Exercises to Algebra 2, WS 2020/21
Christoph Baza

Definition: Let (M,-) be a monoid with identity element e and a € M. An x € M is

called left inverse (resp. right inverse) element of a if x - @ = e (resp. a - x = e).

The following lemma actually already been proved in Algebra 1 in Satz 3 but was not

stated there as it is here.

Lemma: Let (M,-) be a monoid with identity element e and x,y € M a left inverse and

a right inverse element of a € M (i.e., z-a=a-y =¢€). Then x = y.
Proof: x=x-e=z-(a-y)=(x-a)-y=e-y=y

66) Let V be the (real) vector space of real sequences (a,)n>1 (With (an)p>1 + (bn)n>1 =
(@n 4 bn)p>1 and o - (ap)n>1 := (aay)p>1) and let R be th(;ring of endorrzorphisms :)f V.
Let p: V —V and ¥ : V — V denote the maps
v(ay,as,as,...)=(0,a1,az,...) and (aj,asz,as,...) = (az,as,a4,...).
Prove the following:
a) ¢ and 1 are in R (i.e., they are R-linear maps),
b) There is a left inverse element of ¢ in R but there is no right inverse element of ¢,

c¢) There is a right inverse element of ¢ in R but there is no left inverse element of .

67) Prove the following (using the notations of the previous exercise):
a) ¢ is a right zero divisor but not a left zero divisor of R,

b) 1 is a left zero divisor but not a right zero divisor of R.

Are left inverse elements resp. right inverse elements uniquely determined (in R)?

68) a) Let p be a prime. Prove without using the results of Chapter 11 that
{a/p™ | a,n € Z,n > 0} is a subring of (Q, +,-). Is it even an ideal?
b) Let p be a prime. Prove without using the results of Chapter 11 that {a/b | a,b € Z,p { b}

is a subring of (Q, +, -) ist. Is it even an ideal?

69) Let Ryq,..., R, berings. Let addition and multiplication on Ry X --- x R,, be defined

as in Ex. 65. Prove the following;:

a) If S; is a subring of R; for 1 <i < n, then S; X --- x S, is a subring of Ry X -+ X R,,.
b) If I; is an ideal of R; for 1 <i <mn, then I1 x --- x I, is an ideal of Ry X -+ X R,,.
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Definition: Let R be a ring. The center Z(R) of R is defined as
Z(R) :={a € R|azr = zxa for all x € R}.

70) a) Let R be a ring. Prove that Z(R) is a subring of R.
b) Let Ryq,..., R, be rings. Prove Z(Ry X -+ X Ry,) = Z(Ry) X -+ X Z(Ry,).

71) Let K be a field. Prove the following;:

a) Z(My(K)) = {(g 2) ‘a € K},
b) Z(M(K)) is neither a left ideal nor a right ideal of Ms(K).

Definition. Let R be aring. An element a € R is called nilpotent if there is an n € N\ {0}
such that a™ = 0. The set of all nilpotent elements of R will be denoted by Nil(R).

72) Let R # {0} be a commutative ring with identity. Prove the following:

a) Every a € Nil(R) is a zero divisor,

b) If a,b € Nil(R) then a + b € Nil(R),

c¢) Nil(R) is an ideal of R,

d) If u € R* and a € Nil(R) then u + a € R* (Hint: geometric series).

73) Let K be a field and 1 < k < n.

a) Set I, := {(aij)1<ij<n € Mp(K) | a;; =0 for j # k}, i.e., the set of all n x n-matrices
with entries in K such that only the k-th column may contain entries # 0. Prove that I},
is a left ideal of M,,(K) but that it is not a right ideal if n > 2.

b) Set Jy := {(aij)1<ij<n € Mn(K) | a;; =0 for i # k}, i.e., the set of all n x n-matrices
with entries in K such that only the k-th row may contain entries # 0. Prove that Jj is a
right ideal of M, (K) but that it is not a left ideal if n > 2.

74) Let K be a field. Prove that M, (K) has only the ideals {0} and M,,(K). (Hint: Let
Eij = (zst)1<st<n € M,(K) be defined by z;; = 1 and zs = 0 if (s,t) # (4,4). Let
I # {0} be an ideal of M, (K). Then there is an A = (a;j)i1<ij<n € I \ {0}. Therefore
there are k,¢ € {1,... ,n} such that ags # 0. Prove Ey - A- Epp = apeFEy for 1 <t < n.
Deduce apeEy € 1, apoFEyy - a,;zlEtt =Fy€land I, = F11+- -+ E,, € I.) Why can this
exercise not be used to prove that M, (K) is a skew field for n > 2 because of Satz 60 (ii)?
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75) Let R be a ring and X C R. Prove

I J K L
(X) = {Zaixi6i+2'yjyj+2uk5k+anw o, Bi€ Rand z; € X for 1 <i <11,
i=1 j=1 k=1 (=1
v, €Randy; € X for 1 <j < J,

0p € Rand up € X for 1 <k < K,

ngGZandngXforlgégL}.

