Exercises to Algebra 2, WS 2020/21

Christoph Baxa

Definition: Let (M, \cdot) be a monoid with identity element e and $a \in M$. An $x \in M$ is called left inverse (resp. right inverse) element of a if $x \cdot a = e$ (resp. $a \cdot x = e$).

The following lemma actually already been proved in Algebra 1 in Satz 3 but was not stated there as it is here.

Lemma: Let (M, \cdot) be a monoid with identity element e and $x, y \in M$ a left inverse and a right inverse element of $a \in M$ (i.e., $x \cdot a = a \cdot y = e$). Then x = y.

Proof: $x = x \cdot e = x \cdot (a \cdot y) = (x \cdot a) \cdot y = e \cdot y = y$

66) Let V be the (real) vector space of real sequences $(a_n)_{n\geq 1}$ (with $(a_n)_{n\geq 1} + (b_n)_{n\geq 1} := (a_n + b_n)_{n\geq 1}$ and $\alpha \cdot (a_n)_{n\geq 1} := (\alpha a_n)_{n\geq 1}$) and let R be the ring of endomorphisms of V. Let $\varphi: V \to V$ and $\psi: V \to V$ denote the maps

 $\varphi(a_1, a_2, a_3, \dots) = (0, a_1, a_2, \dots)$ and $\psi(a_1, a_2, a_3, \dots) = (a_2, a_3, a_4, \dots).$

Prove the following:

- a) φ and ψ are in R (i.e., they are \mathbb{R} -linear maps),
- b) There is a left inverse element of φ in R but there is no right inverse element of φ ,
- c) There is a right inverse element of ψ in R but there is no left inverse element of ψ .

67) Prove the following (using the notations of the previous exercise):

a) φ is a right zero divisor but not a left zero divisor of R,

b) ψ is a left zero divisor but not a right zero divisor of R.

Are left inverse elements resp. right inverse elements uniquely determined (in R)?

68) a) Let p be a prime. Prove without using the results of Chapter 11 that {a/pⁿ | a, n ∈ Z, n ≥ 0} is a subring of (Q, +, ·). Is it even an ideal?
b) Let p be a prime. Prove without using the results of Chapter 11 that {a/b | a, b ∈ Z, p ∤ b} is a subring of (Q, +, ·) ist. Is it even an ideal?

69) Let R_1, \ldots, R_n be rings. Let addition and multiplication on $R_1 \times \cdots \times R_n$ be defined as in Ex. 65. Prove the following:

a) If S_i is a subring of R_i for $1 \le i \le n$, then $S_1 \times \cdots \times S_n$ is a subring of $R_1 \times \cdots \times R_n$. b) If I_i is an ideal of R_i for $1 \le i \le n$, then $I_1 \times \cdots \times I_n$ is an ideal of $R_1 \times \cdots \times R_n$. **Definition:** Let R be a ring. The center Z(R) of R is defined as

 $Z(R) := \{ a \in R \mid ax = xa \text{ for all } x \in R \}.$

70) a) Let R be a ring. Prove that Z(R) is a subring of R.

b) Let R_1, \ldots, R_n be rings. Prove $Z(R_1 \times \cdots \times R_n) = Z(R_1) \times \cdots \times Z(R_n)$.

71) Let K be a field. Prove the following:

a) $Z(M_2(K)) = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \middle| a \in K \right\},$

b) $Z(M_2(K))$ is neither a left ideal nor a right ideal of $M_2(K)$.

Definition. Let R be a ring. An element $a \in R$ is called nilpotent if there is an $n \in \mathbb{N} \setminus \{0\}$ such that $a^n = 0$. The set of all nilpotent elements of R will be denoted by Nil(R).

72) Let $R \neq \{0\}$ be a commutative ring with identity. Prove the following:

- a) Every $a \in Nil(R)$ is a zero divisor,
- b) If $a, b \in Nil(R)$ then $a + b \in Nil(R)$,
- c) Nil(R) is an ideal of R,

d) If $u \in R^*$ and $a \in Nil(R)$ then $u + a \in R^*$ (*Hint:* geometric series).

