Geometrie und Lineare Algebra für das Lehramt SS 2024

Christoph Baxa

- 1) Ist (G, \circ) eine Gruppe bzw. abelsche Gruppe? Welche der Gruppenaxiome sind erfüllt, welche nicht?
 - a) $G = \mathbb{N}$, $a \circ b = a + b$
 - b) $G = \mathbb{N}$, $a \circ b = \max\{a, b\}$
 - c) $G = \mathbb{Z}$, $a \circ b = a b$
- **2)** Es sei $G = \{f : \mathbb{R} \to \mathbb{R} \mid f(x) = ax + b \text{ für gewisse } a, b \in \mathbb{R}, a \neq 0\}$. Ist (G, \circ) (wobei \circ die Verknüpfung von Abbildungen bezeichnet) eine Gruppe bzw. abelsche Gruppe? Welche der Gruppenaxiome sind erfüllt, welche nicht?
- 3) Es bezeichne wie in der Vorlesung (Seite 6) $D_3 = \{I, R^-, R^+, S_A, S_B, S_C\}$ die Menge der Isometrien, die ein gleichseitiges Dreieck bijektiv auf sich selbst abbilden. Beweisen Sie, dass (D_3, \circ) eine nichtabelsche Gruppe ist. Erstellen Sie zu diesem Zweck eine Verknüpfungstafel.
- 4) Wie in der Vorlesung (Seite 6) bezeichne $D_4 = \{I, R, R^2, R^3, S_0, S_1, S_2, S_3\}$ die Menge der Isometrien, die ein Quadrat bijektiv auf sich selbst abbilden. Beweisen Sie, dass (D_4, \circ) eine nichtabelsche Gruppe ist. Erstellen Sie zu diesem Zweck eine Verknüpfungstafel.
- 5) Es sei $n \in \mathbb{N}^+$, $n \geq 3$ und D_n sei die Menge aller Isometrien, die ein regelmäßiges n-eck bijektiv auf sich selbst abbilden. Beweisen Sie (oder geben Sie zumindest ein heuristisches Argument dafür, dass):
 - a) (D_n, \circ) ist eine Gruppe,
 - b) D_n enthält $|D_n| = 2n$ Elemente,
 - c) D_n ist nichtabelsch.
- **6)** Für $v \in \mathbb{R}^2$ bezeichne T_v die Translation $T_v : \mathbb{R}^2 \to \mathbb{R}^2$, $T_v(x) = x + v$. Weiters sei $\mathcal{T} = \{T_v \mid v \in \mathbb{R}^2\}$ die Menge aller derartigen Translationen. Beweisen Sie, dass (\mathcal{T}, \circ) eine abelsche Gruppe ist.
- 7) Es seien (G, \circ) und (H, \diamond) zwei Gruppen. Beweisen Sie:
- a) $G \times H$ bildet mit der Verknüpfung $(a, b) \bullet (c, d) = (a \circ c, b \diamond d)$ eine Gruppe.
- b) Die Gruppe $(G \times H, \bullet)$ ist genau dann abelsch, wenn die beiden Gruppen (G, \circ) und (H, \diamond) beide abelsch sind.

- 8) Beweisen Sie:
 - a) Für fest gewähltes $m \in \mathbb{Z}$ ist $m\mathbb{Z} = \{km \mid k \in \mathbb{Z}\}$ Untergruppe von $(\mathbb{Z}, +)$,
 - b) $\{x^2 \mid x \in \mathbb{Q}^*\}$ ist Untergruppe von (\mathbb{Q}^*, \cdot) ,
 - c) Für $n \in \mathbb{N}^+$ und $a_1, \ldots, a_n \in \mathbb{R}$ ist U Untergruppe von $(\mathbb{R}^n, +)$, wobei

$$U = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \mid a_1 x_1 + \dots + a_n x_n = 0 \right\}.$$

- **9)** Finden Sie alle sechs Untergruppen der Gruppe (D_3, \circ) .
- **10)** Es sei (G, \circ) eine Gruppe und $H \subseteq G$, $H \neq \emptyset$ eine endliche Teilmenge von G. Beweisen Sie, dass die folgenden beiden Aussagen äquivalent sind:
 - (i) H ist eine Untergruppe von G,
 - (ii) $a \circ b \in H$ für alle $a, b \in H$.
- 11) Es sei (G, \circ) eine Gruppe mit neutralem Element $e \in G$. Beweisen Sie, dass die folgenden vier Aussagen äquivalent sind:
 - (i) a = e,
 - (ii) $a \circ a = a$,
 - (iii) $a \circ b = b$ für ein $b \in G$,
 - (iv) $b \circ a = b$ für ein $b \in G$.
- **12)** Es sei (G, \circ) eine endliche Gruppe mit |G| = n Elementen und $G = \{a_1, \ldots, a_n\}$. Beweisen Sie: Für jedes $x \in G$ ist

$$\{x \circ a_1, \dots, x \circ a_n\} = \{a_1 \circ x, \dots, a_n \circ x\} = G.$$

Folgern Sie, dass jede Spalte und jede Zeile der Verknüpfungstafel von G eine Permutation der Elemente von G enthält.

