Algebraic Number Theory

WS 2022/23

Christoph Baxa

1) Prove that (\mathbb{Q}^+, \cdot) has a basis (where \mathbb{Q}^+ denotes the set of positive rational numbers).

2) a) Prove that $(\mathbb{Q}, +)$ is not a finitely generated group.

b) Prove that $(\mathbb{Q}, +)$ does not have a basis.

3) Let G_1, \ldots, G_k be groups and $N_i \leq G_i$ normal subgroups for $1 \leq i \leq k$. Prove

$$N_1 \times \cdots \times N_k \trianglelefteq G_1 \times \cdots \times G_k$$

and

$$(G_1 \times \cdots \times G_k)/(N_1 \times \cdots \times N_k) \cong (G_1/N_1) \times \cdots \times (G_k/N_k).$$

Hint. Consider the map

 $\varphi: G_1 \times \cdots \times G_k \to (G_1/N_1) \times \cdots \times (G_k/N_k), \ \varphi(a_1, \dots, a_k) = (a_1N_1, \dots, a_kN_k).$

4) Let R be an integral domain. Prove that the set

 $\{A \mid A \text{ is an } n \times n \text{ matrix with entries in } R \text{ and } \det A \in R^*\}$

is a group with matrix multiplication.

5) Let F be free abelian group of rank n. Prove the following:

- a) It is not true that every linearly independent subset of F with n elements is a basis of F.
- b) It is not true that every linearly independent subset of F can be extended to a basis of F
- c) It is not true that every subset of F which generates F contains a basis of F.

6) a) Let G be a finitely generated abelian group in which 0 is the only element of finite order. Prove that G is a free abelian group.

b) Prove that part a) is no longer true if one only assumes G to be an abelian group in which 0 is the only element of finite order.

7) Let K be a field with characteristic char K = p > 0 and $f \in K[X]$ an irreducible polynomial. Prove that the following are equivalent:

- (i) f is not separable (i.e., f' = 0),
- (ii) There is a $g \in K[X]$ such that $f(X) = g(X^p)$.

- 8) Let K be field with char K = p > 0 and $\sigma : K \to K$, $\sigma(x) = x^p$. Prove that
 - a) σ is a monomorphism,
 - b) If K is finite σ is an isomorphism.

Definition. The map σ described in Exercise 8 is called Frobenius endomorphism.

9) Let K be a finite field. Prove that

- a) Every irreducible $f \in K[X]$ is separable,
- b) If L/K is a finite field extension then L/K is a separable extension.

10) Let K be a field with char K = p > 0 and L/K a finite field extension with $p \nmid [L:K]$. Prove that L/K is a separable extension.

11) Let p be prime and $f(X) = X^p - T \in \mathbb{F}_p(T)[X]$ (i.e., f is a polynomial with coefficients in the quotient field of the polynomial ring $\mathbb{F}_p[T]$). Prove that f is irreducible but not separable. *Hint.* Use Eisenstein's criterion.

12) Find a primitive element $\alpha \in K$ such that $K = \mathbb{Q}(\alpha)$ for the following algebraic number fields:

a) $K = \mathbb{Q}(\sqrt{2}, i)$ b) $K = \mathbb{Q}(\sqrt{2}, i\sqrt{2})$ c) $K = \mathbb{Q}(\sqrt{3}, \sqrt[3]{2})$

13) Let p be a prime and let L/K be a finite field extension such that [L:K] = p. Prove that $L = K(\alpha)$ for all $\alpha \in L \setminus K$.

14) Let L/K be a field extension and let $\alpha \in L$ be algebraic over K. Prove the following:

a) If deg $m_{K,\alpha}$ is odd then $K(\alpha^2) = K(\alpha)$. (Is this also true if deg $m_{K,\alpha}$ is even?) b) Let m, n be positive integers with mn squarefree. Then $\mathbb{Q}(\sqrt[3]{mn^2}) = \mathbb{Q}(\sqrt[3]{m^2n})$.

15) Find all homomorphisms $\sigma : \mathbb{Q}(\sqrt[4]{2}) \hookrightarrow \mathbb{C}$ such that a) $\sigma|_{\mathbb{Q}(\sqrt{2})} = \mathrm{id}_{\mathbb{Q}(\sqrt{2})}$ and b) $\sigma|_{\mathbb{Q}} = \mathrm{id}_{\mathbb{Q}}$.

16) Find all homomorphisms $\sigma : \mathbb{Q}(\sqrt{2}, i) \hookrightarrow \mathbb{C}$ such that

a) $\sigma|_{\mathbb{Q}(i)} = \mathrm{id}_{\mathbb{Q}(i)}$, b) $\sigma|_{\mathbb{Q}(\sqrt{2})} = \mathrm{id}_{\mathbb{Q}(\sqrt{2})}$, c) $\sigma|_{\mathbb{Q}(\sqrt{2}i)} = \mathrm{id}_{\mathbb{Q}(\sqrt{2}i)}$ and d) $\sigma|_{\mathbb{Q}} = \mathrm{id}_{\mathbb{Q}}$.