73) Let K be a field and $1 \le k \le n$.

a) Set $I_k := \{(a_{ij})_{1 \le i,j \le n} \in M_n(K) \mid a_{ij} = 0 \text{ for } j \ne k\}$, i.e., the set of all $n \times n$ -matrices with entries in K such that only the k-th column may contain entries $\ne 0$. Prove that I_k is a left ideal of $M_n(K)$ but that it is not a right ideal if $n \ge 2$.

b) Set $J_k := \{(a_{ij})_{1 \le i,j \le n} \in M_n(K) \mid a_{ij} = 0 \text{ for } i \ne k\}$, i.e., the set of all $n \times n$ -matrices with entries in K such that only the k-th row may contain entries $\ne 0$. Prove that J_k is a right ideal of $M_n(K)$ but that it is not a left ideal if $n \ge 2$.

74) Let K be a field. Prove that $M_n(K)$ has only the ideals $\{0\}$ and $M_n(K)$. (*Hint:* Let $E_{ij} = (x_{st})_{1 \le s,t \le n} \in M_n(K)$ be defined by $x_{ij} = 1$ and $x_{st} = 0$ if $(s,t) \ne (i,j)$. Let $I \ne \{0\}$ be an ideal of $M_n(K)$. Then there is an $A = (a_{ij})_{1 \le i,j \le n} \in I \setminus \{0\}$. Therefore there are $k, \ell \in \{1, \ldots, n\}$ such that $a_{k\ell} \ne 0$. Prove $E_{tk} \cdot A \cdot E_{\ell t} = a_{k\ell} E_{tt}$ for $1 \le t \le n$. Deduce $a_{k\ell} E_{tt} \in I$, $a_{k\ell} E_{tt} \cdot a_{k\ell}^{-1} E_{tt} = E_{tt} \in I$ and $I_n = E_{11} + \cdots + E_{nn} \in I$.) Why can this exercise not be used to prove that $M_n(K)$ is a skew field for $n \ge 2$ because of Satz 60 (ii)?

75) Let R be a ring and $X \subseteq R$. Prove

$$(X) = \left\{ \sum_{i=1}^{I} \alpha_i x_i \beta_i + \sum_{j=1}^{J} \gamma_j y_j + \sum_{k=1}^{K} u_k \delta_k + \sum_{\ell=1}^{L} n_\ell v_\ell \middle| \begin{array}{l} \alpha_i, \beta_i \in R \text{ and } x_i \in X \text{ for } 1 \le i \le I, \\ \gamma_j \in R \text{ and } y_j \in X \text{ for } 1 \le j \le J, \\ \delta_k \in R \text{ and } u_k \in X \text{ for } 1 \le k \le K, \\ n_\ell \in \mathbb{Z} \text{ and } v_\ell \in X \text{ for } 1 \le \ell \le L \right\}.$$

76) a) Let R be a commutative ring and $X \subseteq R$. Prove

$$(X) = \left\{ \sum_{i=1}^{I} \alpha_i x_i + \sum_{j=1}^{J} n_j y_j \, \middle| \, \alpha_i \in R \text{ and } x_i \in X \text{ for } 1 \le i \le I, \\ n_j \in \mathbb{Z} \text{ and } y_j \in X \text{ for } 1 \le j \le J \right\}.$$

b) Let R be a ring with identity and $X \subseteq R$. Prove

$$(X) = \left\{ \sum_{i=1}^{n} \alpha_i x_i \beta_i \, \middle| \, \alpha_i, \beta_i \in R \text{ and } x_i \in X \text{ for } 1 \le i \le n \right\}.$$

c) Let R be a commutative ring with identity and $X \subseteq R$. Prove

$$(X) = \left\{ \sum_{i=1}^{n} \alpha_i x_i \, \middle| \, \alpha_i \in R \text{ and } x_i \in X \text{ for } 1 \le i \le n \right\}.$$

