15. Die Sylowsätze

Bemerkung: In Satz 105 haben wir die Umkehrung des Satzes von Lagrange für endliche abelsche Gruppen G bewiesen (d.h. hat $n \in \mathbb{N} \setminus \{0\}$ die Eigenschaft $n \mid |G|$, so gibt es eine Untergruppe $H \leq G$ der Ordnung |H| = n). Im folgenden werden wir uns der analogen Frage für beliebige endliche Gruppen G widmen, wenn n eine Primzahlpotenz ist.

Definition: Ist G eine Gruppe und $H \leq G$, $H \neq G$, so schreiben wir kurz H < G.

Satz 111 (Cauchy): Es sei G eine endliche Gruppe und p eine Primzahl mit der Eigenschaft $p \mid |G|$. Dann gibt es ein $a \in G$ mit der Eigenschaft ord(a) = p (d.h. $|\langle a \rangle| = p$).

Beweis: Induktion nach |G|. Für |G| = 1 ist die Behauptung trivial erfüllt (und natürlich auch für |G| = 2). Sei nun |G| > 1 und $p \mid |G|$.

- 1. Fall: Es gibt ein H < G mit der Eigenschaft $p \mid |H|$. Dann gibt es nach IV ein $a \in H$ mit der Eigenschaft ord(a) = p.
- 2. Fall: Es gibt kein H < G mit der Eigenschaft $p \mid |H|$. Ist $x \in G \setminus Z(G)$, so ist $C_G(x) < G$ und daher nach Voraussetzung $p \nmid |C_G(x)|$. Da $p \mid |G|$ und

$$|G| = [G : C_G(x)] \cdot |C_G(x)|$$

(wegen Korollar 19 (i)) muss $p \mid [G : C_G(x)]$ gelten. Ist $x_1, \ldots, x_n \in G$ ein Repräsentantensystem für die Konjugationsklassen von G, so gilt folglich

$$[G: C_G(x_i)] \equiv 0 \pmod{p}$$
 wenn $x_i \notin Z(G)$.

Mittels Korollar 110 folgt

$$|Z(G)| \equiv |Z(G)| + \sum_{\substack{1 \le i \le n \\ x_i \notin Z(G)}} \left[G : C_G(x_i) \right] = |G| \equiv 0 \pmod{p},$$

d.h. $p \mid |Z(G)|$. Wegen der Voraussetzung für den 2. Fall kann nicht Z(G) < G gelten. Daher ist Z(G) = G, d.h. G ist abelsch. Für abelsche Gruppen folgt die Behauptung aber bereits aus Satz 105.

Definition: Es sei p eine Primzahl. Eine Gruppe G heißt p-Gruppe, wenn die Ordnung jedes Elements von G eine Potenz von p ist (d.h. $\forall a \in G \exists n \in \mathbb{N} \cup \{0\} : \operatorname{ord}(a) = p^n$).

Definition: Es sei p eine Primzahl und G eine Gruppe. Eine Untergruppe H von G heißt p-Untergruppe von G, wenn H eine p-Gruppe ist.

Bemerkung: Wegen $ord(e) = 1 = p^0$ ist $\{e\}$ eine p-Untergruppe der Gruppe G für jede Primzahl p.

Korollar 112: Es sei p eine Primzahl und G eine endliche Gruppe. Dann sind äquivalent:

- (i) G ist eine p-Gruppe,
- (ii) |G| ist eine Potenz von p, d.h. $\exists n \in \mathbb{N} \cup \{0\} : |G| = p^n$.

Beweis: (i) \Rightarrow (ii) Ist |G| keine Potenz von p, so gibt es eine Primzahl $q \neq p$ mit der Eigenschaft $q \mid |G|$. Nach Satz 111 existiert dann ein $a \in G$ mit der Eigenschaft ord(a) = q und G ist daher keine p-Gruppe.

(ii) \Rightarrow (i) Folgt aus Korollar 19 (iii), d.h. $\forall a \in G : \operatorname{ord}(a) \mid |G|$.

Satz 113: Es sei p eine Primzahl und G eine endliche p-Gruppe. Operiert G auf einer endlichen Menge M, so gilt $|M^G| \equiv |M| \pmod{p}$.

