2, 263-284.
I. Kapovich, P. Schupp, Random quotients of the modular group are rigid and essentially incompressible, J. Reine Angew. Math. 628 (2009), 91-119. MR2503236
I. Kapovich, P. Schupp, On group-theoretic models of randomness and genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404. MR2415305 (2009k:20102)
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii method and the isomorphism problem for one-relator groups, Math. Ann. 331 (2005), no. 1, 1-19. MR2107437 (2005h:20079)
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4, 911-933. MR2182705 (2007d:20062)
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups, Artin groups and one-relator groups with torsion, Proc. London Math. Soc. (3) 88 (2004), no. 1, 89-113. MR2018959 (2005a:20061)
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups, Pacific J. Math. 223 (2006), no. 1, 113-140. MR2221020 (2007e:20068)
I. Kapovich, R. Weidmann, Nielsen equivalence in a class of random groups. J. Topol. 9 (2016), no. 2, 502–534.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp.
M. Sapir, Asymptotic invariants, complexity of groups and related problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.

[29] G.N. Arzhantseva and A.Yu. Ol'shanskii, Generality of the class of groups in which subgroups
with a lesser number of generators are free,  Mathematical Notes, 59(3-4) (1996), 350-355.    mathscinet  pdf  
53 citations by

Y. Antolín, L. Ciobanu, N. Viles, On the asymptotics of visible elements and homogeneous equations in surface groups. Groups Geom. Dyn. 6 (2012), no. 4, 619–638.
T. Bandman, Sh. Garion, B. Kunyavskiĭ, Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics. Cent. Eur. J. Math. 12 (2014), no. 2, 175–211.
T. Bandman, B. Kunyavskiĭ, Criteria for equidistribution of solutions of word equations on SL(2). J. Algebra 382 (2013), 282–302.
F. Bassino, A. Martino, C. Nicaud, P. Weil, Random presentations and random subgroups: a survey (2017), arXiv:1702.01942
F. Bassino, A. Martino, C. Nicaud, E. Ventura, P. Weil, Statistical properties of subgroups of free groups. Random Structures Algorithms 42 (2013), no. 3, 349–373.

F. Bassino, C. Nicaud, P. Weil, On the genericity of Whitehead minimality. J. Group Theory 19 (2016), no. 1, 137–159.

F. Bassino, C. Nicaud, P. Weil, Generic properties of subgroups of free groups and finite presentations, Algebra and Computer Science, 677, American Mathematical Society, pp.1-44, 2016. Contemporary Mathematics.
G. Bergman, On monoids, 2-firs, and semifirs. Semigroup Forum 89 (2014), no. 2, 293–335.
I. Bumagin, On small cancellation k-generated groups with (k-1)-generated subgroups all free, Internat. J. Algebra Comput. 11 (2001), no. 5, 507-524. MR1869228 (2003a:20052)
Ch. Cashen, J. Manning, Virtual geometricity is rare. LMS J. Comput. Math. 18 (2015), no. 1, 444–455.
T. Ceccherini-Silberstein, A. Samet-Vaillant, Asymptotic invariants of finitely generated algebras. A generalization of Gromov's quasi-isometric viewpoint. Functional analysis. J. Math. Sci. (N.Y.) 156 (2009), no. 1, 56–108.
S. Cleary, M. Elder, A. Rechnitzer, J. Taback, Random subgroups of Thompson's group F. Groups Geom. Dyn. 4 (2010), no. 1, 91–126.
E. Frenkel, A.G. Myasnikov, V.N. Remeslennikov, Regular sets and counting in free groups, (2009), arXiv:0906.2850
E. Ghys, Random groups (following Misha Gromov, ...), Astérisque No. 294 (2004), viii, 173-204. MR2111644 (2005j:20049)

