
Exercises to Algebra 2, WS 2020/21

Christoph Baxa

Definition: Let (M, ·) be a monoid with identity element e and a ∈ M . An x ∈ M is

called left inverse (resp. right inverse) element of a if x · a = e (resp. a · x = e).

The following lemma actually already been proved in Algebra 1 in Satz 3 but was not

stated there as it is here.

Lemma: Let (M, ·) be a monoid with identity element e and x, y ∈ M a left inverse and

a right inverse element of a ∈M (i.e., x · a = a · y = e). Then x = y.

Proof: x = x · e = x · (a · y) = (x · a) · y = e · y = y

66) Let V be the (real) vector space of real sequences (an)n≥1 (with (an)n≥1 +(bn)n≥1 :=

(an + bn)n≥1 and α · (an)n≥1 := (αan)n≥1) and let R be the ring of endomorphisms of V .

Let φ : V → V and ψ : V → V denote the maps

φ(a1, a2, a3, . . . ) = (0, a1, a2, . . . ) and ψ(a1, a2, a3, . . . ) = (a2, a3, a4, . . . ).

Prove the following:

a) φ and ψ are in R (i.e., they are R-linear maps),

b) There is a left inverse element of φ in R but there is no right inverse element of φ,

c) There is a right inverse element of ψ in R but there is no left inverse element of ψ.

67) Prove the following (using the notations of the previous exercise):

a) φ is a right zero divisor but not a left zero divisor of R,

b) ψ is a left zero divisor but not a right zero divisor of R.

Are left inverse elements resp. right inverse elements uniquely determined (in R)?

68) a) Let p be a prime. Prove without using the results of Chapter 11 that

{a/pn | a, n ∈ Z, n ≥ 0} is a subring of (Q,+, ·). Is it even an ideal?

b) Let p be a prime. Prove without using the results of Chapter 11 that {a/b | a, b ∈ Z, p - b}
is a subring of (Q,+, ·) ist. Is it even an ideal?

69) Let R1, . . . , Rn be rings. Let addition and multiplication on R1 × · · · ×Rn be defined

as in Ex. 65. Prove the following:

a) If Si is a subring of Ri for 1 ≤ i ≤ n, then S1 × · · · × Sn is a subring of R1 × · · · ×Rn.

b) If Ii is an ideal of Ri for 1 ≤ i ≤ n, then I1 × · · · × In is an ideal of R1 × · · · ×Rn.
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Definition: Let R be a ring. The center Z(R) of R is defined as

Z(R) := {a ∈ R | ax = xa for all x ∈ R}.

70) a) Let R be a ring. Prove that Z(R) is a subring of R.

b) Let R1, . . . , Rn be rings. Prove Z(R1 × · · · ×Rn) = Z(R1)× · · · × Z(Rn).

71) Let K be a field. Prove the following:

a) Z
(
M2(K)

)
=

{(
a 0

0 a

) ∣∣∣ a ∈ K
}
,

b) Z
(
M2(K)

)
is neither a left ideal nor a right ideal of M2(K).

Definition. Let R be a ring. An element a ∈ R is called nilpotent if there is an n ∈ N\{0}
such that an = 0. The set of all nilpotent elements of R will be denoted by Nil(R).

72) Let R ̸= {0} be a commutative ring with identity. Prove the following:

a) Every a ∈ Nil(R) is a zero divisor,

b) If a, b ∈ Nil(R) then a+ b ∈ Nil(R),

c) Nil(R) is an ideal of R,

d) If u ∈ R∗ and a ∈ Nil(R) then u+ a ∈ R∗ (Hint: geometric series).

73) Let K be a field and 1 ≤ k ≤ n.

a) Set Ik := {(aij)1≤i,j≤n ∈ Mn(K) | aij = 0 for j ̸= k}, i.e., the set of all n× n-matrices

with entries in K such that only the k-th column may contain entries ̸= 0. Prove that Ik

is a left ideal of Mn(K) but that it is not a right ideal if n ≥ 2.

b) Set Jk := {(aij)1≤i,j≤n ∈ Mn(K) | aij = 0 for i ̸= k}, i.e., the set of all n× n-matrices

with entries in K such that only the k-th row may contain entries ̸= 0. Prove that Jk is a

right ideal of Mn(K) but that it is not a left ideal if n ≥ 2.