13) a) Beweisen Sie: Die Verknüpfungstafel einer einelementigen Gruppe (G, \circ) mit $G = \{e\}$ hat die folgende Gestalt:

$$\begin{array}{c|c} \circ & e \\ \hline e & e \end{array}$$

b) Beweisen Sie: Die Verknüpfungstafel einer Gruppe (G, \circ) mit zwei Elementen $G = \{e, a\}$ hat die folgende Gestalt:

$$\begin{array}{c|cccc}
\circ & e & a \\
\hline
e & e & a \\
\hline
a & a & e
\end{array}$$

Welche Gruppen mit einer Verknüpfungstafel dieser Gestalt sind bis jetzt in der Vorlesung bzw. den Übungen aufgetreten?

2

14) Beweisen Sie: Die Verknüpfungstafel einer Gruppe (G, \circ) mit drei Elementen $G = \{e, a, b\}$ hat die folgende Gestalt:

0	e	a	b
e	e	a	b
\overline{a}	a	b	e
\overline{b}	b	e	a

Folgern Sie, dass die Verknüpfungstafel einer dreielementigen Gruppe die folgenden Gestalt hat:

0	e	a	a^2
e	e	a	a^2
\overline{a}	a	a^2	e
a^2	a^2	e	a

Ist eine solche Gruppe bis jetzt in der Vorlesung oder den Übungen aufgetreten?

Bemerkung: Für Gruppen mit mehr als drei Elementen ist die Verknüpfungstafel im allgemeinen nicht mehr eindeutig bestimmt. Z.B. gibt es für Gruppen mit vier Elementen zwei mögliche Verknüpfungstafeln.

- **15)** Beweisen Sie, dass es sich bei $(\mathbb{F}_2, +, \cdot)$ um einen Körper handelt. (Die Menge \mathbb{F}_2 und die beiden Verknüpfungen + und \cdot findet man auf Seite 10 der Vorlesung.)
- **16)** Beweisen Sie, dass es keine Ordnungsrelation < gibt, durch die $(\mathbb{F}_2, +, \cdot)$ zu einem geordneten Körper wird.
- 17) Es sei $n \in \mathbb{N}^+$. Beweisen Sie, dass der Raum \mathbb{R}^n mit den komponentenweisen Verknüpfungen

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} := \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix} \quad \text{und} \quad \alpha \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} := \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{pmatrix}$$

einen reellen Vektorraum bildet.

18) Beweisen Sie, dass der Raum \mathcal{P} aller Polynomfunktionen

$$p: \mathbb{R} \to \mathbb{R}, \ p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \ (\text{mit } a_n, \dots, a_1, a_0 \in \mathbb{R})$$

mit der üblichen Addition von Polynomfunktionen und Multiplikation einer Polynomfunktion mit einer reellen Zahl einen reellen Vektorraum bildet.

19) a) Beweisen Sie, dass

$$S := \left\{ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \in \mathbb{R}^3 \ \middle| \ x + y + z = 0, x = z \right\}$$

ein Teilraum des reellen Vektorraums \mathbb{R}^3 ist.

b) Beweisen Sie, dass

$$T := \left\{ t \cdot \left(\begin{array}{c} 1 \\ -2 \\ 1 \end{array} \right) \, \middle| \, t \in \mathbb{R} \right\}$$

ein Teilraum des reellen Vektorraums \mathbb{R}^3 ist.

c) Beweisen Sie S = T.

- **20)** a) Es sei V ein reeller Vektorraum und U und W zwei (nicht notwenig verschiedene) Teilräume von V. Beweisen Sie, dass ihr Durchschnitt $U \cap W$ ebenfalls ein Teilraum von V ist.
- b) Benützen Sie Teil a) um Bsp. 19a) nochmals zu lösen.
- **21)** a) Beweisen Sie: Sind $p, q \in \mathcal{P}$ reelle Polynomfunktionen und $\alpha \in \mathbb{R}$, so gelten $\operatorname{grad}(p+q) \leq \max\{\operatorname{grad} p, \operatorname{grad} q\}$ und $\operatorname{grad}(\alpha p) \leq \operatorname{grad} p$.

Warum kann in beiden Aussagen kein Gleichheitszeichen verwendet werden?

- b) Beweisen Sie: Ist $d \in \mathbb{N}$, so ist \mathcal{P}_d ein Teilraum von \mathcal{P} .
- c) Beweisen Sie: Sind $d, e \in \mathbb{N}$ und $d \leq e$, so ist \mathcal{P}_d ein Teilraum von \mathcal{P}_e .
- **22)** Welche der folgenden Mengen sind Teilräume des \mathbb{R}^n (mit $n \geq 2$)?

a)
$$\left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \mid x_1 \ge 0 \right\}$$
,

b)
$$\left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \mid x_1 x_2 = 0 \right\}$$
,

c)
$$\left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \mid x_1 \in \mathbb{Q} \right\}$$
.