R. Gilman, A. Miasnikov, D. Osin, Exponentially generic subsets of groups, Illinois J. Math. 54 (2010), no. 1, 371–388.
R. Gilman, A. Myasnikov, V. Roman'kov, Random equations in nilpotent groups. J. Algebra 352 (2012), 192–214.
N. Gupta, I. Kapovich, The primitivity index function for a free group, and untangling closed curves on hyperbolic surfaces. With an appendix by Khalid Bou-Rabee (2014), arXiv:1411.5523
L. Guyot, Estimating Minkowski dimensions in the space of marked groups, Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), no. 1, 107-124. MR2325594 (2008e:20063)
P. de la Harpe, Uniform growth in groups of exponential growth, Geom. Dedicata 95 (2002), 1-17. MR1950882 (2003k:20031)
A. Juhász, A Freiheitssatz for Whitehead graphs of one-relator groups with small cancellation. Comm. Algebra 37 (2009), no. 8, 2714–2741.
V. Kaimanovich, I. Kapovich, P. Schupp, The subadditive ergodic theorem and generic stretching factors for free group automorphisms, Israel J. Math. 157 (2007), 1-46. MR2342439 (2009d:20099)
Kapovich, Ilya On mathematical contributions of Paul E. Schupp. Illinois J. Math. 54 (2010), no. 1, 1–9.
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Average-case complexity and decision problems in group theory, Adv. Math. 190 (2005), no. 2, 343-359. MR2102661 (2005i:20053)
I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, Generic-case complexity, decision problems in group theory, and random walks, J. Algebra 264 (2003), no. 2, 665-694. MR1981427 (2005m:20080)
I. Kapovich, I. Rivin, P. Schupp, V. Shpilrain, Densities in free groups and Zk, visible points and test elements, Math. Res. Lett. 14 (2007), no. 2, 263-284.
I. Kapovich, P. Schupp, Random quotients of the modular group are rigid and essentially incompressible, J. Reine Angew. Math. 628 (2009), 91-119. MR2503236
I. Kapovich, P. Schupp, On group-theoretic models of randomness and genericity, Groups Geom. Dyn. 2 (2008), no. 3, 383-404. MR2415305 (2009k:20102)
I. Kapovich, P. Schupp, Delzant's T-invariant, Kolmogorov complexity and one-relator groups, Comment. Math. Helv. 80 (2005), no. 4, 911-933. MR2182705 (2007d:20062)
I. Kapovich, P. Schupp, Genericity, the Arzhantseva-Ol'shanskii method and the isomorphism problem for one-relator groups, Math. Ann. 331 (2005), no. 1, 1-19. MR2107437 (2005h:20079)
I. Kapovich, P. Schupp, Bounded rank subgroups of Coxeter groups, Artin groups and one-relator groups with torsion, Proc. London Math. Soc. (3) 88 (2004), no. 1, 89-113. MR2018959 (2005a:20061)
I. Kapovich, P. Schupp, V. Shpilrain, Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups, Pacific J. Math. 223 (2006), no. 1, 113-140. MR2221020 (2007e:20068)
I. Kapovich, R. Weidmann, Kleinian groups and the rank problem, Geom. Topol. 9 (2005), 375-402. MR2140986 (2006d:20079)
I. Kapovich, R. Weidmann, Freely indecomposable groups acting on hyperbolic spaces, Internat. J. Algebra Comput. 14 (2004), no. 2, 115-171. MR2058318 (2005f:20079)
I. Kapovich, R. Weidmann, Nielsen equivalence in a class of random groups. J. Topol. 9 (2016), no. 2, 502–534.

O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for quasi-convex subgroups (2014), arXiv:1408.1917

S. Kim, Ch. Staecker, Dynamics of random selfmaps of surfaces with boundary. Discrete Contin. Dyn. Syst. 34 (2014), no. 2, 599–611.
I. Kozakov, Percolation and Ising model on graphs with tree-like structure, (2008), PhD thesis, Vanderbilt University.
J. Mackay, Conformal dimension and random groups. Geom. Funct. Anal. 22 (2012), no. 1, 213–239.

A. Mann, How groups grow. London Mathematical Society Lecture Note Series, 395. Cambridge University Press, Cambridge, 2012. x+199 pp.
S. Margolis, J. Meakin, Z. Sunik, Distortion functions and the membership problem for submonoids of groups and monoids, Geometric methods in group theory, 109-129, Contemp. Math., 372, Amer. Math. Soc., Providence, RI, 2005. MR2139682 (2005m:20141)
L. Markus-Epstein, Stallings foldings and subgroups of amalgams of finite groups, Internat. J. Algebra Comput. 17 (2007), no. 8, 1493-1535. MR2378049 (2009c:20044)
A. Myasnikov, V. Shpilrain, A. Ushakov, Group-based cryptography, Birkhäuser, 2008.
Y. Ollivier, Sharp phase transition theorems for hyperbolicity,  Geom. Funct. Anal. 14 (2004), no. 3, 595-679. MR2100673 (2005m:20101)
Y. Ollivier, Critical densities for random quotients of hyperbolic groups, C. R. Math. Acad. Sci. Paris 336 (2003), no. 5, 391-394.
Y. Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos, 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp.