74) Let K be a field. Prove that Mn(K) has only the ideals {0} and Mn(K). (Hint: Let

Eij = (xst)1≤s,t≤n ∈ Mn(K) be defined by xij = 1 and xst = 0 if (s, t) ̸= (i, j). Let

I ̸= {0} be an ideal of Mn(K). Then there is an A = (aij)1≤i,j≤n ∈ I \ {0}. Therefore

there are k, ℓ ∈ {1, . . . , n} such that akℓ ̸= 0. Prove Etk · A · Eℓt = akℓEtt for 1 ≤ t ≤ n.

Deduce akℓEtt ∈ I, akℓEtt ·a−1
kℓ Ett = Ett ∈ I and In = E11+ · · ·+Enn ∈ I.) Why can this

exercise not be used to prove that Mn(K) is a skew field for n ≥ 2 because of Satz 60 (ii)?



CHRISTOPH BAXA, ALGEBRA 2, WS 2020/21

75) Let R be a ring and X ⊆ R. Prove

(X) =

{
I∑

i=1

αixiβi +
J∑

j=1

γjyj +
K∑

k=1

ukδk +
L∑

ℓ=1

nℓvℓ

∣∣∣∣∣αi, βi ∈ R and xi ∈ X for 1 ≤ i ≤ I,

γj ∈ R and yj ∈ X for 1 ≤ j ≤ J ,

δk ∈ R and uk ∈ X for 1 ≤ k ≤ K,

nℓ ∈ Z and vℓ ∈ X for 1 ≤ ℓ ≤ L

}
.

76) a) Let R be a commutative ring and X ⊆ R. Prove

(X) =

{
I∑

i=1

αixi +
J∑

j=1

njyj

∣∣∣∣∣αi ∈ R and xi ∈ X for 1 ≤ i ≤ I,

nj ∈ Z and yj ∈ X for 1 ≤ j ≤ J

}
.

b) Let R be a ring with identity and X ⊆ R. Prove

(X) =

{
n∑

i=1

αixiβi

∣∣∣∣∣αi, βi ∈ R and xi ∈ X for 1 ≤ i ≤ n

}
.

c) Let R be a commutative ring with identity and X ⊆ R. Prove

(X) =

{
n∑

i=1

αixi

∣∣∣∣∣αi ∈ R and xi ∈ X for 1 ≤ i ≤ n

}
.

Definition: Let R be a ring and I and J ideals of R. The product I · J of the ideals I

and J is defined as

I · J := {x1y1 + · · ·+ xnyn | n ≥ 0, x1, . . . , xn ∈ I, y1, . . . , yn ∈ J}.

77) Let R be a ring and I and J ideals of R. Prove the following:

a) I · J is an ideal of R,

b) I · J is the ideal generated by the set {xy | x ∈ I, y ∈ J},
c) If R is a commutative ring with identity and a, b ∈ R then (a) · (b) = (ab).
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78) Prove that the following maps are ring isomorphisms:

a) φ : C → C, φ(z) = z,

b) φ : C →
{(

a b

−b a

) ∣∣∣ a, b ∈ R
}
, φ(a+ bi) =

(
a b

−b a

)
(with a, b ∈ R),

c) Let d ∈ Z \ {0, 1} be squarefree, Z[
√
d] = {a+ b

√
d | a, b ∈ Z} and

φ : Z[
√
d] → Z[

√
d], φ(a+ b

√
d) = a− b

√
d (where a, b ∈ Z).

79) Prove that Z[i] = {a+ bi | a, b ∈ Z} and Z[
√
2] = {a+ b

√
2 | a, b ∈ Z} are isomorphic

as abelian groups but not as rings. I.e., the abelian groups
(
Z[i],+

)
and

(
Z[
√
2],+

)
are

isomorphic, however, the rings
(
Z[i],+, ·

)
and

(
Z[
√
2],+, ·

)
are not.

80) Let p be a prime. Prove, using the definition of a prime ideal, that

P =

{
a

b

∣∣∣∣ a, b ∈ Z, p | a, p - b
}

is a prime ideal of the ring

R =

{
a

b

∣∣∣∣ a, b ∈ Z, p - b
}

(as in exercise 68b).

81) Let R
(̸
= {0}

)
be a commutative ring with identity and P (̸= R) an ideal of R. Prove

that the following are equivalent:

(i) P is a prime ideal,

(ii) If I, J are ideals and I · J ⊆ P then I ⊆ P or J ⊆ P .