- **23)** Welche der folgenden Mengen sind Teilräume des reellen Vektorraums \mathcal{P} aller (reellen) Polynomfunktionen?
 - a) $\{p \in \mathcal{P} \mid p(1) = 0\},\$
 - b) $\{p \in \mathcal{P} \mid p(1) = 1\},\$
 - c) $\{p \in \mathcal{P} \mid \exists \alpha \in \mathbb{R} : p(\alpha) = 0\}.$

- **24)** Es sei V ein reeller Vektorraum und U und W zwei Teilräume von V. Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind:
 - (i) $U \cup W$ ist ein Teilraum von V,
 - (ii) $U \subseteq W$ oder $W \subseteq U$.
- **25)** Es sei V ein reeller Vektorraum und U und W zwei Teilräume von V. Beweisen Sie, dass

$$U + W := \{u + w \mid u \in U, w \in W\}$$

ebenfalls ein Teilraum von V ist.

26) Es seien

$$u = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \in \mathbb{R}^3 \quad \text{und} \quad w = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} \in \mathbb{R}^3,$$

sowie U = [u] und W = [w]. Zeigen Sie, dass

$$U + W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 7x + 3y - 8z = 0 \right\}$$

- **27)** Es sei V ein reeller Vektorraum und M und N nichtleere Teilmengen von V. Beweisen Sie:
 - a) M ist genau dann Teilraum von V wenn [M] = M,
 - b) [[M]] = [M],
 - c) Aus $M \subseteq N$ folgt $[M] \subseteq [N]$.
- 28) Es sei V ein reeller Vektorraum und $\{u, v, w\}$ eine linear unabhängige Teilmenge von V. Beweisen Sie, dass dann $\{u + v, u + w, v + w\}$ ebenfalls eine linear unabhängige Teilmenge von V ist.
- **29)** Es sei V der reelle Vektorraum \mathbb{R}^2 . Zeigen Sie, dass die drei Mengen $\{u, v\}$, $\{u, w\}$ und $\{v, w\}$ alle Basen von V sind, wobei

$$u = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad v = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{und} \quad w = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

30) Es sei V der reelle Vektorraum \mathcal{P}_2 . Zeigen Sie, dass die Menge $\{q_1, q_2, q_3\}$ eine Basis von V ist, wobei

$$q_1(x) = 1$$
, $q_2(x) = x + 1$ und $q_3(x) = x^2 + x + 1$.

31) Es seien $m, n \in \mathbb{N}^+$. Beweisen Sie, dass $\mathbb{R}^{m \times n}$, versehen mit den Verknüpfungen

$$(a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} + (b_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} = (a_{ij} + b_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \quad \text{und} \quad \alpha \cdot (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} = (\alpha a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

einen reellen Vektorraum bildet.

32) Es seien $m, n \in \mathbb{N}^+$. Beweisen Sie, dass $\{E_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq n\}$ eine Basis des reellen Vektorraums $\mathbb{R}^{m \times n}$ ist. Dabei ist die Matrix $E_{ij} \in \mathbb{R}^{m \times n}$ folgendermaßen definiert: Ist $E_{ij} = (\varepsilon_{k\ell})_{\substack{1 \leq k \leq m, \\ 1 \leq \ell \leq n}}$, so ist

$$\varepsilon_{k\ell} = \begin{cases} 1 & \text{falls } (k,\ell) = (i,j), \\ 0 & \text{falls } (k,\ell) \neq (i,j). \end{cases}$$

- **33)** Es seien $A, B \in \mathbb{R}^{m \times n}$ und $\alpha \in \mathbb{R}$. Beweisen Sie:
 - a) $(A^{\mathsf{T}})^{\mathsf{T}} = A$,
 - b) $(A + B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}},$
 - c) $(\alpha A)^{\mathsf{T}} = \alpha A^{\mathsf{T}}$.

Definition. Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt symmetrisch (bzw. schiefsymmetrisch) wenn $A^{\mathsf{T}} = A$ (bzw. $A^{\mathsf{T}} = -A$) gilt.

