Algebraic Number Theory

WS 2022/23

Christoph Baxa

1) Prove that $\left(\mathbb{Q}^{+}, \cdot\right)$ has a basis (where \mathbb{Q}^{+}denotes the set of positive rational numbers).
2) a) Prove that $(\mathbb{Q},+)$ is not a finitely generated group.
b) Prove that $(\mathbb{Q},+)$ does not have a basis.
3) Let G_{1}, \ldots, G_{k} be groups and $N_{i} \unlhd G_{i}$ normal subgroups for $1 \leq i \leq k$. Prove

$$
N_{1} \times \cdots \times N_{k} \unlhd G_{1} \times \cdots \times G_{k}
$$

and

$$
\left(G_{1} \times \cdots \times G_{k}\right) /\left(N_{1} \times \cdots \times N_{k}\right) \cong\left(G_{1} / N_{1}\right) \times \cdots \times\left(G_{k} / N_{k}\right) .
$$

Hint. Consider the map
$\varphi: G_{1} \times \cdots \times G_{k} \rightarrow\left(G_{1} / N_{1}\right) \times \cdots \times\left(G_{k} / N_{k}\right), \varphi\left(a_{1}, \ldots, a_{k}\right)=\left(a_{1} N_{1}, \ldots, a_{k} N_{k}\right)$.
4) Let R be an integral domain. Prove that the set
$\left\{A \mid A\right.$ is an $n \times n$ matrix with entries in R and $\left.\operatorname{det} A \in R^{*}\right\}$
is a group with matrix multiplication.
5) Let F be free abelian group of rank n. Prove the following:
a) It is not true that every linearly independent subset of F with n elements is a basis of F.
b) It is not true that every linearly independent subset of F can be extended to a basis of F
c) It is not true that every subset of F which generates F contains a basis of F.
6) a) Let G be a finitely generated abelian group in which 0 is the only element of finite order. Prove that G is a free abelian group.
b) Prove that part a) is no longer true if one only assumes G to be an abelian group in which 0 is the only element of finite order.
7) Let K be a field with characteristic char $K=p>0$ and $f \in K[X]$ an irreducible polynomial. Prove that the following are equivalent:
(i) f is not separable (i.e., $f^{\prime}=0$),
(ii) There is a $g \in K[X]$ such that $f(X)=g\left(X^{p}\right)$.
8) Let K be field with char $K=p>0$ and $\sigma: K \rightarrow K, \sigma(x)=x^{p}$. Prove that
a) σ is a monomorphism,
b) If K is finite σ is an isomorphism.

Definition. The map σ described in Exercise 8 is called Frobenius endomorphism.
9) Let K be a finite field. Prove that
a) Every irreducible $f \in K[X]$ is separable,
b) If L / K is a finite field extension then L / K is a separable extension.
10) Let K be a field with char $K=p>0$ and L / K a finite field extension with $p \nmid[L: K]$. Prove that L / K is a separable extension.
11) Let p be prime and $f(X)=X^{p}-T \in \mathbb{F}_{p}(T)[X]$ (i.e., f is a polynomial with coefficients in the quotient field of the polynomial ring $\mathbb{F}_{p}[T]$). Prove that f is irreducible but not separable. Hint. Use Eisenstein's criterion.
12) Find a primitive element $\alpha \in K$ such that $K=\mathbb{Q}(\alpha)$ for the following algebraic number fields:
a) $K=\mathbb{Q}(\sqrt{2}, i)$
b) $K=\mathbb{Q}(\sqrt{2}, i \sqrt{2})$
c) $K=\mathbb{Q}(\sqrt{3}, \sqrt[3]{2})$
13) Let p be a prime and let L / K be a finite field extension such that $[L: K]=p$. Prove that $L=K(\alpha)$ for all $\alpha \in L \backslash K$.
14) Let L / K be a field extension and let $\alpha \in L$ be algebraic over K. Prove the following:
a) If $\operatorname{deg} m_{K, \alpha}$ is odd then $K\left(\alpha^{2}\right)=K(\alpha)$. (Is this also true if $\operatorname{deg} m_{K, \alpha}$ is even?)
b) Let m, n be positive integers with $m n$ squarefree. Then $\mathbb{Q}\left(\sqrt[3]{m n^{2}}\right)=\mathbb{Q}\left(\sqrt[3]{m^{2} n}\right)$.
15) Find all homomorphisms $\sigma: \mathbb{Q}(\sqrt[4]{2}) \hookrightarrow \mathbb{C}$ such that a) $\left.\sigma\right|_{\mathbb{Q}(\sqrt{2})}=\mathrm{id}_{\mathbb{Q}(\sqrt{2})}$ and b) $\left.\sigma\right|_{\mathbb{Q}}=\operatorname{id}_{\mathbb{Q}}$.
16) Find all homomorphisms $\sigma: \mathbb{Q}(\sqrt{2}, i) \hookrightarrow \mathbb{C}$ such that
a) $\left.\sigma\right|_{\mathbb{Q}(i)}=\operatorname{id}_{\mathbb{Q}(i)}$,
b) $\left.\sigma\right|_{\mathbb{Q}(\sqrt{2})}=\operatorname{id}_{\mathbb{Q}(\sqrt{2})}$,
c) $\left.\sigma\right|_{\mathbb{Q}(\sqrt{2} i)}=\mathrm{id}_{\mathbb{Q}(\sqrt{2} i)}$ and d) $\left.\sigma\right|_{\mathbb{Q}}=\mathrm{id}_{\mathbb{Q}}$.
17) Prove the results of Lemma 22 (i) - (vi) once more, this time using the results of Theorem 23 (ii) and (iii) as the definition of the norm $\mathrm{N}_{L / K}$ and the trace $\operatorname{Tr}_{L / K}$, i.e., let