Definition: Let R be a ring and I and J ideals of R. The product $I \cdot J$ of the ideals I and J is defined as

$$I \cdot J := \{ x_1 y_1 + \dots + x_n y_n \mid n \ge 0, x_1, \dots, x_n \in I, y_1, \dots, y_n \in J \}.$$

77) Let R be a ring and I and J ideals of R. Prove the following:

- a) $I \cdot J$ is an ideal of R,
- b) $I \cdot J$ is the ideal generated by the set $\{xy \mid x \in I, y \in J\}$,
- c) If R is a commutative ring with identity and $a, b \in R$ then $(a) \cdot (b) = (ab)$.

78) Prove that the following maps are ring isomorphisms:

a)
$$\varphi : \mathbb{C} \to \mathbb{C}, \ \varphi(z) = \overline{z},$$

b) $\varphi : \mathbb{C} \to \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}, \ \varphi(a + bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \text{ (with } a, b \in \mathbb{R}),$
c) Let $d \in \mathbb{Z} \setminus \{0, 1\}$ be squarefree, $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$ and
 $\varphi : \mathbb{Z}[\sqrt{d}] \to \mathbb{Z}[\sqrt{d}], \ \varphi(a + b\sqrt{d}) = a - b\sqrt{d} \text{ (where } a, b \in \mathbb{Z}).$

79) Prove that $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ and $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ are isomorphic as abelian groups but not as rings. I.e., the abelian groups $(\mathbb{Z}[i], +)$ and $(\mathbb{Z}[\sqrt{2}], +)$ are isomorphic, however, the rings $(\mathbb{Z}[i], +, \cdot)$ and $(\mathbb{Z}[\sqrt{2}], +, \cdot)$ are not.

80) Let p be a prime. Prove, using the definition of a prime ideal, that

$$P = \left\{ \frac{a}{b} \, \middle| \, a, b \in \mathbb{Z}, p \mid a, p \nmid b \right\}$$

is a prime ideal of the ring

$$R = \left\{ \frac{a}{b} \, \middle| \, a, b \in \mathbb{Z}, p \nmid b \right\}$$

(as in exercise 68b).

81) Let $R(\neq \{0\})$ be a commutative ring with identity and $P(\neq R)$ an ideal of R. Prove that the following are equivalent:

- (i) P is a prime ideal,
- (ii) If I, J are ideals and $I \cdot J \subseteq P$ then $I \subseteq P$ or $J \subseteq P$.

Remarks: 1) Property (ii) in exercise 81 is used as the definition of a prime ideal in general (i.e., not necessarily commutative) rings.

2) Let $R(\neq \{0\})$ be a commutative ring with identity and P an ideal of R. We have proved in Satz 75, Satz 76 and exercise 81 that the following four conditions are equivalent (and therefore characterize prime ideals).

- (i) $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in R$ (with $a, b \in R$),
- (ii) $R \setminus P$ is a multiplicative subset of R,
- (iii) $P \neq R$ and $I \cdot J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$ (where I, J are ideals of R),
- (iv) R/P is an integral domain.

82) Let R and S be commutative rings and $\varphi : R \to S$ an epimorphism of rings. Prove the following:

- a) If P is a prime ideal of R and ker $\varphi \subseteq P$ then $\varphi(P)$ is a prime ideal of S.
- b) If Q is a prime ideal of S then $\varphi^{-1}(Q)$ is a prime ideal of R and ker $\varphi \subseteq \varphi^{-1}(Q)$.
- c) There is an order preserving bijection between the set of prime ideals of R that contain ker φ and the set of prime ideals of S.
- d) If I is an ideal of R then every prime ideal of the factor ring R/I has shape P/I, where P is a prime ideal of R satisfying $I \subseteq P$.