Bemerkungen: Ist $x \in M \setminus M^G$, so $\exists a \in G : ax \neq x$ und daher $G_x < G$. Ist $n \in \mathbb{N} \cup \{0\}$, derart dass $|G| = p^n$, so $\exists m \in \{0, 1, \dots, n-1\} : |G_x| = p^m$. Aus

$$p^n = |G| = |G_x| \cdot [G:G_x] = p^m \cdot [G:G_x]$$

folgt $p \mid [G:G_x]$. Ist $x_1, \ldots, x_n \in M$ ein Repräsentantensystem für die Bahnen der Operation von G auf M, so gilt daher $[G:G_{x_i}] \equiv 0 \pmod{p}$ falls $x_i \notin M^G$. Aus Satz 109 folgt

$$|M^G| \equiv |M^G| + \sum_{\substack{1 \le i \le n \\ x_i \notin M^G}} \left[G : G_{x_i} \right] = |M| \pmod{p}.$$

Korollar 114: Ist p eine Primzahl und $G \neq \{e\}$ eine endliche p-Gruppe, so gilt $p \mid |Z(G)|$. Insbesondere ist $Z(G) \neq \{e\}$.

Beweis: Wendet man Satz 113 auf die Operation der Gruppe G auf sich selbst durch Konjugation an, so erhält man $|Z(G)| \equiv |G| \equiv 0 \pmod{p}$.

Satz 115 (Erster Sylowsatz): Es sei G eine endliche Gruppe und p eine Primzahl. Ist $n \in \mathbb{N} \cup \{0\}$, derart dass $p^n \mid |G|$, so existiert für jedes $i \in \{0, 1, ..., n\}$ eine Untergruppe $H \leq G$ mit der Ordnung $|H| = p^i$.

Beweis: Der Fall n = 0 ist trivial erfüllt und wir können ab sofort $n \ge 1$ voraussetzen. Wir verwenden Induktion nach |G|. Für |G| = 1 ist die Behauptung trivial erfüllt (und natürlich auch für |G| = 2).

1. Fall: $p \mid |Z(G)|$. Nach Satz 111 gibt es ein $a \in Z(G)$ mit $\operatorname{ord}(a) = p$. Da $a \in Z(G)$ ist $\langle a \rangle \subseteq G$. (Trivialerweise ist $\langle a \rangle \subseteq G$ und $xa^kx^{-1} = a^kxx^{-1} = a^k \in \langle a \rangle \ \forall k \in \mathbb{Z} \ \forall x \in G$.) Es ist

$$\left|G/\langle a\rangle\right| = \frac{|G|}{|\langle a\rangle|} = \frac{|G|}{p} < |G|.$$

Da

$$p^{n-1} \left| \left| G / \langle a \rangle \right| \right|$$

enthält $G/\langle a \rangle$ nach IV für jedes $i \in \{1, \ldots, n\}$ ein $\overline{H}_i \leq G/\langle a \rangle$ mit $|\overline{H}_i| = p^{i-1}$. Nach Satz 31 (ii) gibt es für jedes $i \in \{1, \ldots, n\}$ eine Untergruppe H_i mit $\langle a \rangle \leq H_i \leq G$ und der Eigenschaft $H_i/\langle a \rangle = \overline{H}_i$. Diese hat Ordnung

$$|H_i| = |\langle a \rangle| \cdot |H_i/\langle a \rangle| = |\langle a \rangle| \cdot |\overline{H}_i| = p \cdot p^{i-1} = p^i.$$

(Der nicht bewiesene Fall i = 0 ist trivial.)

2. Fall: $p \nmid |Z(G)|$. Bezeichnet x_1, \ldots, x_n ein Repräsentantensystem für die Konjugationsklassen von G, so ist nach Korollar 110

$$|G| = |Z(G)| + \sum_{\substack{1 \le j \le n \\ x_j \notin Z(G)}} \left[G : C_G(x_j) \right].$$

Daher muss es ein $j \in \{1, ..., n\}$ geben, für das $x_j \notin Z(G)$ und $p \nmid [G : C_G(x_j)]$ gelten. Da $|G| = |C_G(x_j)| \cdot [G : C_G(x_j)]$ folgt $p^n \mid |C_G(x_j)|$. Aus $x_j \notin Z(G)$ folgt $C_G(x_j) < G$ und daher $|C_G(x_j)| < |G|$. Nach IV gibt es für jedes $i \in \{0, 1, ..., n\}$ eine Untergruppe $H_i \leq C_G(x_j)$ mit Ordnung $|H_i| = p^i$. Da dann auch $H_i \leq G$, ist die Behauptung auch im 2. Fall bewiesen.