76) a) Let R be a commutative ring and X C R. Prove

a; € Rand x; € X for 1 <1¢ <1,
njEZandijXforlngJ}.

1 J
(X) = {Zazxz + anyj

i=1 j=1

b) Let R be a ring with identity and X C R. Prove

(X) = {Z iz

ai,ﬂiGRandxiEXforlgiSn}.
i=1

c¢) Let R be a commutative ring with identity and X C R. Prove

aieRandxieXforlgign}.
i=1

Definition: Let R be a ring and I and J ideals of R. The product I - J of the ideals I
and J is defined as

I-J={xyypn+ - +zpyn | n>0,21,... .20 € Ly1,... ,yn € J}.

77) Let R be a ring and I and J ideals of R. Prove the following:

a) I -J is an ideal of R,
b) I - J is the ideal generated by the set {zy |z € I,y € J},
¢) If R is a commutative ring with identity and a,b € R then (a) - (b) = (ab).



CHRISTOPH BAXA, ALGEBRA 2, WS 2020/21
78) Prove that the following maps are ring isomorphisms:
a) :C—C, p(z) =%,

b) p:C— {(_Zg) )a,bER}, ola+bi) = (_ZZ) (with a,b € R),
¢) Let d € Z\ {0,1} be squarefree, Z[/d] = {a + b\/d | a,b € Z} and
¢ : Z[Vd] = Z]Vd], p(a+ bV/d) = a — bV/d (where a,b € 7).

79) Prove that Z[i| = {a + bi | a,b € Z} and Z[v2] = {a + bv/2 | a,b € Z} are isomorphic
as abelian groups but not as rings. Le., the abelian groups (Z[i],+) and (Z[ﬁ], +) are
isomorphic, however, the rings (Z[i], +,-) and (Z[v/2],+,-) are not.

80) Let p be a prime. Prove, using the definition of a prime ideal, that

a
pP=1°=
f

a

r={s

81) Let R(# {0}) be a commutative ring with identity and P(# R) an ideal of R. Prove

that the following are equivalent:

a,bGZ,pla,pr}

is a prime ideal of the ring

a,bEZ,pJ[b}

(as in exercise 68b).

(i) P is a prime ideal,
(ii) If I, J are ideals and I - J C P then I C P or J C P.

Remarks: 1) Property (ii) in exercise 81 is used as the definition of a prime ideal in
general (i.e., not necessarily commutative) rings.
2) Let R(# {0}) be a commutative ring with identity and P an ideal of R. We have proved
in Satz 75, Satz 76 and exercise 81 that the following four conditions are equivalent (and
therefore characterize prime ideals).

(i) P # R and ab € P implies a € P or b € R (with a,b € R),

(ii) R\ P is a multiplicative subset of R,

(iii) P# Rand I -J C P implies I C P or J C P (where I, J are ideals of R),

)

(iv) R/P is an integral domain.
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82) Let R and S be commutative rings and ¢ : R — S an epimorphism of rings. Prove
the following:

a) If P is a prime ideal of R and ker ¢ C P then ¢(P) is a prime ideal of S.

b) If Q is a prime ideal of S then ¢~ 1(Q) is a prime ideal of R and ker p C ¢~1(Q).

c¢) There is an order preserving bijection between the set of prime ideals of R that contain
ker ¢ and the set of prime ideals of S.

d) If I is an ideal of R then every prime ideal of the factor ring R/I has shape P/I, where
P is a prime ideal of R satisfying I C P.

83) Let R be a commutative ring with identity and M # R an ideal of R. Prove that the

following are equivalent:

(i) M is a maximal ideal of R,
(i) Vee R\M JyecR:1gp—xy€c M.

84) Let p be a prime. Prove, using the definition of a maximal ideal, that

a
M= -
g

is a maximal ideal of the ring
a
R=<~-
g

a,bez,p!a,pﬂ)}

a,b € Z,p1 b}
(as in exercise 68b).

85) Let R = 2Z (i.e., R denotes the ring of even integers with the usual addition and
multiplication) and M = 47Z. Prove the following:

a) M is a maximal ideal but not a prime ideal of R,
b) R/M is not a field.