$$
\mathrm{N}_{L / K}(\alpha):=\prod_{i=1}^{n} \sigma_{i}(\alpha) \quad \text { and } \quad \operatorname{Tr}_{L / K}(\alpha):=\sum_{i=1}^{n} \sigma_{i}(\alpha)
$$

where L / K is a finite, separable field extension with $[L: K]=n$ and $\sigma_{i}: L \hookrightarrow \bar{K}$ are the different homomorphisms with $\left.\sigma\right|_{K}=\mathrm{id}_{K}$.

C. BAXA, ALGEBRAIC NUMBER THEORY, WS 2022/23

18) Let L / K be a field extension with $[L: K]=2$. Prove that L / K is a normal extension.
19) a) Prove that the field extensions $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ are both normal, but the field extension $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}$ is not.
b) Let $\zeta:=e^{2 \pi i / 3}=\frac{1}{2}(-1+\sqrt{3} i)$. Show that the field extensions $\mathbb{Q}(\sqrt[3]{2}, \zeta) / \mathbb{Q}$ and $\mathbb{Q}(\sqrt[3]{2}, \zeta) / \mathbb{Q}(\sqrt[3]{2})$ are both normal, but the field extension $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not.
20) a) Calculate $\mathrm{N}_{\mathbb{Q}(\sqrt{3}) / \mathbb{Q}}(\alpha)$ and $\operatorname{Tr}_{\mathbb{Q}(\sqrt{3}) / \mathbb{Q}}(\alpha)$ for $\alpha \in \mathbb{Q}(\sqrt{3})$.
b) Calculate $\mathrm{N}_{\mathbb{Q}(\sqrt[4]{3}) / \mathbb{Q}(\sqrt{3})}(\alpha)$ and $\operatorname{Tr}_{\mathbb{Q}(\sqrt[4]{3}) / \mathbb{Q}(\sqrt{3})}(\alpha)$ for $\alpha \in \mathbb{Q}(\sqrt[4]{3})$.
c) Calculate $\mathrm{N}_{\mathbb{Q}(\sqrt[4]{3}) / \mathbb{Q}}(\alpha)$ and $\operatorname{Tr}_{\mathbb{Q}(\sqrt[4]{3}) / \mathbb{Q}}(\alpha)$ for $\alpha \in \mathbb{Q}(\sqrt[4]{3})$ both directly and with the help of Theorem 28.
21) Calculate $\Delta_{\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}}(1, \sqrt{2}, \sqrt{3}, \sqrt{2}+\sqrt{3})$ using the definition of the discriminant. Is there a faster way of doing this?
22) Let a and b be positive integers with $a>1$ and $a b$ squarefree. Let $m=a b^{2}$. Calculate $\Delta_{\mathbb{Q}(\sqrt[3]{m}) / \mathbb{Q}}\left(1, \sqrt[3]{m}, \sqrt[3]{m^{2}}\right)$ both using the definition of the discriminant and with the help of Theorem 34.
23) Let p be a prime. The $p^{\text {th }}$ cyclotomic polynomial $\Phi_{p}(X)$ is