Definition: Es sei G eine endliche Gruppe und p eine Primzahl. Ist $|G| = p^n \cdot m$ (mit $n \in \mathbb{N} \cup \{0\}, m \in \mathbb{N} \setminus \{0\}$ und $p \nmid m$), so wird eine Untergruppe $P \leq G$ mit Ordnung $|P| = p^n$ eine p-Sylowgruppe von G genannt.

Korollar 116: Es sei G eine endliche Gruppe und p eine Primzahl. Dann enthält G eine p-Sylowgruppe P.

Beweis: Folgt sofort aus Satz 115.

Beispiele: 1) Betrachte die symmetrische Gruppe S_3 . Da $|S_3| = 3! = 6 = 2 \cdot 3$, sind $\{\varepsilon, (1\ 2)\}, \{\varepsilon, (1\ 3)\}$ und $\{\varepsilon, (2\ 3)\}$ drei 2-Sylowgruppen von S_3 und $\{\varepsilon, (1\ 2\ 3), (1\ 3\ 2)\}$ ist eine 3-Sylowgruppe von S_3 .

2) Betrachte die alternierende Gruppe A_4 . Da $|A_4|=4!/2=12=2^2\cdot 3,$ ist

$$\{\varepsilon, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

eine 2-Sylowgruppe von A_4 und

 $\{\varepsilon, (1\ 2\ 3), (1\ 3\ 2)\}, \{\varepsilon, (1\ 2\ 4), (1\ 4\ 2)\}, \{\varepsilon, (1\ 3\ 4), (1\ 4\ 3)\} \text{ und } \{\varepsilon, (2\ 3\ 4), (2\ 4\ 3)\}$ sind vier 3-Sylowgruppen von A_4 .

Lemma 117: Es sei G eine endliche Gruppe, p eine Primzahl und P eine p-Sylowgruppe von G.

- (i) Ist Q < G zu P konjugiert, so ist Q ebenfalls eine p-Sylowgruppe von G.
- (ii) Ist P die einzige p-Sylowgruppe von G, so ist $P \leq G$.

Beweis: (i) Da Q zu P konjugiert ist, gibt es ein $a \in G$, sodass $Q = aPa^{-1}$. D.h. Q ist das Bild von P unter dem inneren Automorphismus $\varphi_a : G \to G$, $x \mapsto axa^{-1}$ und daher $|Q| = |aPa^{-1}| = |P|$.

(ii) Nach (i) ist aPa^{-1} eine p-Sylowgruppe von G für jedes $a \in G$. Nach Voraussetzung muss daher $aPa^{-1} = P \ \forall a \in G$ gelten und P ist ein Normalteiler.

Satz 118 (Zweiter Sylowsatz): Es sei G eine endliche Gruppe, p eine Primzahl und P eine p-Sylowgruppe von G. Ist H eine p-Untergruppe von G, so $\exists a \in G : H \leq aPa^{-1}$.

Beweis: Die Gruppe H operiert auf der Menge $M = \{aP \mid a \in G\}$ der Linksnebenklassen von P in G mittels $(h, aP) \mapsto haP$. (Diese Abbildung ist wohldefiniert, denn ist aP = bP, so ist $a^{-1}b \in P$ und daher $(ha)^{-1}(hb) = a^{-1}h^{-1}hb = a^{-1}b \in P$. Die Gruppe H operiert auf M weil $eaP = aP \ \forall a \in G$ und $(h_1h_2)aP = h_1(h_2a)P \ \forall h_1, h_2 \in H \ \forall a \in G$.) Es ist |M| = [G:P] = |G|/|P| und folglich $p \nmid |M|$. Nach Satz 113 gilt $|M^H| \equiv |M| \pmod{p}$ und daher auch $p \nmid |M^H|$. Also ist $|M^H| \neq 0$ und somit $M^H \neq \emptyset$, d.h. $\exists a \in G: aP \in M^H$. Das besagt aber gerade haP = aP oder $a^{-1}h^{-1}a = (ha)^{-1}a \in P \ \forall h \in H$. Also ist $a^{-1}Ha \leq P$ und daher $H \leq aPa^{-1}$.