17) Prove the results of Lemma 22 (i) – (vi) once more, this time using the results of Theorem 23 (ii) and (iii) as the definition of the norm $N_{L/K}$ and the trace $\text{Tr}_{L/K}$, i.e., let

$$N_{L/K}(\alpha) := \prod_{i=1}^{n} \sigma_i(\alpha)$$
 and $\operatorname{Tr}_{L/K}(\alpha) := \sum_{i=1}^{n} \sigma_i(\alpha),$

where L/K is a finite, separable field extension with [L:K] = n and $\sigma_i: L \hookrightarrow \overline{K}$ are the different homomorphisms with $\sigma|_K = \mathrm{id}_K$.

18) Let L/K be a field extension with [L:K] = 2. Prove that L/K is a normal extension.

19) a) Prove that the field extensions $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ are both normal, but the field extension $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ is not.

b) Let $\zeta := e^{2\pi i/3} = \frac{1}{2}(-1+\sqrt{3}i)$. Show that the field extensions $\mathbb{Q}(\sqrt[3]{2},\zeta)/\mathbb{Q}$ and $\mathbb{Q}(\sqrt[3]{2},\zeta)/\mathbb{Q}(\sqrt[3]{2})$ are both normal, but the field extension $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not.

- **20)** a) Calculate $N_{\mathbb{Q}(\sqrt{3})/\mathbb{Q}}(\alpha)$ and $\operatorname{Tr}_{\mathbb{Q}(\sqrt{3})/\mathbb{Q}}(\alpha)$ for $\alpha \in \mathbb{Q}(\sqrt{3})$.
- b) Calculate $N_{\mathbb{Q}(\sqrt[4]{3})/\mathbb{Q}(\sqrt{3})}(\alpha)$ and $\operatorname{Tr}_{\mathbb{Q}(\sqrt[4]{3})/\mathbb{Q}(\sqrt{3})}(\alpha)$ for $\alpha \in \mathbb{Q}(\sqrt[4]{3})$.
- c) Calculate $N_{\mathbb{Q}(\sqrt[4]{3})/\mathbb{Q}}(\alpha)$ and $Tr_{\mathbb{Q}(\sqrt[4]{3})/\mathbb{Q}}(\alpha)$ for $\alpha \in \mathbb{Q}(\sqrt[4]{3})$ both directly and with the help of Theorem 28.

21) Calculate $\Delta_{\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}}(1,\sqrt{2},\sqrt{3},\sqrt{2}+\sqrt{3})$ using the definition of the discriminant. Is there a faster way of doing this?

22) Let *a* and *b* be positive integers with a > 1 and *ab* squarefree. Let $m = ab^2$. Calculate $\Delta_{\mathbb{Q}(\sqrt[3]{m})/\mathbb{Q}}(1, \sqrt[3]{m}, \sqrt[3]{m^2})$ both using the definition of the discriminant and with the help of Theorem 34.

23) Let p be a prime. The p^{th} cyclotomic polynomial $\Phi_p(X)$ is

$$\Phi_p(X) = X^{p-1} + X^{p-2} + \dots + X + 1.$$

Use Eisenstein's criterion to show that $\Phi_p(X)$ is irreducible (in $\mathbb{Q}[X]$). (*Hint.* Use $\Phi_p(X) = (X^p - 1)/(X - 1)$, consider $\Phi_p(X + 1)$ and employ the binomial theorem.) Find all roots of $\Phi_p(X)$ and its factorization into linear factors.

24) Let p > 2 be a prime and $\zeta = e^{2\pi i/p}$. Prove the following:

a) $N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(1-\zeta) = p$

Hint. Use the factorization of $\Phi_p(X)$ into linear factors from the previous exercise. b) $\Delta_{\mathbb{Q}(\zeta)/\mathbb{Q}}(1, \zeta, \zeta^2, \dots, \zeta^{p-2}) = (-1)^{(p-1)/2} p^{p-2}$.

25) Let R be a commutative ring with identity and M an R-module. Prove the following:

a) (-a)m = -(am) = a(-m) for all $a \in R$ and all $m \in M$,

b) k(am) = a(km) for all $k \in \mathbb{Z}$, all $a \in R$ and all $m \in M$.

26) Let R and S be commutative rings with identity, $\varphi : R \to S$ a ring homomorphism with the property $\varphi(1_R) = 1_S$ and M an S-module. Prove that M becomes an R-module by setting $R \times M \to M$, $(a, m) \mapsto \varphi(a) \cdot m$.