M. Sapir, Asymptotic invariants, complexity of groups and related problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364.
P. Schupp, Coxeter groups, 2-completion, perimeter reduction and subgroup separability, Geom. Dedicata 96 (2003), 179-198. MR1956839 (2003m:20052)
I. Snopce, S. Tanushevski, Asymptotic density of test elements in free groups and surface groups (2015), arXiv:1509.02435, to appear in Int Math Res Notices 2016, 1-14.
B. Solie, Genericity of filling elements. Internat. J. Algebra Comput. 22 (2012), no. 2, 1250008, 10 pp.
Ch. Staecker, Typical elements in free groups are in different doubly-twisted conjugacy classes. Topology Appl. 157 (2010), no. 10-11, 1736–1741.
M. Steenbock, Rips-Segev torsion-free groups without the unique product property. J. Algebra 438 (2015), 337–378.
R. Weidmann, On the rank of quotients of hyperbolic groups. J. Group Theory 16 (2013), no. 5, 651–665.
D.T. Wise, Sectional curvature, compact cores, and local quasiconvexity, Geom. Funct. Anal. 14 (2004), no. 2, 433-468. MR2062762 (2005i:53043)

[30] G.N. Arzhantseva, Generic properties of finitely presented groups,
PhD thesis, Moscow Lomonosov State University, December 1998.

Books (edited):

[31]  G.N. Arzhantseva, A.Valette (eds.), Limits of graphs in group theory and computer science,
Fundamental Sciences, EPFL Press, Lausanne, 2009, 305 pp.    book

[32] G.N. Arzhantseva, L. Bartholdi, J. Burillo, and E. Ventura (eds.), Geometric group theory,
Trends in Mathematics, Birkhäuser Verlag, Basel,  2007, 253 pp.   book

Submitted papers and preprints:

[33] G.N. Arzhantseva, R. Tessera, Admitting a coarse embedding is not preserved under group extensions, (2016), submitted.    pdf

[34] G.N. Arzhantseva, M. Hagen, Acylindrical hyperbolicity of cubical small-cancellation groups, (2016), submitted.    pdf

[35] G.N. Arzhantseva, Ch. Cashen, D. Gruber, D. Hume, Contracting geodesics in infinitely presented graphical small cancellation groups,
(2016), submitted.    pdf
4 citations by 

T. Aougab, M. Durham, S. Taylor, Middle recurrence and pulling back stability, (2016), arXiv:1609.06698.
M. Cordes, D. Hume, Relatively hyperbolic groups with fixed peripherals (2016), arXiv:1609.05154
M. Cordes, D. Hume
, Stability and the Morse boundary (2016), arXiv:1606.00129
W. Yang, Statistically convex-cocompact actions of groups with contracting elements (2016), arXiv:1612.03648

[36] G.N. Arzhantseva, Ch. Cashen, D. Gruber, D. Hume, Characterizations of Morse quasi-geodesics via superlinear divergence and sublinear contraction,
(2016), submitted.    pdf
2 citations by 

T. Aougab, M. Durham, S. Taylor, Middle recurrence and pulling back stability, (2016), arXiv:1609.06698.
M. Cordes, D. Hume, Stability and the Morse boundary (2016), arXiv:1606.00129

[37] G.N. Arzhantseva, M. Steenbock, Rips construction without unique product, (2014), submitted.    pdf
5 citations by 

M. Finn-Sell, Almost quasi-isometries and more non-exact groups (2015), arXiv:1506.08424
D. Gruber, A. Martin, M. Steenbock, Finite index subgroups without unique product in graphical small cancellation groups. Bull. Lond. Math. Soc. 47 (2015), no. 4, 631–638.
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic (2014), arXiv:1411.7367
S. Kionke, J. Raimbault, N. Dunfield, On geometric aspects of diffuse groups (2014), arXiv:1411.6449
A. Martin, M. Steenbock, A combination theorem for cubulation in small cancellation theory over free products (2014), arXiv:1409.3678