86) Let R be an integral domain and S a multiplicative subset of R with the property
0 ¢ S. Prove the following;:

a) If I is an ideal of R then S™'I :={a/s|a € I,s € S} is an ideal of ST1R.
b) If I is an ideal of R and SN T # & then S™'I = S71R.

87) Let G1,...,G, be groups. Prove the following: If o € S,, then
Ga(l) X XGO’(’n) gGl X XGn.
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88) Let I # & be a (index) set and G; a group for all i € I. Let e; denote the identity
element of the group G; and

HwGi = {(mi)ig ’xl € G; for all i € I and x; = e; for all but a finite number of z}
el

Prove (with componentwise composition as in Satz 93)

89) Prove the following: If the group G is the internal direct product of its two normal
subgroups Ny and Ny then G/N; = Ny and G/Ny = Nj.

90) Is the group S3 the internal direct product of two of its subgroups Ny, Ny (satisfying
Nl,NQ % {8} and Nl,NQ 7£ Sg)?

91) Find groups G1,Gs, Hy and Hj such that Gy x G = H; x Hy but G; ¥ H; for
i,7 €{1,2}.
Definition: Let G be a group, N < G and H < G. The group G is said to be the

(internal) semidirect product of N and H if G = NH and N N H = {e}. This is written
as G =N xH.

92) Let the group G be the semidirect product of N < G and H < G. Prove the following:

a) For every a € G the elements n € N and h € H with the property a = nh are
uniquely determined (i.e., the map N x H — G, (n,h) — nh is bijective).

b) The map 0 : H — Aut(N), h — 0}, is a homomorphism, where 6, : N — N is defined
as 0, (n) = hnh=1L.

93) Prove the following: For n > 3 the symmetric group S,, is the semidirect product of
A, (<S,) and {e, (12)}(< S,).
(As {e, (12)} = Zo this can be written is S,, = A,, x Zs.)

94) Prove the following: For n > 3 the dihedral group D,, is the semidirect product of
(a)(2 Dy) and {e, B}(< Dy).
Here o and 8 denote the same permutations as in Satz 47, compare also with exercise 56

from Algebra 1 (summer semester 2020). (As («) = Z,, and {e, f} = Z5 this can be written
as Dy, = Zy, X Zs.)
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95) Let K be a field. Prove the following: The General Linear Group GL, (K) is the
semidirect product of the Special Linear Group SL,,(K)(< GL,(K)) and the group

H := {diag(a,1,...,1) | a € K*}(< GL,(K)),

where diag(ay, ... ,a,) denotes the diagonal matrix with entries aq,...,a, € K. (As
H = K* this can be written as GL,,(K) = SL,,(K) x K*.)

Remarks: 1) Because of Korollar 98 the (internal) direct product is a special case of the
(internal) semidirect product. (I.e., if the group G is the internal direct product of its

normal subgroups Ny and Ny then G is also the semidirect product of N7 and Ns.)

2) It is possible that two groups G and H are semidirect products of isomorphic normal
subgroups and isomorphic subgroups but are not isomorphic themselves.

Le., it is possible that G; = Ny x Hy, Go = No x Hy, Ny = N, and H; = Hy but
G1 % Gy. E.g., Zg = Zs x Zy (because of Satz 101) and Zg is therefore (because of the
remark above) also the semidirect product of Zz and Z,. However, in exercise 94 it was
proved that D3 = Z3 X Zy as well. As Zg is abelian but Dj is not, they are not isomorphic.
This phenomenon can be understood by regarding the maps 6 (as described in exercise 92)

which are different in both cases.

96) Let I : R? — R? I(z,y) = (z,y) and S : R? — R?, S(z,y) = (z,—y). Let the group
G = ({I,S},0) act on M = R2. Determine the orbits and isotropy groups of all (z,y) € R?

as well as the fixed points of this group action.

97) Let the group SO(2) act on R? by matrix multiplication (A4,x) — A - xz. Determine
the orbits and the isotropy groups of all z € R? as well as the fixed points of this group

action.

98) Prove the following: The group SLo(R) acts on the upper half-plane of the complex
plane (i.e., on H = {z € C|Imz > 0}) via

(CL b) az+b
czi= )
c d cz+d

99) Prove the following: The isotropy group of i for the action of the group SLy(R) on the

upper half-plane H (as in the preceding exercise) is the group SO(2).