- **34)** Beweisen Sie:
- a) Ist $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathbb{R}^{n \times n}$ schiefsymmetrisch, so ist $a_{ii} = 0$ für $1 \leq i \leq n$.
- b) Ist $A \in \mathbb{R}^{n \times n}$ sowohl symmetrisch als auch schiefsymmetrisch, so ist $A = \mathbf{0}$ (wobei $\mathbf{0}$ die Nullmatrix bezeichnet).
- c) Die Menge der symmetrischen (bzw. schiefsymmetrischen) Matrizen bildet einen Teilraum von $\mathbb{R}^{n \times n}$.
- **35)** Finden Sie Basen für den Vektorraum aller symmetrischen und den Vektorraum aller schiefsymmetrischen Matrizen in $\mathbb{R}^{n \times n}$.
- **36)** a) Beweisen Sie, dass sich jede Matrix $A \in \mathbb{R}^{n \times n}$ als Summe einer symmetrischen und einer schiefsymmetrischen Matrix schreiben lässt.
- b) Beweisen Sie, dass diese Darstellung eindeutig ist.
- **37)** Berechnen Sie alle Produkte der folgenden drei Matrizen A, B und C (mit reellen Eintragungen), die man bilden kann:

$$A = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 0 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 1 & -1 & 1 \\ 3 & 1 & 5 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ 1 & -4 \end{pmatrix}$$

- **38)** Beweisen Sie: Sind $A, B \in \mathbb{R}^{m \times n}$ und $C \in \mathbb{R}^{n \times \ell}$, so ist $(A+B) \cdot C = A \cdot C + B \cdot C$.
- **39)** Es seien $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times \ell}$ und $\alpha \in \mathbb{R}$. Beweisen Sie:
 - a) $I_m \cdot A = A$,
 - b) $(\alpha A) \cdot B = A \cdot (\alpha B) = \alpha (A \cdot B)$.
- 40) Überprüfen Sie für die Matrizen

$$A = \begin{pmatrix} 0 & 1 & 3 \\ -1 & 2 & 1 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} -1 & 2 & 0 & 0 \\ 0 & 1 & 3 & 1 \\ 1 & 0 & -1 & 2 \end{pmatrix}$$

durch direktes Nachrechnen, dass $(A \cdot B)^{\mathsf{T}} = B^{\mathsf{T}} \cdot A^{\mathsf{T}}$ gilt.

41) Welche der folgenden Abbildungen sind linear? Geben Sie einen Beweis oder ein Gegenbeispiel an. Wenn die Abbildung linear ist, geben Sie eine Darstellung mittels Multiplikation mit einer Matrix an.

a)
$$\varphi : \mathbb{R}^3 \to \mathbb{R}^3$$
, $\varphi(v) = -v$ b) $\varphi : \mathbb{R}^4 \to \mathbb{R}^4$, $\varphi(v) = v + \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$

c)
$$\varphi : \mathbb{R}^3 \to \mathbb{R}^2$$
, $\varphi \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 x_3 \end{pmatrix}$ d) $\varphi : \mathbb{R}^2 \to \mathbb{R}^4$, $\varphi \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ x_1 \\ x_2 \\ x_2 - x_1 \end{pmatrix}$

Definition. Ist $A = (a_{ij})_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$, so bezeichnet man $\operatorname{Spur}(A) = \sum_{i=1}^{n} a_{ii}$ als die $\operatorname{Spur} \operatorname{der} \operatorname{Matrix} A$.

- 42) Beweisen Sie, dass die folgenden Abbildungen linear sind:
 - a) $\delta: \mathcal{P}_n \to \mathcal{P}_{n-1}$, wobei $n \in \mathbb{N}^+$ ist und δ die Ableitung bezeichnet,
 - b) $\varphi : \mathbb{R}^{n \times n} \to \mathbb{R}, \ \varphi(A) = \operatorname{Spur}(A),$
 - c) $\varphi: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, \ \varphi(A) = AB BA$
- **43**) Beweisen Sie für Matrizen $A, B \in \mathbb{R}^{n \times n}$:
 - a) Spur(AB) = Spur(BA),
 - b) Ist B invertierbar, so ist $Spur(BAB^{-1}) = Spur(A)$.
- 44) Bestimmen Sie Kern und Bild der folgenden linearen Abbildungen:

a)
$$\varphi : \mathbb{R}^3 \to \mathbb{R}^2$$
, $\varphi \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 + x_3 \\ 2x_1 + x_2 \end{pmatrix}$ b) $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$, $\varphi \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ 2x_3 \\ x_1 \end{pmatrix}$

- **45**) Beweisen Sie:
- a) Die Determinantenabbildung det : $\mathbb{R}^{2\times 2} \to \mathbb{R}$ ist linear in der zweiten Spalte,
- b) Die Determinantenabbildung det : $\mathbb{R}^{2\times 2} \to \mathbb{R}$ ist linear in der zweiten Zeile.
- 46) Berechnen Sie die folgenden Determinanten:

a)
$$\begin{vmatrix} \sqrt{3} & \sqrt{2} \\ \sqrt{2} & \sqrt{3} \end{vmatrix}$$
 b) $\begin{vmatrix} 10 & 3 & 2 \\ 4 & 7 & 5 \\ -1 & 0 & 8 \end{vmatrix}$ c) $\begin{vmatrix} 5 & 8 & -3 \\ -2 & 6 & 9 \\ -1 & 7 & 7 \end{vmatrix}$

47) Es sei $n \in \{2,3\}$. Beweisen Sie, dass die Special Linear Group

$$\mathbf{SL}_n(\mathbb{R}) = \{ A \in \mathbb{R}^{n \times n} \mid \det A = 1 \}$$

eine Untergruppe von $(\mathbf{GL}_n(\mathbb{R}), \cdot)$ ist.