Bemerkung: Nach Satz 118 sind die p-Sylowgruppen einer endlichen Gruppe G genau die (bezüglich der Mengeninklusion) maximalen p-Untergruppen von G. Man kann diese Eigenschaft als Definition verwenden, um den Begriff der p-Sylowgruppe für beliebige (d.h. auch unendliche) Gruppen zu definieren.

Korollar 119: Es sei G eine endliche Gruppe und p eine Primzahl.

- (i) Die p-Sylowgruppen von G bilden eine Konjugationsklasse von Untergruppen von G.
- (ii) Ist P eine p-Sylowgruppe von G so gilt:

P ist die einzige p-Sylowgruppe von $G \iff P \leq G$.

Beweis: (i) Sind P und Q zwei p-Sylowgruppen von G, so gibt es nach Satz 118 ein $a \in G$, sodass $Q \le aPa^{-1}$. Da $|Q| = |P| = |aPa^{-1}|$, muss $Q = aPa^{-1}$ gelten, d.h. P und Q sind konjugiert. Die Behauptung folgt nun mit Hilfe von Lemma 117 (i).

- (ii) (\Rightarrow) Wurde schon in Lemma 117 (ii) bewiesen.
- (⇐) Es sei Q eine p-Sylowgruppe von G. Nach (i) ist Q zu P konjugiert, d.h. es gibt ein a ∈ G, sodass $Q = aPa^{-1} = P$.

Satz 120 (Dritter Sylowsatz): Es sei G eine endliche Gruppe und p eine Primzahl. Bezeichnet s die Anzahl der p-Sylowgruppen von G, so gelten $s \mid |G|$ und $s \equiv 1 \pmod{p}$.

Beweis: Ist P eine p-Sylowgruppe, so ist $\{aPa^{-1} \mid a \in G\}$ wegen Korollar 119 (i) die Menge aller p-Sylowgruppen von G. Wir betrachten die Operation von G auf der Menge der \mathcal{U}_G aller Untergruppen von G durch Konjugation. Die Menge $\{aPa^{-1} \mid a \in G\}$ der p-Sylowgruppen ist dann die Bahn und der Normalisator $N_G(P)$ die Isotropiegruppe von P bezüglich dieser Operation. Durch Anwenden von Satz 108 erhält man

$$s = |\{aPa^{-1} \mid a \in G\}| = [G : N_G(P)] = |G|/|N_G(P)|.$$

Daher ist $s \cdot |N_G(P)| = |G|$ und folglich $s \mid |G|$.

Wir betrachten nun eine andere Gruppenoperation, nämlich die von P auf der Menge $M = \{aPa^{-1} \mid a \in G\}$ aller p-Sylowgruppen durch Konjugation. Offenbar ist $P \in M$ Fixpunkt dieser Operation (denn $xPx^{-1} = P \ \forall x \in P$). Wir behaupten, dass es keine weiteren Fixpunkte gibt. Offenbar gilt:

$$Q$$
 ist Fixpunkt $\Leftrightarrow xQx^{-1} = Q \ \forall x \in P \Leftrightarrow P \leq N_G(Q)$

Nach Definition des Normalisators ist $Q \subseteq N_G(Q)$. Daher ist auch $PQ \subseteq N_G(Q)$ (wegen Satz 29 (iii)). Man kann nun den 1. Isomorphiesatz (Korollar 30) anwenden und erhält $PQ/Q \cong P/(P \cap Q)$. Daraus folgt sofort $|PQ/Q| = |P/(P \cap Q)|$ und da P eine p-Gruppe ist, sind auch $P/(P \cap Q)$ und folglich PQ/Q beides p-Gruppen. Würde $p \mid |PQ/Q|$ gelten, so wäre

$$0 \not\equiv [G:Q] = [G:PQ] \cdot [PQ:Q] \equiv 0 \pmod{p},$$

ein Widerspruch. Also ist |PQ/Q|=1 und PQ=Q, woraus $P\subseteq Q$ folgt. Da |P|=|Q|, muss P=Q gelten (und P ist tatsächlich der einzige Fixpunkt). Aus Satz 113 folgt $s=|M|\equiv |M^P|=1\pmod p$.