100) Let the group G act on the set M. Prove the equation G,., = a - G, - a~ ! for all
x € M and all a € G, i.e., the isotropy groups of x € M and a - x € M are conjugate.
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101) Let G be a group, ¢ € Aut(G) and C a conjugacy class of elements of G. Prove the

following;:

a) ¢(C) is also a conjugacy class,
b) If ¢ € Inn(G) then ¢(C) = C.

102) For a permutation o € S,, and r € {1,... ,n} let z.(0) be the number of cycles of
length 7 in the decomposition of ¢ into disjoint cycles. Prove that o, 7 € S,, are conjugate
if and only if z,.(0) = z,.(7) for all r € {1,... ,n}.

103) Let a group G of order |G| = 55 act on a set M with |M| = 39 elements. Prove that

there has to exist a fixed point of this group action.
104) Determine the number and the elements of the Sylow 2-subgroups of the group Sy.
105) Determine the number and the elements of the Sylow 5-subgroups of the group Ss.

106) Let G be a finite simple group of order |G| = 168. Determine the number of a € G
of order ord(a) = 7.

Remark: It can be proved that the group SL3(Zs) is simple and of order 168.
107) Prove that the group As contains no subgroup of order 15.

Theorem (Fermat): Let p be a prime number (in Z). Then the following are equivalent:

(i) There are z,y € Z such that p = 22 + y2,
(iil) p=2or p=1 (mod 4).

Proof: (i) = (ii) If 2 | # then 22 =0 (mod 4). If 2{ x then 22 =1 (mod 4). This implies
p=2ax%+y?=0,1,2 (mod 4). Tt is impossible that p = 0 (mod 4) and p = 2 (mod 4) is
possible only if p = 2.

(ii) = (i) (Heath-Brown) As 2 = 1% + 12 we can from now on assume p = 1 (mod 4). Let

Si={(z,y,2) €Z° | 2,y > 1, dwy + 2° = p}.

The set S is not empty (as ((p—1)/4,1,1) € S) and finite as (z,y, z) € S implies z,y < p/4
and for fixed x,y there are at most two possible values for z. We will make use of the map
f:8—=3S5, (z,y,2) = (y,x,—z). It is an involution (i.e., f o f = idg) and has no fixed

points (as f(z,y,2) = (z,y, z) is the same as (y,z, —z) = (x,y, z) which implies z = 0 and
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therefore p = 4xy, which is impossible). Clearly f maps the set T := {(x,y,2) € S| z > 0}
bijectively onto S\ 7. There is no (z,y, z) € S satisfying x —y+ z = 0, as this would imply
p=dxy+ 22 = 4oy + (x —y)? = (z +y)?. Setting U := {(z,y,2) € S | x —y+ 2z > 0}, the
set U is mapped bijectively onto S\ U by f. This shows |T'| = |S|/2 = |U|. Now consider
the map

g:U—=>U, (z,y,2)— (x—y+29,2y—2).

We first check that g is well-defined. If (z,y,2z) € U then z —y + 2z > 0 and y > 0 and

therefore
Az —y+2)y+ 2y — 2)° = 4oy — 4y® + dyz + 4y° — dyz + 2% = day + 2* = p,

ie, g(z,y,2) €S. Asx—y+z—y+2y—2z=x>0 we have g(z,y, z) € U. Furthermore,

g is also an involution as

(gog)(w,y,2) =g(x —y+2y2y—2)=(@—-y+z—y+2y—2y2y—2y+2z2) = (1,y,2)

and it is easy to see that g has exactly one fixed point as g(z,y, z) = (x,y, 2) is the same
as (r —y+2,y,2y — 2) = (2,9, z), whence y = z and thus p = 4xy + y? = (42 + y)y. This
is only possible if y = z = 1 and « = (p — 1) /4. This shows |[U| =1 (mod 2) and therefore
7| =1 (mod 2). Finallylet h: T — T, (z,y, 2) — (y,x, z). Then h is clearly well-definied
and an involution. As |T| =1 (mod 2), the map & has to have a fixed point, i.e., there is

a (z,y,z) € T with the property = y and therefore p = 422 + 22 = (21)? + 2°.

Definition: For a € Z[i] the norm N(a) is defined as N(a) := a-a = |a|? (i.e., if a = x+1iy
with z,y € Z then N(z + iy) = 2% + y?).