27) Let R be a commutative ring with identity, M an R-module and I an ideal of R with the property that am = 0 for all $a \in I$ and all $m \in M$. Prove the following:

a) bm = cm if $b - c \in I$,

b) M becomes an R/I-Modul by setting $(a + I) \cdot m := a \cdot m$.

28) Let R be an integral domain, K its quotient field, L/K a finite field extension and $S = \overline{R}^{L}$. Prove that for every $\beta \in L$ there is a $a \in R \setminus \{0\}$ such that $a\beta \in S$.

29) Let R be an integral domain, K its quotient field, L/K a finite field extension and $S = \overline{R}^{L}$. Prove the following:

- a) The quotient field of S is (isomorphic to) L,
- b) S is an integrally closed integral domain.

30) Let R be an integrally closed integral domain, K its quotient field, L/K a field extension and $S = \overline{R}^{L}$. Prove $S \cap K = R$.

31) Let K be an algebraic number field with $[K : \mathbb{Q}] = n$ and $\{\alpha_1, \ldots, \alpha_n\}$ a basis of K (as a \mathbb{Q} -vector space) consisting only of elements of O_K . Prove that $\{\alpha_1, \ldots, \alpha_n\}$ is an integral basis for K if $\Delta_{K/\mathbb{Q}}(\alpha_1, \ldots, \alpha_n) = d_K$.

32) Prove that the groups $(\mathbb{Z}[\sqrt{2}]^*, \cdot)$ and $(\mathbb{Z}_2 \times \mathbb{Z}, +)$ are isomorphic.

33) Let $K = \mathbb{Q}(\sqrt{3})$. Prove that $O_K^* = \mathbb{Z}[\sqrt{3}]^* = \{\pm (2 + \sqrt{3})^n \mid n \in \mathbb{Z}\}.$

34) Show that both $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are norm-euclidean.

35) a) Show that $O_{\mathbb{Q}(i\sqrt{6})} = \mathbb{Z}[i\sqrt{6}]$ is not a unique factorization domain. b) Show that $O_{\mathbb{Q}(i\sqrt{10})} = \mathbb{Z}[i\sqrt{10}]$ is not a unique factorization domain. *Hint.* Use the equations

$$6 = 2 \cdot 3 = i\sqrt{6} \cdot (-i\sqrt{6})$$
 and $14 = 2 \cdot 7 = (2 + i\sqrt{10}) \cdot (2 - i\sqrt{10})$.

36) Does not the equation $10 = 2 \cdot 5 = (3 + i) \cdot (3 - i)$ contradict the fact that $O_{\mathbb{Q}(i)} = \mathbb{Z}[i]$ is a unique factorization domain?

37) Let $p \equiv 3 \pmod{4}$ be a prime and $a, b \in \mathbb{Z}$. Show that $p \mid (a^2 + b^2)$ implies $p \mid a$ and $p \mid b$.

38) Let $n \geq 2$ be an integer with prime factorization $n = 2^{\alpha} p_1^{\beta_1} \cdots p_k^{\beta_k} q_1^{\gamma_1} \cdots q_\ell^{\gamma_\ell}$ (where $k, \ell, \alpha \geq 0, \beta_1, \ldots, \beta_k, \gamma_1, \ldots, \gamma_\ell \geq 1, p_i \equiv 1 \pmod{4}$ for $1 \leq i \leq k$ and $q_i \equiv 3 \pmod{4}$ for $1 \leq i \leq \ell$). Prove that the following are equivalent:

- (i) $\exists x, y \in \mathbb{Z} : n = x^2 + y^2$
- (ii) $\gamma_1 \equiv \cdots \equiv \gamma_\ell \equiv 0 \pmod{2}$

Hint. Use the identity $(x^2 + y^2)(u^2 + v^2) = (xu - yv)^2 + (xv + yu)^2$.

39) a) Is the ring $R = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continous}\}$ noetherian?

Hint. Consider $I_n = \{ f \in R \mid f(x) = 0 \text{ for all } x \in [0, \frac{1}{n}] \}$ with $n \in \mathbb{N}$.

b) Find a finitely generated module with a submodule that is not finitely generated.

40) Present the following proof of the Hilbert basis theorem (i.e., if R is a noetherian ring then R[X] is a noetherian ring).

Proof. Let I be an ideal of R[X] that is not finitely generated. Then $I \setminus (0) \neq \emptyset$. Choose a $p_1 \in I \setminus (0)$ with minimal degree. As I is not finitely generated, we have $I \setminus (p_1) = I \setminus (p_1 R[X]) \neq \emptyset$. Choose a $p_2 \in I \setminus (p_1)$ with minimal degree. Continue this way: if $p_1, \ldots, p_k \in I$ have already been chosen, then

$$I \setminus (p_1, \dots, p_k) = I \setminus (p_1 R[X] + \dots + p_k R[X]) \neq \emptyset$$

as I is not finitely generated. Choose a $p_{k+1} \in I \setminus (p_1, \ldots, p_k)$ with minimal degree. This yields a sequence $(p_k)_{k\geq 1}$ in I. Let $n_i := \deg p_i$ and let a_i be the leading coefficient of p_i . By construction we have $n_1 \leq n_2 \leq n_3 \leq \cdots$.