Bemerkung: Ist G eine endliche Gruppe der Ordnung $|G| = p^n m$ (mit p eine Primzahl, $n, m \in \mathbb{N} \setminus \{0\}$ und $p \nmid m$) und bezeichnet s die Anzahl der p-Sylowgruppen von G, so gilt nach Satz 120 $s \mid p^n m$. Da auch $s \equiv 1 \pmod{p}$ muss $p \nmid s$ und daher $ggT(s, p^n) = 1$ gelten. Also muss sogar $s \mid m$ gelten.

Beispiele: 1) Wir betrachten wieder die symmetrische Gruppe S_3 mit $|S_3| = 6 = 2 \cdot 3$. Die Anzahl s_2 der 2-Sylowgruppen muss $s_2 \mid 3$ und $s_2 \equiv 1 \pmod{2}$ erfüllen. Nach der ersten Bedingung muss $s_2 \in \{1,3\}$ gelten. Daher haben wir oben mit $\{\varepsilon, (1\ 2)\}, \{\varepsilon, (1\ 3)\}$ und $\{\varepsilon, (2\ 3)\}$ bereits alle 2-Sylowgruppen von S_3 gefunden und $s_2 = 3$. Die Anzahl s_3 der 3-Sylowgruppen muss $s_3 \mid 2$ und $s_3 \equiv 1 \pmod{3}$ erfüllen. Daher ist $s_3 = 1$ und $A_3 = \{\varepsilon, (1\ 2\ 3), (1\ 3\ 2)\}$ ist die einzige 3-Sylowgruppe von S_3 . Nach Korollar 119 (ii) ist $A_3 \subseteq S_3$. (Das wurde allerdings schon in Satz 46 (i) bewiesen, woraus mit Hilfe von

Korollar 119 (ii) ebenfalls $s_3 = 1$ folgt.)

2) Wir betrachten wieder die alternierende Gruppe A_4 mit $|A_4| = 12 = 2^2 \cdot 3$. Die Anzahl s_2 der 2-Sylowgruppen muss wieder $s_2 \mid 3$ und $s_2 \equiv 1 \pmod{2}$ erfüllen. Es folgt wieder $s_2 \in \{1,3\}$. Nun ist $V := \{\varepsilon, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\} \leq A_4$. (Es wurde bereits gezeigt, dass es sich um eine Untergruppe handelt. Ist $\{a,b,c,d\} = \{1,2,3,4\}$, so ist $\sigma \circ (a\ b)(c\ d) \circ \sigma^{-1} = (\sigma(a)\ \sigma(b))(\sigma(c)\ \sigma(d)) \in V\ \forall \sigma \in A_4$ und daher $V \leq A_4$.) Wegen Korollar 119 (ii) ist V die einzige 2-Sylowgruppe von A_4 und $s_2 = 1$. Die Anzahl s_3 der 3-Sylowgruppen muss $s_3 \mid 4$ und $s_3 \equiv 1 \pmod{3}$ erfüllen. Daher ist $s_3 \in \{1,4\}$. Daher haben wir oben mit

 $\{\varepsilon, (1\ 2\ 3), (1\ 3\ 2)\}, \{\varepsilon, (1\ 2\ 4), (1\ 4\ 2)\}, \{\varepsilon, (1\ 3\ 4), (1\ 4\ 3)\} \text{ und } \{\varepsilon, (2\ 3\ 4), (2\ 4\ 3)\}$ bereits alle 3-Sylowgruppen von A_4 gefunden und $s_3=4$.

Bemerkung: Man kann sich fragen, ob man die Sylowsätze (zumindest teilweise) auf folgende Situation verallgemeinern kann: Es sei G eine endliche Gruppe und |G| = mn mit $m, n \in \mathbb{N} \setminus \{0\}$ und ggT(m, n) = 1. Gibt es dann z.B. stets eine Untergruppe $H \leq G$ mit Ordnung |H| = m? Das ist im allgemeinen nicht richtig. Z.B. ist $|A_5| = 60 = 4 \cdot 15$ aber A_5 besitzt keine Untergruppe der Ordnung 15. Man kann einen entsprechenden Satz allerdings beweisen, wenn es sich bei G um eine sogenannte auflösbare Gruppe handelt.