$$
\Phi_{p}(X)=X^{p-1}+X^{p-2}+\cdots+X+1 .
$$

Use Eisenstein's criterion to show that $\Phi_{p}(X)$ is irreducible (in $\mathbb{Q}[X]$). (Hint. Use $\Phi_{p}(X)=\left(X^{p}-1\right) /(X-1)$, consider $\Phi_{p}(X+1)$ and employ the binomial theorem.) Find all roots of $\Phi_{p}(X)$ and its factorization into linear factors.
24) Let $p>2$ be a prime and $\zeta=e^{2 \pi i / p}$. Prove the following:
a) $N_{\mathbb{Q}(\zeta) / \mathbb{Q}}(1-\zeta)=p$

Hint. Use the factorization of $\Phi_{p}(X)$ into linear factors from the previous exercise.
b) $\Delta_{\mathbb{Q}(\zeta) / \mathbb{Q}}\left(1, \zeta, \zeta^{2}, \ldots, \zeta^{p-2}\right)=(-1)^{(p-1) / 2} p^{p-2}$.
25) Let R be a commutative ring with identity and M an R-module. Prove the following:
a) $(-a) m=-(a m)=a(-m)$ for all $a \in R$ and all $m \in M$,
b) $k(a m)=a(k m)$ for all $k \in \mathbb{Z}$, all $a \in R$ and all $m \in M$.
26) Let R and S be commutative rings with identity, $\varphi: R \rightarrow S$ a ring homomorphism with the property $\varphi\left(1_{R}\right)=1_{S}$ and M an S-module. Prove that M becomes an R-module by setting $R \times M \rightarrow M,(a, m) \mapsto \varphi(a) \cdot m$.

C. BAXA, ALGEBRAIC NUMBER THEORY, WS 2022/23

27) Let R be a commutative ring with identity, M an R-module and I an ideal of R with the property that $a m=0$ for all $a \in I$ and all $m \in M$. Prove the following:
a) $b m=c m$ if $b-c \in I$,
b) M becomes an R / I-Modul by setting $(a+I) \cdot m:=a \cdot m$.
28) Let R be an integral domain, K its quotient field, L / K a finite field extension and $S=\bar{R}^{L}$. Prove that for every $\beta \in L$ there is a $a \in R \backslash\{0\}$ such that $a \beta \in S$.
29) Let R be an integral domain, K its quotient field, L / K a finite field extension and $S=\bar{R}^{L}$. Prove the following:
a) The quotient field of S is (isomorphic to) L,
b) S is an integrally closed integral domain.
30) Let R be an integrally closed integral domain, K its quotient field, L / K a field extension and $S=\bar{R}^{L}$. Prove $S \cap K=R$.
31) Let K be an algebraic number field with $[K: \mathbb{Q}]=n$ and $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ a basis of K (as a \mathbb{Q}-vector space) consisting only of elements of O_{K}. Prove that $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is an integral basis for K if $\Delta_{K / \mathbb{Q}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=d_{K}$.
32) Prove that the groups $\left(\mathbb{Z}[\sqrt{2}]^{*}, \cdot\right)$ and $\left(\mathbb{Z}_{2} \times \mathbb{Z},+\right)$ are isomorphic.
33) Let $K=\mathbb{Q}(\sqrt{3})$. Prove that $O_{K}^{*}=\mathbb{Z}[\sqrt{3}]^{*}=\left\{ \pm(2+\sqrt{3})^{n} \mid n \in \mathbb{Z}\right\}$.
34) Show that both $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are norm-euclidean.
35) a) Show that $O_{\mathbb{Q}(i \sqrt{6})}=\mathbb{Z}[i \sqrt{6}]$ is not a unique factorization domain.
b) Show that $O_{\mathbb{Q}(i \sqrt{10})}=\mathbb{Z}[i \sqrt{10}]$ is not a unique factorization domain.