[38] G.N. Arzhantseva, D. Osajda, Graphical small cancellation groups with the Haagerup property, (2014), submitted.    pdf
5 citations by 

V. Alekseev, M. Finn-Sell, Sofic boundaries of groups and coarse geometry of sofic approximations, (2016), arXiv.org:1608.02242.
P. Baum, E. Guentner, R. Willett, Exactness and the Kadison-Kaplansky conjecture, Operator algebras and their applications, 1-33, Contemp. Math., 671, Amer. Math. Soc., Providence, RI, 2016.
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic (2014), arXiv:1411.7367
S. Knudby, On connected Lie groups and the Approximation Property (2016), arXiv:1603.05518
D. Osajda, Small cancellation labellings of some infinite graphs and applications, (2014), arXiv.org:1406.5015

[39] G.N. Arzhantseva, S. Gal, On approximation properties of semidirect products of groups, (2013).     pdf
1 citation by 

F. Berlai, Residual properties of free products, Comm. Algebra 44 (2016), no. 7, 2959–2980.

[40] G.N. Arzhantseva, C. Drutu, Geometry of infinitely presented small cancellation groups, Rapid Decay and quasi-homomorphisms, (2012).     pdf   
5 citations by 

M. Brandenbursky, S. Gal, J. Kędra, M. Marcinkowski, The cancellation norm and the geometry of bi-invariant word metrics. Glasg. Math. J. 58 (2016), no. 1, 153–176.
I. Chatterji, Introduction to the Rapid Decay property (2016), arXiv:1604.06387
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic (2014), arXiv:1411.7367
A. Martin, Complexes of groups and geometric small cancellation over graphs of groups, (2013), arXiv:1306.6847v2
M. Sapir, The rapid decay property and centroids in groups. J. Topol. Anal. 7 (2015), no. 3, 513–541.

[41] G.N. Arzhantseva and T. Delzant, Examples of random groups, (2008):
first version (October 28, 2008), revised version (August 26, 2011). 
     pdf
46 citations by

A. Bartels, W. Luck, The Borel conjecture for hyperbolic and CAT(0)-groups. Ann. of Math. (2) 175 (2012), no. 2, 631–689.
P. Baum, Dirac operator and K-theory for discrete groups. A celebration of the mathematical legacy of Raoul Bott, 97–107, CRM Proc. Lecture Notes, 50, Amer. Math. Soc., Providence, RI, 2010.

P. Baum, E. Guentner, R. Willett, Exactness and the Kadison-Kaplansky conjecture, Operator algebras and their applications, 1-33, Contemp. Math., 671, Amer. Math. Soc., Providence, RI, 2016.
P. Baum, E. Guentner, R. Willett, Expanders, exact crossed products, and the Baum-Connes conjecture (2013), arXiv:1311.2343
J. Brodzki, Ch. Cave, K. Li, Exactness of locally compact groups (2016), arXiv:1603.01829
M. Cordes, D. Hume, Stability and the Morse boundary (2016), arXiv:1606.00129
Y. de Cornulier, Y. Stalder, A. Valette, Proper actions of wreath products and generalizations, Trans. Amer. Math. Soc. 364 (2012), no. 6, 3159–3184.
R. Coulon, Asphericity and small cancellation theory for rotation families of groups. Groups Geom. Dyn. 5 (2011), no. 4, 729–765.
R. Coulon, Automorphismes extérieurs du groupe de Burnside libre, PhD thesis, University of Strasbourg, 2010.
R. Coulon, On the geometry of Burnside quotients of torsion free hyperbolic groups. Internat. J. Algebra Comput. 24 (2014), no. 3, 251–345.
R. Coulon, Théorie de la petite simplification: une approche géométrique [d'après F. Dahmani, V. Guirardel, D. Osin et S. Cantat, S. Lamy]. (French) [Small cancellation theory: a geometric approach (after F. Dahmani, V. Guirardel, D. Osin, and S. Cantat, S. Lamy)] Astérisque No. 380, Séminaire Bourbaki. Vol. 2014/2015 (2016), Exp. No. 1089, 1–33.