Remarks: 1) Property (ii) in exercise 81 is used as the definition of a prime ideal in

general (i.e., not necessarily commutative) rings.

2) Let R
(
̸= {0}

)
be a commutative ring with identity and P an ideal of R. We have proved

in Satz 75, Satz 76 and exercise 81 that the following four conditions are equivalent (and

therefore characterize prime ideals).

(i) P ̸= R and ab ∈ P implies a ∈ P or b ∈ R (with a, b ∈ R),

(ii) R \ P is a multiplicative subset of R,

(iii) P ̸= R and I · J ⊆ P implies I ⊆ P or J ⊆ P (where I, J are ideals of R),

(iv) R/P is an integral domain.
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82) Let R and S be commutative rings and φ : R → S an epimorphism of rings. Prove

the following:

a) If P is a prime ideal of R and kerφ ⊆ P then φ(P ) is a prime ideal of S.

b) If Q is a prime ideal of S then φ−1(Q) is a prime ideal of R and kerφ ⊆ φ−1(Q).

c) There is an order preserving bijection between the set of prime ideals of R that contain

kerφ and the set of prime ideals of S.

d) If I is an ideal of R then every prime ideal of the factor ring R/I has shape P/I, where

P is a prime ideal of R satisfying I ⊆ P .

83) Let R be a commutative ring with identity and M ̸= R an ideal of R. Prove that the

following are equivalent:

(i) M is a maximal ideal of R,

(ii) ∀ x ∈ R \M ∃ y ∈ R : 1R − xy ∈M .

84) Let p be a prime. Prove, using the definition of a maximal ideal, that

M =

{
a

b

∣∣∣∣ a, b ∈ Z, p | a, p - b
}

is a maximal ideal of the ring

R =

{
a

b

∣∣∣∣ a, b ∈ Z, p - b
}

(as in exercise 68b).

85) Let R = 2Z (i.e., R denotes the ring of even integers with the usual addition and

multiplication) and M = 4Z. Prove the following:

a) M is a maximal ideal but not a prime ideal of R,

b) R/M is not a field.

86) Let R be an integral domain and S a multiplicative subset of R with the property

0 /∈ S. Prove the following:

a) If I is an ideal of R then S−1I := {a/s | a ∈ I, s ∈ S} is an ideal of S−1R.

b) If I is an ideal of R and S ∩ I ̸= ∅ then S−1I = S−1R.

87) Let G1, . . . , Gn be groups. Prove the following: If σ ∈ Sn then

Gσ(1) × · · · ×Gσ(n)
∼= G1 × · · · ×Gn.
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88) Let I ̸= ∅ be a (index) set and Gi a group for all i ∈ I. Let ei denote the identity

element of the group Gi and∏
i∈I

w
Gi :=

{
(xi)i∈I

∣∣∣xi ∈ Gi for all i ∈ I and xi = ei for all but a finite number of i
}
.

Prove (with componentwise composition as in Satz 93)∏
i∈I

w
Gi E

∏
i∈I

Gi.

89) Prove the following: If the group G is the internal direct product of its two normal

subgroups N1 and N2 then G/N1
∼= N2 and G/N2

∼= N1.

90) Is the group S3 the internal direct product of two of its subgroups N1, N2 (satisfying

N1, N2 ̸= {ε} and N1, N2 ̸= S3)?

91) Find groups G1, G2,H1 and H2 such that G1 × G2
∼= H1 × H2 but Gi ̸∼= Hj for

i, j ∈ {1, 2}.

Definition: Let G be a group, N E G and H ≤ G. The group G is said to be the

(internal) semidirect product of N and H if G = NH and N ∩H = {e}. This is written

as G = N ⋊H.

92) Let the group G be the semidirect product of N E G and H ≤ G. Prove the following:

a) For every a ∈ G the elements n ∈ N and h ∈ H with the property a = nh are

uniquely determined (i.e., the map N ×H → G, (n, h) 7→ nh is bijective).

b) The map θ : H → Aut(N), h 7→ θh is a homomorphism, where θh : N → N is defined

as θh(n) = hnh−1.

93) Prove the following: For n ≥ 3 the symmetric group Sn is the semidirect product of

An(E Sn) and {ε, (12)}(≤ Sn).