We claim that $(a_1) \subsetneqq (a_1, a_2) \subsetneqq (a_1, a_2, a_3) \subsetneqq \cdots$ is an ascending chain of ideals of R that does not terminate.

Suppose there is an $r \in \mathbb{N}$ such that $(a_1, \ldots, a_r) = (a_1, \ldots, a_{r+1})$. This just says

$$Ra_1 + \dots + Ra_r = Ra_1 + \dots + Ra_{r+1}$$

and there would be $b_1, \ldots, b_r \in R$ such that $a_{r+1} = b_1 a_1 + \cdots + b_r a_r$. Consider the polynomial

$$q(X) := p_{r+1}(X) - \sum_{i=1}^{r} b_i p_i(X) X^{n_{r+1}-n_i}.$$

Clearly $q \in I \setminus (p_1, \ldots, p_r)$ (as $p_{r+1} \notin (p_1, \ldots, p_r)$) and deg $q \leq n_{r+1}$. Because of $a_{r+1} - (b_1a_1 + \cdots + b_ra_r) = 0$ the coefficient of $X^{n_{r+1}}$ in q is zero and thus deg $q < n_{r+1}$. This, however, contradicts the minimality of deg p_{r+1} .

41) Prove Lemma 89 (i) - (v) and Lemma 89 (vii) - (ix).

42) Let R be a commutative ring with identity and I_1, I_2 and I_3 ideals of R. Prove

$$I_1 \cdot (I_2 \cdot I_3) = (I_1 \cdot I_2) \cdot I_3 = \left\{ \sum_{i=1}^n a_i b_i c_i \, \middle| \, a_i \in I_1, \, b_i \in I_2 \text{ and } c_i \in I_3 \text{ for } 1 \le i \le n \right\}.$$

43) Let R be a commutative ring with identity and P an ideal of R. Prove that the following are equivalent:

(i) $P \subsetneqq R$ and $a \cdot b \in P$ implies $a \in P$ or $b \in P$ (for $a, b \in R$), (ii) $P \subsetneqq R$ and $I \cdot J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$ (for ideals I, J of R). **44)** Let *D* be a Dedekind domain, *K* its quotient field, *I* and *J* two ideals of *D* and $\alpha, \beta \in D \setminus \{0\}$. Prove that

a) $\alpha^{-1}I + \beta^{-1}J = (\alpha\beta)^{-1}(\beta I + \alpha J)$ and b) $\alpha^{-1}I \cdot \beta^{-1}J = (\alpha\beta)^{-1}I \cdot J$ are fractional ideals of K.

45) Prove Lemma 92 (iii).

46) Let K be an algebraic number field and $P \neq (0)$ a prime ideal of O_K . Prove the following generalization of Fermat's little theorem:

- a) If $\alpha \in O_K \setminus P$ then $\alpha^{N(P)-1} \equiv 1 \pmod{P}$,
- b) If $\alpha \in O_K$ then $\alpha^{N(P)} \equiv \alpha \pmod{P}$.

47) Let K be an algebraic number field and $I \neq (0)$ an ideal of O_K . Prove that:

- a) If $\alpha \in I$ satisfies $N(I) = |N_{K/\mathbb{Q}}(\alpha)|$ then $I = (\alpha) = \alpha O_K$,
- b) If p, q are two different primes such that $pq \mid N(I)$ then I is not a prime ideal.

48) Let K be an algebraic number field, $P \neq (0)$ a prime ideal of O_K and p the prime lying below P. Prove that $P \cap \mathbb{Z} = p\mathbb{Z}$.

49) Let $K = \mathbb{Q}(i\sqrt{5})$. Find pairwise different prime ideals P_1 , P_2 and P_3 of the ring $O_K = \mathbb{Z}[i\sqrt{5}]$ such that

$$(2) = P_1^2, (3) = P_2 P_3, (1 + i\sqrt{5}) = P_1 P_2 \text{ and } (1 - i\sqrt{5}) = P_1 P_3$$

and prove that these assertions hold.

50) Let $K = \mathbb{Q}(i\sqrt{6})$. Find different prime ideals P_1 and P_2 of the ring $O_K = \mathbb{Z}[i\sqrt{6}]$ such that

$$(2) = P_1^2, (3) = P_2^2 \text{ and } (i\sqrt{6}) = (-i\sqrt{6}) = P_1P_2$$

and prove that these assertions hold.