- **48)** a) Es sei $n \in \{2,3\}$, $A \in \mathbb{R}^{n \times n}$ und $\alpha \in \mathbb{R}$. Zeigen Sie $\det(\alpha A) = \alpha^n \det A$, b) Zeigen Sie: Ist $A \in \mathbb{R}^{3 \times 3}$ schiefsymmetrisch, so ist $\det A = 0$.
- **49)** Berechnen Sie die inversen Matrizen der folgenden Matrizen (wenn sie existieren):

a)
$$\begin{pmatrix} 2 & 4 & 3 \\ -1 & 3 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 3 & 0 & 2 \\ -1 & 1 & 2 \\ 2 & 1 & 6 \end{pmatrix}$

50) Für welche $x \in \mathbb{R}$ sind die folgenden Matrizen invertierbar? Geben Sie für diese x die inverse Matrix an.

a)
$$\begin{pmatrix} -1 & x & 0 \\ x & 1 & x \\ 0 & x & -1 \end{pmatrix}$$
 b) $\begin{pmatrix} -x & 1 & 0 \\ 1 & x & 1 \\ 0 & 1 & -x \end{pmatrix}$

51) Lösen Sie das folgende lineare Gleichungssystem mit Hilfe des Gaußschen Eliminationsverfahrens:

$$x_1 - 2x_2 - x_3 = -1$$
$$2x_1 + 3x_2 + x_3 = 0$$
$$x_1 + 4x_2 + x_3 = 2$$

8

52) Lösen Sie das folgende lineare Gleichungssystem mit Hilfe des Gaußschen Eliminationsverfahrens:

$$x_1 + 2x_2 + x_3 = -1$$

$$6x_1 + x_2 + x_3 = -4$$

$$2x_1 - 3x_2 - x_3 = 0$$

$$-x_1 - 7x_2 - 2x_3 = 7$$

$$x_1 - x_2 = 1$$

53) Lösen Sie das folgende lineare Gleichungssystem mit Hilfe des Gaußschen Eliminationsverfahrens:

$$x_1 - x_2 + x_3 - x_4 + x_5 = 1$$

 $2x_1 - x_2 + 3x_3 + 4x_5 = 2$
 $3x_1 - 2x_2 + 2x_3 + x_4 + x_5 = 1$

54) Für welche Werte von $\alpha \in \mathbb{R}$ bilden die Lösungen des folgenden linearen Gleichungssystems einen eindimensionalen Teilraum von \mathbb{R}^4 und für welche eine zweidimensionalen?

$$x_1 + 3x_2 - 2x_3 + x_4 = 0$$

$$-x_1 + x_2 + 2x_3 - x_4 = 0$$

$$3x_1 + 13x_2 + \alpha x_3 + 3x_4 = 0$$

55) Lösen Sie das folgende lineare Gleichungssystem mit Hilfe der Cramerschen Regel (wenn es möglich ist):

$$3x_1 + x_2 - x_3 = 0$$
$$x_1 + x_2 + x_3 = 0$$
$$x_2 - x_3 = 1$$

- **56)** Lösen Sie das lineare Gleichungssystem aus Aufgabe 51) nochmals mit Hilfe der Cramerschen Regel (wenn es möglich ist).
- 57) Beweisen Sie, dass durch

$$\left\langle \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right), \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) \right\rangle = 4x_1y_1 - x_2y_1 - x_1y_2 + 10x_2y_2 \quad \text{für } \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right), \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) \in \mathbb{R}^2$$

ein inneres Produkt auf \mathbb{R}^2 definiert ist.

- **58)** Es sei $V = \mathbb{R}^{m \times n}$ und für $A, B \in V$ sei $\langle A, B \rangle = \operatorname{Spur}(A^{\mathsf{T}} \cdot B)$. Beweisen Sie, dass $\langle ., . \rangle$ ein inneres Produkt auf V ist.
- **59)** Es sei V ein euklidischer Vektorraum mit innerem Produkt $\langle .,. \rangle$ und $\|.\|$ die davon induzierte Norm. Beweisen Sie die Parallelogrammgleichung

$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2 \quad \forall v, w \in V.$$

Woher könnte die Bezeichnung Parallelogrammgleichung kommen?

60) Es sei V ein euklidischer Vektorraum mit innerem Produkt $\langle .,. \rangle$ und $\|.\|$ die davon induzierte Norm. Beweisen Sie

$$\langle v, w \rangle = \frac{1}{4} (\|v + w\|^2 - \|v - w\|^2) \quad \forall v, w \in V.$$

61) Beweisen Sie, dass durch

$$||x||_{\infty} := \max\{|x_1|, \dots, |x_n|\} = \max_{1 \le i \le n} |x_i|$$
 für $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$

eine Norm auf dem reellen Vektorraum \mathbb{R}^n definiert ist.