(As {ε, (12)} ∼= Z2 this can be written is Sn = An ⋊ Z2.)

94) Prove the following: For n ≥ 3 the dihedral group Dn is the semidirect product of

⟨α⟩(E Dn) and {ε, β}(≤ Dn).

Here α and β denote the same permutations as in Satz 47, compare also with exercise 56

from Algebra 1 (summer semester 2020). (As ⟨α⟩ ∼= Zn and {ε, β} ∼= Z2 this can be written

as Dn = Zn ⋊ Z2.)
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95) Let K be a field. Prove the following: The General Linear Group GLn(K) is the

semidirect product of the Special Linear Group SLn(K)(E GLn(K)) and the group

H := {diag(a, 1, . . . , 1) | a ∈ K∗}(≤ GLn(K)),

where diag(a1, . . . , an) denotes the diagonal matrix with entries a1, . . . , an ∈ K. (As

H ∼= K∗ this can be written as GLn(K) = SLn(K)⋊K∗.)

Remarks: 1) Because of Korollar 98 the (internal) direct product is a special case of the

(internal) semidirect product. (I.e., if the group G is the internal direct product of its

normal subgroups N1 and N2 then G is also the semidirect product of N1 and N2.)

2) It is possible that two groups G and H are semidirect products of isomorphic normal

subgroups and isomorphic subgroups but are not isomorphic themselves.

I.e., it is possible that G1 = N1 ⋊ H1, G2 = N2 ⋊ H2, N1
∼= N2 and H1

∼= H2 but

G1 ̸∼= G2. E.g., Z6
∼= Z3 × Z2 (because of Satz 101) and Z6 is therefore (because of the

remark above) also the semidirect product of Z3 and Z2. However, in exercise 94 it was

proved that D3 = Z3⋊Z2 as well. As Z6 is abelian but D3 is not, they are not isomorphic.

This phenomenon can be understood by regarding the maps θ (as described in exercise 92)

which are different in both cases.

96) Let I : R2 → R2, I(x, y) = (x, y) and S : R2 → R2, S(x, y) = (x,−y). Let the group

G = ({I, S}, ◦) act onM = R2. Determine the orbits and isotropy groups of all (x, y) ∈ R2

as well as the fixed points of this group action.

97) Let the group SO(2) act on R2 by matrix multiplication (A, x) 7→ A · x. Determine

the orbits and the isotropy groups of all x ∈ R2 as well as the fixed points of this group

action.

98) Prove the following: The group SL2(R) acts on the upper half-plane of the complex

plane (i.e., on H = {z ∈ C | Im z > 0}) via(
a b

c d

)
· z := az + b

cz + d
.

99) Prove the following: The isotropy group of i for the action of the group SL2(R) on the

upper half-plane H (as in the preceding exercise) is the group SO(2).

100) Let the group G act on the set M . Prove the equation Ga·x = a · Gx · a−1 for all

x ∈M and all a ∈ G, i.e., the isotropy groups of x ∈M and a · x ∈M are conjugate.
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101) Let G be a group, φ ∈ Aut(G) and C a conjugacy class of elements of G. Prove the

following:

a) φ(C) is also a conjugacy class,

b) If φ ∈ Inn(G) then φ(C) = C.

102) For a permutation σ ∈ Sn and r ∈ {1, . . . , n} let zr(σ) be the number of cycles of

length r in the decomposition of σ into disjoint cycles. Prove that σ, τ ∈ Sn are conjugate

if and only if zr(σ) = zr(τ) for all r ∈ {1, . . . , n}.

103) Let a group G of order |G| = 55 act on a set M with |M | = 39 elements. Prove that

there has to exist a fixed point of this group action.

104) Determine the number and the elements of the Sylow 2-subgroups of the group S4.

105) Determine the number and the elements of the Sylow 5-subgroups of the group S5.

106) Let G be a finite simple group of order |G| = 168. Determine the number of a ∈ G

of order ord(a) = 7.

Remark: It can be proved that the group SL3(Z2) is simple and of order 168.

107) Prove that the group A5 contains no subgroup of order 15.

Theorem (Fermat): Let p be a prime number (in Z). Then the following are equivalent:

(i) There are x, y ∈ Z such that p = x2 + y2,

(ii) p = 2 or p ≡ 1 (mod 4).