Hint. Use the equations

$$
6=2 \cdot 3=i \sqrt{6} \cdot(-i \sqrt{6}) \text { and } 14=2 \cdot 7=(2+i \sqrt{10}) \cdot(2-i \sqrt{10}) .
$$

36) Does not the equation $10=2 \cdot 5=(3+i) \cdot(3-i)$ contradict the fact that $O_{\mathbb{Q}(i)}=\mathbb{Z}[i]$ is a unique factorization domain?
37) Let $p \equiv 3(\bmod 4)$ be a prime and $a, b \in \mathbb{Z}$. Show that $p \mid\left(a^{2}+b^{2}\right)$ implies $p \mid a$ and $p \mid b$.
38) Let $n \geq 2$ be an integer with prime factorization $n=2^{\alpha} p_{1}^{\beta_{1}} \cdots p_{k}^{\beta_{k}} q_{1}^{\gamma_{1}} \cdots q_{\ell}^{\gamma_{\ell}}$ (where $k, \ell, \alpha \geq 0, \beta_{1}, \ldots, \beta_{k}, \gamma_{1}, \ldots, \gamma_{\ell} \geq 1, p_{i} \equiv 1(\bmod 4)$ for $1 \leq i \leq k$ and $q_{i} \equiv 3(\bmod 4)$ for $\left.1 \leq i \leq \ell\right)$. Prove that the following are equivalent:
(i) $\exists x, y \in \mathbb{Z}: n=x^{2}+y^{2}$
(ii) $\gamma_{1} \equiv \cdots \equiv \gamma_{\ell} \equiv 0(\bmod 2)$

Hint. Use the identity $\left(x^{2}+y^{2}\right)\left(u^{2}+v^{2}\right)=(x u-y v)^{2}+(x v+y u)^{2}$.

C. BAXA, ALGEBRAIC NUMBER THEORY, WS 2022/23

39) a) Is the ring $R=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ is continous $\}$ noetherian?

Hint. Consider $I_{n}=\left\{f \in R \mid f(x)=0\right.$ for all $\left.x \in\left[0, \frac{1}{n}\right]\right\}$ with $n \in \mathbb{N}$.
b) Find a finitely generated module with a submodule that is not finitely generated.
40) Present the following proof of the Hilbert basis theorem (i.e., if R is a noetherian ring then $R[X]$ is a noetherian ring).
Proof. Let I be an ideal of $R[X]$ that is not finitely generated. Then $I \backslash(0) \neq \varnothing$. Choose a $p_{1} \in I \backslash(0)$ with minimal degree. As I is not finitely generated, we have $I \backslash\left(p_{1}\right)=I \backslash\left(p_{1} R[X]\right) \neq \varnothing$. Choose a $p_{2} \in I \backslash\left(p_{1}\right)$ with minimal degree. Continue this way: if $p_{1}, \ldots, p_{k} \in I$ have already been chosen, then

$$
I \backslash\left(p_{1}, \ldots, p_{k}\right)=I \backslash\left(p_{1} R[X]+\cdots+p_{k} R[X]\right) \neq \varnothing
$$

as I is not finitely generated. Choose a $p_{k+1} \in I \backslash\left(p_{1}, \ldots, p_{k}\right)$ with minimal degree. This yields a sequence $\left(p_{k}\right)_{k \geq 1}$ in I. Let $n_{i}:=\operatorname{deg} p_{i}$ and let a_{i} be the leading coefficient of p_{i}. By construction we have $n_{1} \leq n_{2} \leq n_{3} \leq \cdots$.

We claim that $\left(a_{1}\right) \varsubsetneqq\left(a_{1}, a_{2}\right) \varsubsetneqq\left(a_{1}, a_{2}, a_{3}\right) \varsubsetneqq \cdots$ is an ascending chain of ideals of R that does not terminate.
Suppose there is an $r \in \mathbb{N}$ such that $\left(a_{1}, \ldots, a_{r}\right)=\left(a_{1}, \ldots, a_{r+1}\right)$. This just says

$$
R a_{1}+\cdots+R a_{r}=R a_{1}+\cdots+R a_{r+1}
$$

and there would be $b_{1}, \ldots, b_{r} \in R$ such that $a_{r+1}=b_{1} a_{1}+\cdots+b_{r} a_{r}$. Consider the polynomial