83) Let R be a commutative ring with identity and $M \neq R$ an ideal of R. Prove that the following are equivalent:

- (i) M is a maximal ideal of R,
- (ii) $\forall x \in R \setminus M \exists y \in R : 1_R xy \in M.$

84) Let p be a prime. Prove, using the definition of a maximal ideal, that

$$M = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, p \mid a, p \nmid b \right\}$$

is a maximal ideal of the ring

$$R = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, p \nmid b \right\}$$

(as in exercise 68b).

85) Let $R = 2\mathbb{Z}$ (i.e., R denotes the ring of even integers with the usual addition and multiplication) and $M = 4\mathbb{Z}$. Prove the following:

- a) M is a maximal ideal but not a prime ideal of R,
- b) R/M is not a field.

86) Let R be an integral domain and S a multiplicative subset of R with the property $0 \notin S$. Prove the following:

- a) If I is an ideal of R then $S^{-1}I := \{a/s \mid a \in I, s \in S\}$ is an ideal of $S^{-1}R$.
- b) If I is an ideal of R and $S \cap I \neq \emptyset$ then $S^{-1}I = S^{-1}R$.

87) Let G_1, \ldots, G_n be groups. Prove the following: If $\sigma \in S_n$ then

$$G_{\sigma(1)} \times \cdots \times G_{\sigma(n)} \cong G_1 \times \cdots \times G_n.$$

88) Let $I \neq \emptyset$ be a (index) set and G_i a group for all $i \in I$. Let e_i denote the identity element of the group G_i and

$$\prod_{i\in I}^{w} G_i := \Big\{ (x_i)_{i\in I} \, \Big| \, x_i \in G_i \text{ for all } i \in I \text{ and } x_i = e_i \text{ for all but a finite number of } i \Big\}.$$

Prove (with componentwise composition as in Satz 93)

$$\prod_{i\in I}^{w} G_i \trianglelefteq \prod_{i\in I} G_i.$$

89) Prove the following: If the group G is the internal direct product of its two normal subgroups N_1 and N_2 then $G/N_1 \cong N_2$ and $G/N_2 \cong N_1$.

90) Is the group S_3 the internal direct product of two of its subgroups N_1, N_2 (satisfying $N_1, N_2 \neq \{\varepsilon\}$ and $N_1, N_2 \neq S_3$)?

91) Find groups G_1, G_2, H_1 and H_2 such that $G_1 \times G_2 \cong H_1 \times H_2$ but $G_i \ncong H_j$ for $i, j \in \{1, 2\}$.

Definition: Let G be a group, $N \leq G$ and $H \leq G$. The group G is said to be the (internal) semidirect product of N and H if G = NH and $N \cap H = \{e\}$. This is written as $G = N \rtimes H$.

- **92)** Let the group G be the semidirect product of $N \leq G$ and $H \leq G$. Prove the following:
 - a) For every $a \in G$ the elements $n \in N$ and $h \in H$ with the property a = nh are uniquely determined (i.e., the map $N \times H \to G$, $(n, h) \mapsto nh$ is bijective).
 - b) The map $\theta: H \to \operatorname{Aut}(N), h \mapsto \theta_h$ is a homomorphism, where $\theta_h: N \to N$ is defined as $\theta_h(n) = hnh^{-1}$.
- **93)** Prove the following: For $n \ge 3$ the symmetric group S_n is the semidirect product of $A_n(\trianglelefteq S_n)$ and $\{\varepsilon, (12)\} (\le S_n)$.

(As $\{\varepsilon, (12)\} \cong \mathbb{Z}_2$ this can be written is $S_n = A_n \rtimes \mathbb{Z}_2$.)

94) Prove the following: For $n \ge 3$ the dihedral group D_n is the semidirect product of $\langle \alpha \rangle (\trianglelefteq D_n)$ and $\{\varepsilon, \beta\} (\le D_n)$.