Proof: (i) ⇒ (ii) If 2 | x then x2 ≡ 0 (mod 4). If 2 - x then x2 ≡ 1 (mod 4). This implies

p = x2 + y2 ≡ 0, 1, 2 (mod 4). It is impossible that p ≡ 0 (mod 4) and p ≡ 2 (mod 4) is

possible only if p = 2.

(ii) ⇒ (i) (Heath-Brown) As 2 = 12 + 12 we can from now on assume p ≡ 1 (mod 4). Let

S := {(x, y, z) ∈ Z3 | x, y ≥ 1, 4xy + z2 = p}.

The set S is not empty (as ((p−1)/4, 1, 1) ∈ S) and finite as (x, y, z) ∈ S implies x, y ≤ p/4

and for fixed x, y there are at most two possible values for z. We will make use of the map

f : S → S, (x, y, z) 7→ (y, x,−z). It is an involution (i.e., f ◦ f = idS) and has no fixed

points (as f(x, y, z) = (x, y, z) is the same as (y, x,−z) = (x, y, z) which implies z = 0 and
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therefore p = 4xy, which is impossible). Clearly f maps the set T := {(x, y, z) ∈ S | z > 0}
bijectively onto S \T . There is no (x, y, z) ∈ S satisfying x−y+z = 0, as this would imply

p = 4xy+ z2 = 4xy+ (x− y)2 = (x+ y)2. Setting U := {(x, y, z) ∈ S | x− y+ z > 0}, the
set U is mapped bijectively onto S \ U by f . This shows |T | = |S|/2 = |U |. Now consider

the map

g : U → U, (x, y, z) 7→ (x− y + z, y, 2y − z).

We first check that g is well-defined. If (x, y, z) ∈ U then x − y + z > 0 and y > 0 and

therefore

4(x− y + z)y + (2y − z)2 = 4xy − 4y2 + 4yz + 4y2 − 4yz + z2 = 4xy + z2 = p,

i.e., g(x, y, z) ∈ S. As x− y+ z− y+2y− z = x > 0 we have g(x, y, z) ∈ U . Furthermore,

g is also an involution as

(g ◦ g)(x, y, z) = g(x− y+ z, y, 2y− z) = (x− y+ z − y+ 2y− z, y, 2y− 2y+ z) = (x, y, z)

and it is easy to see that g has exactly one fixed point as g(x, y, z) = (x, y, z) is the same

as (x− y+ z, y, 2y− z) = (x, y, z), whence y = z and thus p = 4xy+ y2 = (4x+ y)y. This

is only possible if y = z = 1 and x = (p− 1)/4. This shows |U | ≡ 1 (mod 2) and therefore

|T | ≡ 1 (mod 2). Finally let h : T → T , (x, y, z) 7→ (y, x, z). Then h is clearly well-definied

and an involution. As |T | ≡ 1 (mod 2), the map h has to have a fixed point, i.e., there is

a (x, y, z) ∈ T with the property x = y and therefore p = 4x2 + z2 = (2x)2 + z2.

Definition: For a ∈ Z[i] the norm N(a) is defined as N(a) := a ·a = |a|2 (i.e., if a = x+ iy

with x, y ∈ Z then N(x+ iy) = x2 + y2).

108) Let a, b ∈ Z[i]. Prove the following:

a) N(a · b) = N(a) ·N(b),

b) If a | b (divisibility in Z[i]) then N(a) | N(b) (divisibility in Z),

109) Let a ∈ Z[i]. Prove the following:

a) a ∈ Z[i]∗ ⇔ N(a) = 1 ⇔ a ∈ {1,−1, i,−i},
b) If N(a) is a prime number then a is an irreducible element of Z[i] (and thus prime).
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110) Prove the following properties of the unique factorization domain Z[i]:
Hint. Use Fermat’s result above and the preceding exercise.

a) 1 + i is an irreducible element of Z[i] (and 2 = −i · (1 + i)2, i.e., 2 is ramified),

b) If p ≡ 1 (mod 4) is a prime number and x, y ∈ Z, x > y > 0 such that p = x2 + y2 then

both x + iy and x − iy are irreducible elements of Z[i] and are not associates

(and p = (x+ iy)(x− iy), i.e., p splits),

c) If p ≡ 3 (mod 4) is a prime number then p is also an irreducible element of Z[i] (i.e., p
is inert).