$$
q(X):=p_{r+1}(X)-\sum_{i=1}^{r} b_{i} p_{i}(X) X^{n_{r+1}-n_{i}} .
$$

Clearly $q \in I \backslash\left(p_{1}, \ldots, p_{r}\right)\left(\right.$ as $\left.p_{r+1} \notin\left(p_{1}, \ldots, p_{r}\right)\right)$ and $\operatorname{deg} q \leq n_{r+1}$. Because of $a_{r+1}-\left(b_{1} a_{1}+\cdots+b_{r} a_{r}\right)=0$ the coefficient of $X^{n_{r+1}}$ in q is zero and thus $\operatorname{deg} q<n_{r+1}$. This, however, contradicts the minimality of $\operatorname{deg} p_{r+1}$.
41) Prove Lemma 89 (i) - (v) and Lemma 89 (vii) - (ix).
42) Let R be a commutative ring with identity and I_{1}, I_{2} and I_{3} ideals of R. Prove
$I_{1} \cdot\left(I_{2} \cdot I_{3}\right)=\left(I_{1} \cdot I_{2}\right) \cdot I_{3}=\left\{\sum_{i=1}^{n} a_{i} b_{i} c_{i} \mid a_{i} \in I_{1}, b_{i} \in I_{2}\right.$ and $c_{i} \in I_{3}$ for $\left.1 \leq i \leq n\right\}$.
43) Let R be a commutative ring with identity and P an ideal of R. Prove that the following are equivalent:
(i) $P \varsubsetneqq R$ and $a \cdot b \in P$ implies $a \in P$ or $b \in P$ (for $a, b \in R$),
(ii) $P \varsubsetneqq R$ and $I \cdot J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$ (for ideals I, J of R).

C. BAXA, ALGEBRAIC NUMBER THEORY, WS 2022/23

44) Let D be a Dedekind domain, K its quotient field, I and J two ideals of D and $\alpha, \beta \in D \backslash\{0\}$. Prove that
a) $\alpha^{-1} I+\beta^{-1} J=(\alpha \beta)^{-1}(\beta I+\alpha J)$ and
b) $\alpha^{-1} I \cdot \beta^{-1} J=(\alpha \beta)^{-1} I \cdot J$
are fractional ideals of K.
45) Prove Lemma 92 (iii).
46) Let K be an algebraic number field and $P \neq(0)$ a prime ideal of O_{K}. Prove the following generalization of Fermat's little theorem:
a) If $\alpha \in O_{K} \backslash P$ then $\alpha^{N(P)-1} \equiv 1(\bmod P)$,
b) If $\alpha \in O_{K}$ then $\alpha^{N(P)} \equiv \alpha(\bmod P)$.
47) Let K be an algebraic number field and $I \neq(0)$ an ideal of O_{K}. Prove that:
a) If $\alpha \in I$ satisfies $N(I)=\left|N_{K / \mathbb{Q}}(\alpha)\right|$ then $I=(\alpha)=\alpha O_{K}$,
b) If p, q are two different primes such that $p q \mid N(I)$ then I is not a prime ideal.
48) Let K be an algebraic number field, $P \neq(0)$ a prime ideal of O_{K} and p the prime lying below P. Prove that $P \cap \mathbb{Z}=p \mathbb{Z}$.
49) Let $K=\mathbb{Q}(i \sqrt{5})$. Find pairwise different prime ideals P_{1}, P_{2} and P_{3} of the ring $O_{K}=\mathbb{Z}[i \sqrt{5}]$ such that

$$
(2)=P_{1}^{2},(3)=P_{2} P_{3},(1+i \sqrt{5})=P_{1} P_{2} \text { and }(1-i \sqrt{5})=P_{1} P_{3}
$$

and prove that these assertions hold.
50) Let $K=\mathbb{Q}(i \sqrt{6})$. Find different prime ideals P_{1} and P_{2} of the ring $O_{K}=\mathbb{Z}[i \sqrt{6}]$ such that

$$
(2)=P_{1}^{2},(3)=P_{2}^{2} \text { and }(i \sqrt{6})=(-i \sqrt{6})=P_{1} P_{2}
$$

and prove that these assertions hold.