Here α and β denote the same permutations as in Satz 47, compare also with exercise 56 from Algebra 1 (summer semester 2020). (As $\langle \alpha \rangle \cong \mathbb{Z}_n$ and $\{\varepsilon, \beta\} \cong \mathbb{Z}_2$ this can be written as $D_n = \mathbb{Z}_n \rtimes \mathbb{Z}_2$.)

95) Let K be a field. Prove the following: The General Linear Group $\operatorname{GL}_n(K)$ is the semidirect product of the Special Linear Group $\operatorname{SL}_n(K)(\trianglelefteq \operatorname{GL}_n(K))$ and the group

$$H := \{ \operatorname{diag}(a, 1, \dots, 1) \mid a \in K^* \} (\leq \operatorname{GL}_n(K)),$$

where diag (a_1, \ldots, a_n) denotes the diagonal matrix with entries $a_1, \ldots, a_n \in K$. (As $H \cong K^*$ this can be written as $\operatorname{GL}_n(K) = \operatorname{SL}_n(K) \rtimes K^*$.)

Remarks: 1) Because of Korollar 98 the (internal) direct product is a special case of the (internal) semidirect product. (I.e., if the group G is the internal direct product of its normal subgroups N_1 and N_2 then G is also the semidirect product of N_1 and N_2 .)

2) It is possible that two groups G and H are semidirect products of isomorphic normal subgroups and isomorphic subgroups but are not isomorphic themselves.

I.e., it is possible that $G_1 = N_1 \rtimes H_1$, $G_2 = N_2 \rtimes H_2$, $N_1 \cong N_2$ and $H_1 \cong H_2$ but $G_1 \not\cong G_2$. E.g., $\mathbb{Z}_6 \cong \mathbb{Z}_3 \times \mathbb{Z}_2$ (because of Satz 101) and \mathbb{Z}_6 is therefore (because of the remark above) also the semidirect product of \mathbb{Z}_3 and \mathbb{Z}_2 . However, in exercise 94 it was proved that $D_3 = \mathbb{Z}_3 \rtimes \mathbb{Z}_2$ as well. As \mathbb{Z}_6 is abelian but D_3 is not, they are not isomorphic. This phenomenon can be understood by regarding the maps θ (as described in exercise 92) which are different in both cases.

96) Let $I : \mathbb{R}^2 \to \mathbb{R}^2$, I(x, y) = (x, y) and $S : \mathbb{R}^2 \to \mathbb{R}^2$, S(x, y) = (x, -y). Let the group $G = (\{I, S\}, \circ)$ act on $M = \mathbb{R}^2$. Determine the orbits and isotropy groups of all $(x, y) \in \mathbb{R}^2$ as well as the fixed points of this group action.

97) Let the group SO(2) act on \mathbb{R}^2 by matrix multiplication $(A, x) \mapsto A \cdot x$. Determine the orbits and the isotropy groups of all $x \in \mathbb{R}^2$ as well as the fixed points of this group action.

98) Prove the following: The group $SL_2(\mathbb{R})$ acts on the upper half-plane of the complex plane (i.e., on $H = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$) via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z := \frac{az+b}{cz+d}.$$

99) Prove the following: The isotropy group of i for the action of the group $SL_2(\mathbb{R})$ on the upper half-plane H (as in the preceding exercise) is the group SO(2).

100) Let the group G act on the set M. Prove the equation $G_{a \cdot x} = a \cdot G_x \cdot a^{-1}$ for all $x \in M$ and all $a \in G$, i.e., the isotropy groups of $x \in M$ and $a \cdot x \in M$ are conjugate.

101) Let G be a group, $\varphi \in Aut(G)$ and C a conjugacy class of elements of G. Prove the following:

- a) $\varphi(C)$ is also a conjugacy class,
- b) If $\varphi \in \text{Inn}(G)$ then $\varphi(C) = C$.