Bemerkung. Die Norm $\|.\|_{\infty}$ wird als Maximumsnorm oder ∞ -Norm bezeichnet.

- **62)** Beweisen Sie, dass die Norm aus dem vorangegangenen Beispiel für $n \geq 2$ die Parallelogrammgleichung aus Aufgabe 59) nicht erfüllt. Schließen Sie daraus, dass die Norm $\|.\|_{\infty}$ für $n \geq 2$ nicht durch ein inneres Produkt auf \mathbb{R}^n induziert wird. *Hinweis.* Finden Sie zunächst ein Gegenbeispiel für n = 2 und erweitern Sie es anschließend für n > 2.
- **63)** a) Es sei V ein euklidischer Vektorraum mit innerem Produkt $\langle .,. \rangle$ und W ein Teilraum von V. Beweisen Sie, dass

$$W^{\perp} := \{v \in V \mid \langle v, w \rangle = 0 \; \forall \, w \in W\}$$

ebenfalls ein Teilraum von V ist.

Bemerkung. Der Raum W^{\perp} wird als orthogonales Komplement von W bezeichnet. b) Es seien $V = \mathbb{R}^2$, $\langle .,. \rangle$ das Standardskalarprodukt, $w = \binom{2}{1}$ und W der von w erzeugte Teilraum von V. Beschreiben Sie W^{\perp} .

64) Beweisen Sie für $\alpha \in \mathbb{R}$:

a)
$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}$$
 b) $\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$

65) Beweisen Sie für $\alpha \in \mathbb{R}$:

a)
$$\cos(3\alpha) = 4\cos^3\alpha - 3\cos\alpha$$
 b) $\sin(3\alpha) = -4\sin^3\alpha + 3\sin\alpha$

66) a) Zeigen Sie mit Hilfe von Aufgabe 64) (nochmals)

$$\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
 (d.h. $\sin(45^\circ) = \cos(45^\circ) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$).

- b) Zeigen Sie mit Hilfe von Aufgabe 65a) $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ (d.h. $\cos(30^\circ) = \frac{\sqrt{3}}{2}$) und folgern Sie $\sin \frac{\pi}{6} = \frac{1}{2}$ (d.h. $\sin(30^\circ) = \frac{1}{2}$).
- c) Zeigen Sie mit Hilfe von Teil b)

$$\cos \frac{\pi}{3} = \frac{1}{2} \text{ (d.h. } \cos(60^\circ) = \frac{1}{2}) \text{ und } \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \text{ (d.h. } \sin(60^\circ) = \frac{\sqrt{3}}{2}).$$

67) Beweisen Sie für $\alpha, \beta \in \mathbb{R}$:

a)
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

b)
$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

Definition. Die Funktion Tangens ist (für geeignete $\alpha \in \mathbb{R}$) definiert durch

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}.$$

- 68) a) Finden Sie den (maximalen) Definitionsbereich des Tangens.
- b) Skizzieren Sie den Graphen des Tangens.
- c) Wo findet man $\tan \alpha$ für einen Winkel α am Einheitskreis? Welcher Zusammenhang besteht zum Namen der Funktion?
- **69)** a) Finden und beweisen Sie Formeln für $\tan(\alpha + \pi)$, $\tan(\pi \alpha)$ und $\tan(-\alpha)$.
- b) Welche der Funktionswerte $\tan 0$, $\tan \frac{\pi}{6}$, $\tan \frac{\pi}{4}$, $\tan \frac{\pi}{3}$ und $\tan \frac{\pi}{2}$ existieren? Geben Sie davon jene Funktionswerte an, die existieren.
- 70) Beweisen Sie (für geeignete $\alpha, \beta \in \mathbb{R}$) den Summensatz für den Tangens:

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

Folgen Sie daraus Formeln für $\tan(\alpha - \beta)$ und $\tan(2\alpha)$.

- 71) Es sei $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ eine lineare Abbildung. Beweisen Sie, dass die folgenden beiden Aussagen äquivalent sind:
 - (i) φ ist orthogonal,
 - (ii) Aus ||v|| = 1 folgt $||\varphi(v)|| = 1$ (für $v \in \mathbb{R}^n$).

Definition. Eine Basis $\{v, w\}$ des \mathbb{R}^2 wird Orthonormalbasis genannt, wenn

$$||v|| = ||w|| = 1$$
 und $\langle v, w \rangle = 0$.

- 72) Es sei $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ eine lineare Abbildung. Beweisen Sie, dass die folgenden beiden Aussagen äquivalent sind:
 - (i) φ ist orthogonal,
 - (ii) Ist $\{v, w\}$ eine Orthonormalbasis des \mathbb{R}^2 , so ist auch $\{\varphi(v), \varphi(w)\}$ eine Orthonormalbasis des \mathbb{R}^2 .
- **73)** Beweisen Sie, dass die orthogonale Gruppe $(\mathbf{O}(n), \cdot)$ für $n \geq 2$ nicht abelsch ist.