111) Let R be a Euclidean domain whose function φ : R \ {0} → N ∪ {0} satisfies the

additional condition φ(ab) ≥ φ(a) ∀a, b ∈ R \ {0}.

a) Which of the Euclidean domains we discussed so far satisfy this condition?

b) Prove for all a, b ∈ R \ {0}: If a and b are associates then φ(a) = φ(b),

c) Prove for all a, b ∈ R \ {0}: If φ(a) = φ(b) and a | b then a and b are associates,

d) Prove for all a ∈ R \ {0}: a ∈ R∗ ⇔ φ(a) = φ(1R).

112) Let R be a unique factorization domain and a ∈ R \ {0}. Prove that the ideal (a) is

contained in only finitely many prinicipal ideals of R.

113) Let R(̸= {0}) be a commutative ring with identity and

p(X) = a0 + a1X + · · ·+ anX
n ∈ R[X].

a) Prove

p ∈ R[X]∗ ⇐⇒ a0 ∈ R∗ and a1, . . . , an ∈ Nil(R).

Hint: Let p(X) · q(X) = 1 with q(X) = b0 + b1X + · · · + bmX
m ∈ R[X]. Use induction

on r to show ar+1
n bm−r = 0. Deduce that an is nilpotent and use exercise 72.

b) Find
(
2X + 3)−1 ∈ Z8[X].

114) Perform the division algorithm for polynomials for the following f, g ∈ Q[X], i.e.,

find polynomials q, r ∈ Q[X] such that f = qg + r and grad r < grad g:

a) f(X) = X6 +X5 −X4 − 4X3 − 2X2 + 2X − 4,

g(X) = X5 + 2X4 − 2X3 − 5X2 − 5X + 2

b) f(X) = X5 − 2X4 + 3X3 − 6X2 + 2X − 4, g(X) = X4 +X3 − 5X2 +X − 6

c) f(X) = X8 − 1, g(X) = X2 − 1
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115) Find the greatest common divisors of the polynomials

p(X) = X3 − 2X2 −X + 2 and q(X) = X3 − 4X2 + 3X

in the ring of polynomials Q[X] using the Euclidean algorithm. Determine polynomials

f1, f2 ∈ Q[X] such that f1p + f2q = g, where g ∈ Q[X] denotes the uniquely determined

monic greatest common divisor of p and q.

116) Show that Z[X] is not a principal ideal domain by proving that the ideal I := (2, X)

is not a principal ideal.

117) Let R be an infinite integral domain. Prove that the map, which assigns to each

p ∈ R[X] the polynomial function fp : R→ R, α 7→ p(α), is injective.

118) Let K be a field with charK = p > 0 and f ∈ K[X] with grad f ≥ 1. Prove that

f ′ = 0 if and only if there exists a g ∈ K[X] such that f(X) = g(Xp).

119) Apply Eisenstein’s criterion to prove that the following polynomials are irreducible

in Q[X]:

a) X3 + 6X + 2

b) 3X4 + 15X2 + 10

c) 2X5 − 6X3 + 9X2 − 15

d) X11 − 7X6 + 21X5 + 49X − 56

120) Let p be a prime. The p-th cyclotomic polynomial Φp(X) is

Φp(X) = Xp−1 +Xp−2 + · · ·+X + 1.

Apply Eisenstein’s criterion to show that Φp(X) is irreducible in Q[X].

Hint. Use Φp(X) = (Xp−1)/(X−1), consider Φp(X+1) and apply the binomial theorem.

121) Let K be a field and n ∈ N \ {0}. Prove that En := {a ∈ K | an = 1} is a finite

cyclic subgroup of (K∗, ·).

122) Let p be a prime and let L/K be a field extension with [L : K] = p. Prove L = K(a)

for all a ∈ L \K.
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123) Determine the minimal polynomial ma,K of a over K for the field extension L/K

and a ∈ L.

a) L = C, K = R, a =
√
7,

b) L = C, K = Q, a =
√
7,

c) L = C, K = Q, a =
(
1 +

√
5
)
/2.

124) Prove that Q(i) and Q(
√
2) are isomorphic as vector spaces over Q but not as rings.

125) Let L/K be a field extension and let a ∈ L be algebraic over K. Prove the following:

If gradma,K is odd then K(a2) = K(a). Is this also true if gradma,K is even? Deduce

Q
( 3
√
2
)
= Q

( 3
√
4
)
.