102) For a permutation $\sigma \in S_n$ and $r \in \{1, \ldots, n\}$ let $z_r(\sigma)$ be the number of cycles of length r in the decomposition of σ into disjoint cycles. Prove that $\sigma, \tau \in S_n$ are conjugate if and only if $z_r(\sigma) = z_r(\tau)$ for all $r \in \{1, \ldots, n\}$.

103) Let a group G of order |G| = 55 act on a set M with |M| = 39 elements. Prove that there has to exist a fixed point of this group action.

104) Determine the number and the elements of the Sylow 2-subgroups of the group S_4 .

105) Determine the number and the elements of the Sylow 5-subgroups of the group S_5 .

106) Let G be a finite simple group of order |G| = 168. Determine the number of $a \in G$ of order $\operatorname{ord}(a) = 7$.

Remark: It can be proved that the group $SL_3(\mathbb{Z}_2)$ is simple and of order 168.

107) Prove that the group A_5 contains no subgroup of order 15.

Theorem (Fermat): Let p be a prime number (in \mathbb{Z}). Then the following are equivalent:

- (i) There are $x, y \in \mathbb{Z}$ such that $p = x^2 + y^2$,
- (ii) p = 2 or $p \equiv 1 \pmod{4}$.

Proof: (i) \Rightarrow (ii) If 2 | x then $x^2 \equiv 0 \pmod{4}$. If 2 $\nmid x$ then $x^2 \equiv 1 \pmod{4}$. This implies $p = x^2 + y^2 \equiv 0, 1, 2 \pmod{4}$. It is impossible that $p \equiv 0 \pmod{4}$ and $p \equiv 2 \pmod{4}$ is possible only if p = 2.

(ii) \Rightarrow (i) (Heath-Brown) As $2 = 1^2 + 1^2$ we can from now on assume $p \equiv 1 \pmod{4}$. Let

$$S := \{ (x, y, z) \in \mathbb{Z}^3 \mid x, y \ge 1, 4xy + z^2 = p \}.$$

The set S is not empty (as $((p-1)/4, 1, 1) \in S$) and finite as $(x, y, z) \in S$ implies $x, y \leq p/4$ and for fixed x, y there are at most two possible values for z. We will make use of the map $f: S \to S, (x, y, z) \mapsto (y, x, -z)$. It is an involution (i.e., $f \circ f = id_S$) and has no fixed points (as f(x, y, z) = (x, y, z) is the same as (y, x, -z) = (x, y, z) which implies z = 0 and therefore p = 4xy, which is impossible). Clearly f maps the set $T := \{(x, y, z) \in S \mid z > 0\}$ bijectively onto $S \setminus T$. There is no $(x, y, z) \in S$ satisfying x - y + z = 0, as this would imply $p = 4xy + z^2 = 4xy + (x - y)^2 = (x + y)^2$. Setting $U := \{(x, y, z) \in S \mid x - y + z > 0\}$, the set U is mapped bijectively onto $S \setminus U$ by f. This shows |T| = |S|/2 = |U|. Now consider the map

$$g: U \to U, \quad (x, y, z) \mapsto (x - y + z, y, 2y - z).$$

We first check that g is well-defined. If $(x, y, z) \in U$ then x - y + z > 0 and y > 0 and therefore

$$4(x - y + z)y + (2y - z)^{2} = 4xy - 4y^{2} + 4yz + 4y^{2} - 4yz + z^{2} = 4xy + z^{2} = p,$$

i.e., $g(x, y, z) \in S$. As x - y + z - y + 2y - z = x > 0 we have $g(x, y, z) \in U$. Furthermore, g is also an involution as

$$(g \circ g)(x, y, z) = g(x - y + z, y, 2y - z) = (x - y + z - y + 2y - z, y, 2y - 2y + z) = (x, y, z)$$