R. Coulon, M. Hull, C. Kent, A Cartan-Hadamard type result for relatively hyperbolic groups. Geom. Dedicata 180 (2016), 339–371.

F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152 pp.
T. Delabie, A. Khukhro, Box spaces of the free group that neither contain expanders nor embed into a Hilbert space, (2016), arXiv:1611.08451

A. Dranishnikov, M. Zarichnyi, Asymptotic dimension, decomposition complexity, and Haver's property C. Topology Appl. 169 (2014), 99–107.
M. Finn-Sell, Almost quasi-isometries and more non-exact groups (2015), arXiv:1506.08424
M. Finn-Sell, On the Baum-Connes conjecture for Gromov monster groups (2014), arXiv:1401.6841
D. Gruber, Infinitely presented C(6)-groups are SQ-universal. J. Lond. Math. Soc. (2) 92 (2015), no. 1, 178–201.
D. Gruber, Groups with graphical C(6) and C(7) small cancellation presentations. Trans. Amer. Math. Soc. 367 (2015), no. 3, 2051–2078.
D. Gruber, A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic (2014), arXiv:1411.7367
E. Guentner, R. Tessera, G. Yu, A notion of geometric complexity and its application to topological rigidity, arxiv:1008.0884v1
E. Guentner, R. Tessera, G. Yu, Discrete groups with finite decomposition complexity. Groups Geom. Dyn. 7 (2013), no. 2, 377–402.
V. Guirardel, Geometric small cancellation. Geometric group theory, 55–90, IAS/Park City Math. Ser., 21, Amer. Math. Soc., Providence, RI, 2014.
D. Hume, Direct embeddings of relatively hyperbolic groups with optimal ℓp compression exponent. J. Reine Angew. Math. 703 (2015), 147–172.
D. Hume, Separation profiles, coarse embeddability and inner expansion, (2014), arXiv:arXiv:1410.0246v1
H. Izeki, T. Kondo, Sh. Nayatani, N-step energy of maps and the fixed-point property of random groups. Groups Geom. Dyn. 6 (2012), no. 4, 701–736.
R. Kasilingam, Topological Rigidity Problems (2015), arXiv:1510.04139
M. Kotowski, Gromov's random group,
(2013), notes, https://www.mimuw.edu.pl/~mk249019/notes-01-03-2013.pdf
V. Lafforgue, Conjecture de Baum-Connes, théorie de Fonataine en caractéristique p, et programme de Langlands géométriques, (2009), Habilitation thesis, University of Paris 7.

W. Lueck, Survey on aspherical manifolds, European Congress of Mathematics, 53–82, Eur. Math. Soc., Zürich, 2010.

W. Lueck, Aspherical manifolds, Bulletin of the Manifold Atlas 2012, 1-17.
W. Lück, Some open problems about aspherical closed manifolds. (2014) In: Ancona V., Strickland E. (eds) Trends in Contemporary Mathematics. Springer INdAM Series, vol 8. Springer, Cham
W. Lueck, K- and L-theory of group rings,arXiv:1003.5002v1
A. Naor, L. Silberman, Poincaré inequalities, embeddings, and wild groups. Compos. Math. 147 (2011), no. 5, 1546–1572.
P. Nowak, G. Yu, Large-Scale geometry, (2010), EMS publishing house, to appear. http://www.math.tamu.edu/~pnowak/book_etb/book_etb.pdf
P. Nowak, Group actions on Banach spaces. Handbook of group actions. Vol. II, 121–149, Adv. Lect. Math. (ALM), 32, Int. Press, Somerville, MA, 2015.

Y. Ollivier, A January 2005 invitation to random groups. Ensaios Matemáticos [Mathematical Surveys], 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp.
D. Osajda, Small cancellation labellings of some infinite graphs and applications, (2014),
arXiv.org:1406.5015
M. Puschnigg, The Baum-Connes conjecture with coefficients for word-hyperbolic groups (after Vincent Lafforgue). Astérisque No. 361 (2014), Exp. No. 1062, vii, 115–148.
M. Sapir, A Higman embedding preserving asphericity. J. Amer. Math. Soc. 27 (2014), no. 1, 1–42.