Hinweis. Finden Sie zunächst ein Gegenbeispiel für n=2 und erweitern Sie es anschließend für n>2.

- **74)** Es sei $A \in \mathbb{R}^{n \times n}$. Beweisen Sie:
- a) Die folgenden beiden Aussagen sind äquivalent:
 - (i) $A^{\mathsf{T}} \cdot A = I_n$,
 - (ii) Sind v_1, \ldots, v_n die Spaltenvektoren von A, so gelten $||v_i|| = 1$ für $1 \le i \le n$ und $\langle v_i, v_j \rangle = 0$ für $1 \le i, j \le n, i \ne j$.
- b) Die folgenden beiden Aussagen sind äquivalent:
 - (i) $A \cdot A^{\mathsf{T}} = I_n$,
 - (ii) Sind w_1, \ldots, w_n die Zeilenvektoren von A, so gelten $||w_i|| = 1$ für $1 \le i \le n$ und $\langle w_i, w_j \rangle = 0$ für $1 \le i, j \le n, i \ne j$.
- **75)** Es sei $n \in \{2,3\}$ und $A \in \mathbb{R}^{n \times n}$. Beweisen Sie, dass die folgenden drei Aussagen äquivalent sind:
 - (i) A ist invertierbar,
 - (ii) Es gibt ein $B \in \mathbb{R}^{n \times n}$ mit der Eigenschaft $A \cdot B = I_n$,
 - (iii) Es gibt ein $C \in \mathbb{R}^{n \times n}$ mit der Eigenschaft $C \cdot A = I_n$.

Welche Beziehung haben A^{-1} und B bzw. C? Beweisen Sie Ihre Behauptung.

Definition. Wie in der Vorlesung bezeichne (für $\alpha \in \mathbb{R}$) im Folgenden

$$R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \quad \text{und} \quad S_{\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}.$$

76) Beweisen Sie: Für $\alpha, \beta \in \mathbb{R}$ gelten

$$R_{\alpha} \cdot \left(\begin{smallmatrix} \cos \beta \\ \sin \beta \end{smallmatrix} \right) = \left(\begin{smallmatrix} \cos(\alpha + \beta) \\ \sin(\alpha + \beta) \end{smallmatrix} \right) \quad \text{und} \quad S_{\alpha} \cdot \left(\begin{smallmatrix} \cos \beta \\ \sin \beta \end{smallmatrix} \right) = \left(\begin{smallmatrix} \cos(\alpha - \beta) \\ \sin(\alpha - \beta) \end{smallmatrix} \right).$$

Welche geometrischen Sachverhalte stehen hinter diesen beiden Gleichungen?

77) Beweisen Sie die folgenden Gleichungen (für $\alpha, \beta \in \mathbb{R}$):

a)
$$R_{\alpha}R_{\beta} = R_{\alpha+\beta}$$
 b) $S_{\alpha}S_{\beta} = R_{\alpha-\beta}$ c) $R_{\alpha}S_{\beta} = S_{\alpha+\beta}$ d) $S_{\alpha}R_{\beta} = S_{\alpha-\beta}$

Welche geometrischen Sachverhalte werden durch diese Gleichungen beschrieben? Eine der Gleichungen ist schon in der Vorlesung aufgetaucht – welche und wo? Welche beiden Aufgaben vom Beginn der Übungen könnte man mit Hilfe dieser Gleichungen nochmals (schneller) behandeln?

- **78)** Es sei $A \in SO(2)$ und $B \in O(2)$. Berechnen Sie $B^{-1}AB$ und zeigen Sie $B^{-1}AB \in SO(2)$. Interpretieren Sie diese Resultate geometrisch.
- **79)** Es sei $R \in SO(2) \setminus \{I_2\}$ und $v \in \mathbb{R}^2$. Beweisen Sie, dass die Isometrie

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \quad f(x) = R \cdot x + v$$

genau einen Fixpunkt hat und berechnen Sie ihn. Geben Sie eine geometrische Interpretation Ihres Resultats.

- 80) Es sei $T \in \mathcal{T}_2$ eine Translation des \mathbb{R}^2 und $f \in \mathcal{I}_2$ eine Isometrie des \mathbb{R}^2 . Berechnen Sie $f^{-1} \circ T \circ f$ und zeigen Sie $f^{-1} \circ T \circ f \in \mathcal{T}_2$. Interpretieren Sie diese Resultate geometrisch.
- **81)** Gegeben sei das Viereck $a, b, c, d \in \mathbb{R}^2$ mit

$$a = \begin{pmatrix} -3 \\ 0 \end{pmatrix}, b = \begin{pmatrix} 4 \\ -1 \end{pmatrix}, c = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \text{ und } d = \begin{pmatrix} -1 \\ 4 \end{pmatrix}.$$

Bestimmen Sie für die Geraden

$$G(a,b), G(b,c), G(c,d), G(d,a), G(a,c)$$
 und $G(b,d)$

sowohl eine Darstellung in Parameterform als auch eine Gleichung.