and it is easy to see that g has exactly one fixed point as g(x, y, z) = (x, y, z) is the same as (x - y + z, y, 2y - z) = (x, y, z), whence y = z and thus $p = 4xy + y^2 = (4x + y)y$. This is only possible if y = z = 1 and x = (p - 1)/4. This shows $|U| \equiv 1 \pmod{2}$ and therefore $|T| \equiv 1 \pmod{2}$. Finally let $h: T \to T$, $(x, y, z) \mapsto (y, x, z)$. Then h is clearly well-definied and an involution. As $|T| \equiv 1 \pmod{2}$, the map h has to have a fixed point, i.e., there is a $(x, y, z) \in T$ with the property x = y and therefore $p = 4x^2 + z^2 = (2x)^2 + z^2$.

Definition: For $a \in \mathbb{Z}[i]$ the norm N(a) is defined as $N(a) := a \cdot \overline{a} = |a|^2$ (i.e., if a = x + iy with $x, y \in \mathbb{Z}$ then $N(x + iy) = x^2 + y^2$).

- 108) Let $a, b \in \mathbb{Z}[i]$. Prove the following:
 - a) $N(a \cdot b) = N(a) \cdot N(b)$,
 - b) If $a \mid b$ (divisibility in $\mathbb{Z}[i]$) then $N(a) \mid N(b)$ (divisibility in \mathbb{Z}),

109) Let $a \in \mathbb{Z}[i]$. Prove the following:

- a) $a \in \mathbb{Z}[i]^* \Leftrightarrow N(a) = 1 \Leftrightarrow a \in \{1, -1, i, -i\},\$
- b) If N(a) is a prime number then a is an irreducible element of $\mathbb{Z}[i]$ (and thus prime).

110) Prove the following properties of the unique factorization domain $\mathbb{Z}[i]$:

Hint. Use Fermat's result above and the preceding exercise.

- a) 1 + i is an irreducible element of $\mathbb{Z}[i]$ (and $2 = -i \cdot (1 + i)^2$, i.e., 2 is ramified),
- b) If $p \equiv 1 \pmod{4}$ is a prime number and $x, y \in \mathbb{Z}, x > y > 0$ such that $p = x^2 + y^2$ then both x + iy and x - iy are irreducible elements of $\mathbb{Z}[i]$ and are not associates (and p = (x + iy)(x - iy), i.e., p splits),
- c) If $p \equiv 3 \pmod{4}$ is a prime number then p is also an irreducible element of $\mathbb{Z}[i]$ (i.e., p is *inert*).

111) Let R be a Euclidean domain whose function $\varphi : R \setminus \{0\} \to \mathbb{N} \cup \{0\}$ satisfies the additional condition $\varphi(ab) \ge \varphi(a) \ \forall a, b \in R \setminus \{0\}$.

- a) Which of the Euclidean domains we discussed so far satisfy this condition?
- b) Prove for all $a, b \in R \setminus \{0\}$: If a and b are associates then $\varphi(a) = \varphi(b)$,
- c) Prove for all $a, b \in R \setminus \{0\}$: If $\varphi(a) = \varphi(b)$ and $a \mid b$ then a and b are associates,
- d) Prove for all $a \in R \setminus \{0\}$: $a \in R^* \Leftrightarrow \varphi(a) = \varphi(1_R)$.

112) Let R be a unique factorization domain and $a \in R \setminus \{0\}$. Prove that the ideal (a) is contained in only finitely many principal ideals of R.

113) Let $R \neq \{0\}$ be a commutative ring with identity and

$$p(X) = a_0 + a_1 X + \dots + a_n X^n \in R[X].$$

a) Prove

$$p \in R[X]^* \iff a_0 \in R^* \text{ and } a_1, \dots, a_n \in \operatorname{Nil}(R).$$

Hint: Let $p(X) \cdot q(X) = 1$ with $q(X) = b_0 + b_1 X + \dots + b_m X^m \in R[X]$. Use induction on r to show $a_n^{r+1}b_{m-r} = 0$. Deduce that a_n is nilpotent and use exercise 72. b) Find $(\overline{2}X + \overline{3})^{-1} \in \mathbb{Z}_8[X]$.