108) Let a,b € Z][i]. Prove the following:
a) N(a-b) = N(a)- N(b),
b) If a | b (divisibility in Z[i]) then N(a) | N(b) (divisibility in Z),

109) Let a € Z][i]. Prove the following:
a)a € Z[i]* & N(a)=1 & ac{l,—1,i,—i},

b) If N(a) is a prime number then a is an irreducible element of Z[i] (and thus prime).
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110) Prove the following properties of the unique factorization domain Z[:]:

Hint. Use Fermat’s result above and the preceding exercise.

a) 1+ is an irreducible element of Z[i] (and 2 = —i - (1 + 1), i.e., 2 is ramified),

b) If p=1 (mod 4) is a prime number and x,y € Z, x > y > 0 such that p = 22 + y? then
both = + iy and x — iy are irreducible elements of Z[i] and are not associates
(and p = (x +iy)(x — iy), i.e., p splits),

c) If p=3 (mod 4) is a prime number then p is also an irreducible element of Z[i| (i.e., p

is inert).

111) Let R be a Euclidean domain whose function ¢ : R\ {0} — N U {0} satisfies the
additional condition p(ab) > ¢(a) Va,b € R\ {0}.

a) Which of the Euclidean domains we discussed so far satisfy this condition?

b) Prove for all a,b € R\ {0}: If a and b are associates then p(a) = ¢(b),

c¢) Prove for all a,b € R\ {0}: If ¢(a) = ¢(b) and a | b then a and b are associates,

d) Prove for all a € R\ {0}: a € R* < ¢(a) = ¢(1Rr).

112) Let R be a unique factorization domain and a € R\ {0}. Prove that the ideal (a) is

contained in only finitely many prinicipal ideals of R.

113) Let R(# {0}) be a commutative ring with identity and
p(X)=ap+ a1 X +---+a, X" € R[X].
a) Prove
p€ RX]* <= ay€ R"and ay,...,a, € Nil(R).
Hint: Let p(X) - q(X) =1 with ¢(X) = by + 01X + -+ + b, X™ € R[X]. Use induction
on r to show a’tb,, . = 0. Deduce that a,, is nilpotent and use exercise 72.

b) Find (2X +3)~! € Zs[X].

114) Perform the division algorithm for polynomials for the following f,g € Q[X], i.e.,
find polynomials ¢, € Q[X] such that f = gg + r and gradr < grad g:

a) f(X)=X0+X5—- X1-4X3-2X?2+2X —4,
g(X)=X>42X*-2X3 - 5X%? - 5X +2
f(X)=X5—-2X%+3X3-6X24+2X —4,9g(X)=X*+ X3 -5X2+X -6

c) f(X)=X%—-1,9(X)=X2-1
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115) Find the greatest common divisors of the polynomials

p(X)=X3-2X2 - X +2 and ¢(X)=X3-4X?%2+3X
in the ring of polynomials Q[X] using the Euclidean algorithm. Determine polynomials
f1, f2 € Q[X] such that fip+ faq = g, where g € Q[X] denotes the uniquely determined

monic greatest common divisor of p and q.

116) Show that Z[X] is not a principal ideal domain by proving that the ideal I := (2, X)

is not a principal ideal.

117) Let R be an infinite integral domain. Prove that the map, which assigns to each
p € R[X] the polynomial function f, : R — R, a — p(«), is injective.

118) Let K be a field with char K = p > 0 and f € K[X] with grad f > 1. Prove that
/=0 if and only if there exists a g € K[X] such that f(X) = g(XP).

119) Apply Eisenstein’s criterion to prove that the following polynomials are irreducible
in Q[X]:

a) X2 +6X +2

b) 3X%+15X2 + 10

c) 2X5 —6X3 +9X2% 15

d) X —7X6 4+ 21X5 +49X — 56

120) Let p be a prime. The p-th cyclotomic polynomial ®,(X) is
P, (X)=XP 4 XP2 4 X 1.

Apply Eisenstein’s criterion to show that ®,(X) is irreducible in Q[X].
Hint. Use ®,(X) = (X?—1)/(X —1), consider ®,(X +1) and apply the binomial theorem.

121) Let K be a field and n € N\ {0}. Prove that F,, := {a € K | " = 1} is a finite
cyclic subgroup of (K*,-).

122) Let p be a prime and let L/K be a field extension with [L : K] = p. Prove L = K(a)
forallae L\ K.
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123) Determine the minimal polynomial m, x of a over K for the field extension L/K
and a € L.

a) L=C, K =R, a=+/7,

b)L=C, K=Q, a=+7,

¢)L=C,K=Q,a=(1+5)/2.

124) Prove that Q(i) and Q(+/2) are isomorphic as vector spaces over Q but not as rings.

125) Let L/K be a field extension and let @ € L be algebraic over K. Prove the following:
If grad m, i is odd then K(a?) = K(a). Is this also true if grad m, x is even? Deduce

Q(V2) = Q(V4).