82) Finden Sie eine Parameterdarstellung der folgenden Geraden in \mathbb{R}^2 .

a)
$$7x_1 - 5x_2 = 3$$
 b) $x_2 + 3 = 0$ c) $x_1 - 5 = 0$

83) Die Punkte $a, b, c, d \in \mathbb{R}^2$ seien paarweise verschieden und nicht kollinear. Beweisen Sie, dass die Seitenmittelpunkte des Vierecks mit den Eckpunkten a, b, c, d ein Parallelogramm bilden und geben Sie eine Formel für den gemeinsamen Mittelpunkt der beiden Diagonalen dieses Parallelogramms an.

84) Beweisen Sie: Sind die nicht parallelen Geraden $G, H \subseteq \mathbb{R}^2$ gegeben durch

$$G = G_{a,v} = a + \mathbb{R}v \pmod{a \in \mathbb{R}^2 \text{ und } v \in \mathbb{R}^2 \setminus \{\mathbf{o}\}}$$

und

H durch die Gleichung $\langle x, w \rangle = c \pmod{w \in \mathbb{R}^2 \setminus \{\mathbf{o}\}}$ und $c \in \mathbb{R}$),

wobei $\mathbf{o} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ bezeichnen soll, so ist ihr Schnittpunkt

$$s = a + \frac{c - \langle a, w \rangle}{\langle v, w \rangle} v.$$

85) Beweisen Sie: Haben die nicht parallelen Geraden $G,H\subseteq\mathbb{R}^2$ die Gleichungen

$$\langle x, v \rangle = \alpha \text{ und } \langle x, w \rangle = \beta \text{ (mit } v, w \in \mathbb{R}^2 \setminus \{\mathbf{o}\} \text{ und } \alpha, \beta \in \mathbb{R}),$$

so ist ihr Schnittpunkt

$$s = \frac{1}{\det(v, w)} (\beta v^{\perp} - \alpha w^{\perp}).$$

86) Berechnen Sie den Abstand der Punkte $p,q,r,s\in\mathbb{R}^2$ von der Geraden $G\subseteq\mathbb{R}^2$.

a)
$$p = \binom{5}{6}$$
, $q = \binom{1}{-7}$, $r = \binom{-6}{-1}$, $s = \binom{8}{-3}$, $G = G(a, b)$ mit $a = \binom{-4}{8}$, $b = \binom{2}{0}$,

b)
$$p = \binom{4}{6}, q = \binom{6}{-4}, r = \binom{-3}{2}, s = \binom{-7}{-4}, G$$
 gegeben durch $5x_1 - 12x_2 = 0$.

87) Berechnen Sie die Länge der Höhen des Dreiecks $a, b, c \in \mathbb{R}^2$.

a)
$$a = \begin{pmatrix} -4 \\ 6 \end{pmatrix}, b = \begin{pmatrix} 5 \\ -6 \end{pmatrix}, c = \begin{pmatrix} 7 \\ 8 \end{pmatrix},$$
 b) $a = \begin{pmatrix} -7 \\ -5 \end{pmatrix}, b = \begin{pmatrix} 6 \\ 1 \end{pmatrix}, c = \begin{pmatrix} -2 \\ 7 \end{pmatrix}.$

88) Es sei $n\geq 3$ und $a_1,\ldots,a_n\in\mathbb{R}^2$ seien nicht kollinear. Wir definieren den Schwerpunkt s der Punkte a_1,\ldots,a_n durch

$$s := \frac{1}{n} \Big(a_1 + \dots + a_n \Big).$$

Für $1 \le i \le n$ sei

$$s_i := \frac{1}{n-1} \Big(a_1 + \dots + a_{i-1} + a_{i+1} + \dots + a_n \Big)$$

und $S_i := G(a_i, s_i) = G_{a_i, s_i - a_i}$. Beweisen Sie, dass sich die Geraden S_1, \ldots, S_n im Punkt s schneiden.

89) Bestimmen Sie für das Dreieck $a, b, c \in \mathbb{R}^2$ die Gleichungen der Seiten, der Seitenhalbierenden, der Höhen und der Mittelsenkrechten.

a)
$$a = \begin{pmatrix} -10 \\ 5 \end{pmatrix}, b = \begin{pmatrix} 17 \\ 14 \end{pmatrix}, c = \begin{pmatrix} 14 \\ -17 \end{pmatrix},$$
 b) $a = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, b = \begin{pmatrix} 5 \\ -1 \end{pmatrix}, c = \begin{pmatrix} 5 \\ -3 \end{pmatrix}.$

90) Bestimmen Sie für die Dreiecke aus Bsp. 89) den Schwerpunkt, den Höhenschnittpunkt, den Umkreismittelpunkt und die Gleichung der Euler-Geraden.