114) Perform the division algorithm for polynomials for the following $f, g \in \mathbb{Q}[X]$, i.e., find polynomials $q, r \in \mathbb{Q}[X]$ such that f = qg + r and $\operatorname{grad} r < \operatorname{grad} g$:

a)
$$f(X) = X^{6} + X^{5} - X^{4} - 4X^{3} - 2X^{2} + 2X - 4,$$

 $g(X) = X^{5} + 2X^{4} - 2X^{3} - 5X^{2} - 5X + 2$
b) $f(X) = X^{5} - 2X^{4} + 3X^{3} - 6X^{2} + 2X - 4, g(X) = X^{4} + X^{3} - 5X^{2} + X - 6$
c) $f(X) = X^{8} - 1, g(X) = X^{2} - 1$

115) Find the greatest common divisors of the polynomials

 $p(X) = X^3 - 2X^2 - X + 2$ and $q(X) = X^3 - 4X^2 + 3X$

in the ring of polynomials $\mathbb{Q}[X]$ using the Euclidean algorithm. Determine polynomials $f_1, f_2 \in \mathbb{Q}[X]$ such that $f_1p + f_2q = g$, where $g \in \mathbb{Q}[X]$ denotes the uniquely determined monic greatest common divisor of p and q.

116) Show that $\mathbb{Z}[X]$ is not a principal ideal domain by proving that the ideal I := (2, X) is not a principal ideal.

117) Let R be an infinite integral domain. Prove that the map, which assigns to each $p \in R[X]$ the polynomial function $f_p : R \to R, \alpha \mapsto p(\alpha)$, is injective.

118) Let K be a field with char K = p > 0 and $f \in K[X]$ with grad $f \ge 1$. Prove that f' = 0 if and only if there exists a $g \in K[X]$ such that $f(X) = g(X^p)$.

119) Apply Eisenstein's criterion to prove that the following polynomials are irreducible in $\mathbb{Q}[X]$:

a) $X^3 + 6X + 2$ b) $3X^4 + 15X^2 + 10$ c) $2X^5 - 6X^3 + 9X^2 - 15$ d) $X^{11} - 7X^6 + 21X^5 + 49X - 56$

120) Let p be a prime. The p-th cyclotomic polynomial $\Phi_p(X)$ is

$$\Phi_p(X) = X^{p-1} + X^{p-2} + \dots + X + 1.$$

Apply Eisenstein's criterion to show that $\Phi_p(X)$ is irreducible in $\mathbb{Q}[X]$.

Hint. Use $\Phi_p(X) = (X^p - 1)/(X - 1)$, consider $\Phi_p(X + 1)$ and apply the binomial theorem.

121) Let K be a field and $n \in \mathbb{N} \setminus \{0\}$. Prove that $E_n := \{a \in K \mid a^n = 1\}$ is a finite cyclic subgroup of (K^*, \cdot) .

122) Let p be a prime and let L/K be a field extension with [L:K] = p. Prove L = K(a) for all $a \in L \setminus K$.

123) Determine the minimal polynomial $m_{a,K}$ of a over K for the field extension L/K and $a \in L$.

a) $L = \mathbb{C}, K = \mathbb{R}, a = \sqrt{7},$ b) $L = \mathbb{C}, K = \mathbb{Q}, a = \sqrt{7},$ c) $L = \mathbb{C}, K = \mathbb{Q}, a = (1 + \sqrt{5})/2.$

124) Prove that $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{2})$ are isomorphic as vector spaces over \mathbb{Q} but not as rings.

125) Let L/K be a field extension and let $a \in L$ be algebraic over K. Prove the following: If grad $m_{a,K}$ is odd then $K(a^2) = K(a)$. Is this also true if grad $m_{a,K}$ is even? Deduce $\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{4})$.