M. Sapir, Asymptotic invariants, complexity of groups and related problems, Bull. Math. Sci. 1 (2011), no. 2, 277–364. J. Špakula, R. Willett, On rigidity of Roe algebras. Adv. Math. 249 (2013), 289–310.
Sh. Weinberger, G. Yu, Finite part of operator K-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds. Geom. Topol. 19 (2015), no. 5, 2767–2799.
R. Willett, G. Yu, Higher index theory for certain expanders and Gromov monster groups, II. Adv. Math. 229 (2012), no. 3, 1762–1803.
R. Willett, G. Yu, Higher index theory for certain expanders and Gromov monster groups, I. Adv. Math. 229 (2012), no. 3, 1380–1416.
R. Willett, Property A and graphs with large girth. J. Topol. Anal. 3 (2011), no. 3, 377–384.

[42] G.N. Arzhantseva,  An algorithm detecting Dehn presentations,
 preprint, University of Geneva, (2000).   abs  intro  pdf

2 citations by

V. Diekert, A. Duncan, A. Myasnikov, Geodesic rewriting systems and pregroups, (2009), arXiv.org:0906.2223
O. Kharlampovich, A. Myasnikov, P. Weil, Stallings graphs for quasi-convex subgroups (2014), arXiv:1408.1917

 Papers in Theoretical Computer Science/Applied mathematics (refereed):

[43] G.N. Arzhantseva, J. Díaz, J. Petit, J.D.P. Rolim, and M. Serna, Broadcasting on networks of sensors 
communicating through directional antennasAmbient Intelligence Computing,
1-12,
Proceedings, CTI Press and Ellinika Grammata, 2003.    abs  pdf 

[44] G.N. Arzhantseva and J.D.P. Rolim, Considerations for a geometric model of the web,
 Approximation and Randomization Algorithms in Communication Networks, Rome, 2002,
1-11, Proceedings
, Carleton Scientific.    abs

[45] G.N. Arzhantseva and J.D.P. Rolim, Computability and Complexity,   e-learning theoretical 
course of the Virtual Logic Laboratory (a project of the Swiss Virtual Campus), 90 pp. (electronic tutorial).    abs

Short communications:

[46] G. Arzhantseva, A. Thom, A. Valette, Finite-dimensional approximations of discrete groups,
Oberwolfach Rep., 8(2) (2011), 1429-1467.     pdf 

[47] G. Arzhantseva, Uniform embeddings of groups into a Hilbert space,
in I. Hambleton, E. Pedersen, A. Ranicki, H. Reich (eds.), Manifold perspectives,
Oberwolfach Rep. 6(2) (2009), 1527-1529
.    pdf

[48] G. Arzhantseva, The uniform Kazhdan property for SLn(Z), n>3, l'Enseignement Mathématique 54(2) (2008), 12.

[49] G. Arzhantseva, The entropy of a group endomorphism,
in G. Knieper, L. Polterovich, L. Potyagailo (eds.), Geometric group theory, hyperbolic dynamics and symplectic geometry, embeddings of groups into a Hilbert space,

Oberwolfach Rep. 33 (2006), 2044-2045
.    book

Lecture notes: 

G.N. Arzhantseva and M. Lustig, A first course in geometric group theory, graduate textbook project.
G.N. Arzhantseva, Geometry of small cancellation and Burnside factors, lecture notes of the Borel seminar minicourse.
G.N. Arzhantseva, Infinite groups: Growth and Isoperimetry, lecture notes, the IIIe Cycle Romand de mathématiques.

Conference announcements:

G.N. Arzhantseva, Genericity of Howson's  property of finitely presented groups,
International Algebraic Conference dedicated to the memory of  D.K. Faddeev, Saint-Petersburg, Russia, 24-30 June, 1997. Abstracts, 158-159. 

 G.N. Arzhantseva, Generic classes of finitely presented groups,
International Conference "Modern problems of Number Theory and Applications", Tula, Russia, 9-14 September, 1996, Abstracts,  p.9.

 G.N. Arzhantseva, Generic classes of finitely presented groups,
International Conference "Mathematics. Modeling. Ecology" Volgograd, Russia, 27-31 May, 1996. Abstracts, p.23.