Harmonic measures and rigidity for surface group actions on the circle

Masanori Adachi (Shizuoka University / visiting Universität zu Köln)

joint work with Yoshifumi Matsuda (Aoyama Gakuin University) Hiraku Nozawa (Ritsumeikan University)

18th July 2022

36th Summer Topology Conference

The Milnor-Wood inequality and Matsumoto's rigidity theorem

Let Σ be an orientable closed surface of genus g>1. Write $\Gamma:=\pi_1(\Sigma)$. Consider a Γ -action on the circle, $\rho\colon\Gamma\to \operatorname{Homeo}_+(S^1)$.

Equip Σ a hyperbolic metric and regard $\Sigma = \Gamma \setminus \mathbb{D}$, where \mathbb{D} is the Poincaré disk. This induces a <u>Fuchsian action</u>, $\rho_0 \colon \Gamma \to PSU(1,1) \to \mathsf{Homeo}_+(S^1)$.

The <u>Euler number</u> of ρ is denoted by $e(\rho) \in \mathbb{Z}$, which can be defined as the Euler number of the suspension S^1 -bundle $\Sigma \times_{\rho} S^1$ over Σ ,

$$\Sigma \times_{\rho} S^1 := \Gamma \setminus (\mathbb{D} \times S^1), \quad \gamma \cdot (z, t) = (\gamma z, \rho(\gamma) t).$$

Theorem (Milnor '58, Wood '71 / Matsumoto '87)

- 1. The Euler number is bounded: $|e(\rho)| \le -e(\Sigma) = 2g 2$.
- 2. The equality $e(\rho) = e(\Sigma)$ holds if and only if ρ is semiconjugate to ρ_0 .

 ρ is <u>semiconjugate</u> to ρ_0 if there exists a non-decreasing continuous map $\psi \colon S^1 \to S^1$ of mapping degree one which is (ρ, ρ_0) -equivariant,

$$\psi \circ \rho(\gamma) = \rho_0(\gamma) \circ \psi \quad (\forall \gamma \in \Gamma).$$

Burger-lozzi-Weinhard's generalization

Let Σ be an orientable surface of genus g with m punctures, 2g+m-2>0. Write $\Gamma:=\pi_1(\Sigma)$ and consider a Γ -action on the circle, $\rho\colon\Gamma\to \operatorname{Homeo}_+(S^1)$.

Equip Σ a complete hyperbolic metric with finite volume so that punctures are cusps. Regard $\Sigma = \Gamma \backslash \mathbb{D}$. Again, let $\rho_0 \colon \Gamma \to PSU(1,1) \to \mathsf{Homeo}_+(S^1)$.

Burger–lozzi–Weinhard defined the <u>Euler number</u> of ρ , denoted by $e(\rho) \in \mathbb{R}$, based on bounded cohomology. Note that the suspension bundle $\Sigma \times_{\rho} S^1$ is topologically trivial and classical definition does not apply when m > 0.

Theorem (Burger-lozzi-Weinhard '14)

- 0. The Euler number is expressed as $e(\rho) = -\sum_{i=1}^{m} \tau(\tilde{\rho}(c_i))$.
- 1. The Euler number is bounded: $|e(\rho)| \le -e(\Sigma) = 2g + m 2$.
- 2. The equality $e(\rho) = e(\Sigma)$ holds if and only if ρ is semiconjugate to ρ_0 .

 $\tilde{\rho}\colon\Gamma\to\operatorname{Homeo}_+(S^1)$ is a homomorphism lift of ρ , and $\tau\colon\operatorname{Homeo}_+(S^1)\to\mathbb{R}$ the translation number, where $\operatorname{Homeo}_+(S^1)$ denotes the universal cover group of $\operatorname{Homeo}_+(S^1)$.

Aim of this study

We shall give an alternative proof for Burger–lozzi–Weinhard's theorem using <u>foliated harmonic measure</u>. For closed Σ , such an approach was proposed independently by Frankel and Thurston in 1990s.

Definition (Garnett '83)

Let M be a smoothly foliated manifold equipped with leafwise Riemannian metric. A Borel measure μ on M is called *harmonic* if

$$\int_{M} \Delta f(x) \mu(dx) = 0$$

for every compactly supported leafwise C^2 function f on M such that Δf is continuous on M, where Δ denotes the leafwise Laplace–Beltrami operator.

We equip the suspension foliation $M = \Sigma \times_{\rho} S^1$ with leafwise hyperbolic metric.

$$\Sigma \times_{\rho} S^1 := \Gamma \setminus (\mathbb{D} \times S^1), \quad \gamma \cdot (z, t) = (\gamma z, \rho(\gamma) t).$$

When Σ is closed, a harmonic probability measure exists from Garnett '83. Even when Σ has cusps, a harmonic probability measure on $\Sigma \times_{\rho} S^1$ exists thanks to a theorem by Alvarez '12.

Sketch of the proof

 Γ : a torsion-free lattice in PSU(1,1), $\Sigma = \Gamma \setminus \mathbb{D}$. $\rho \colon \Gamma \to \mathsf{Homeo}_+(S^1)$. Assume $\rho(\Gamma)$ has no finite orbit in S^1 .

Let μ be a harmonic measure on $M = \Sigma \times_{\rho} S^1$ with $\mu(M) = 4\pi^2 |e(\Sigma)|$. Note that μ is expressed in $(z, t) \in \mathbb{D} \times S^1$ as

$$\mu = h(z, e^{it}) \operatorname{vol}_{hyp}(z) \nu(t)$$

where h(z,t) is positive harmonic function for ν -a.e. t, $\mathrm{vol}_{\mathrm{hyp}}(z)$ hyperbolic volume measure and $\nu(t)$ a Borel measure on $S^1=\mathbb{R}/2\pi\mathbb{Z}$,

$$\int_{S^1} h(z, e^{it}) \nu(dt) = 2\pi.$$

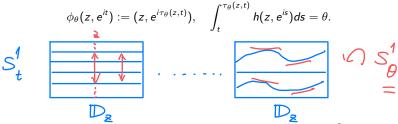
Step 1. From the assumption ν has no atoms. May assume that ν is the Lebesgue measure λ by replacing ρ up to a semiconjugacy that collapses the complement of the support of μ .

$$\mu = h(z, e^{it}) \operatorname{vol}_{hyp}(z) \lambda(t)$$

Sketch of the proof – continued

$$M_{\geq} = h(z, e^{it}) \lambda(t)$$

Step 2. Define an S^1 -action $\{\phi_\theta\}$ on M and regard M an S^1 -principal bundle. The foliation is to be transversely Lipschitz from Harnack's inequality.



Step 3. Take the defining 1-form ω for the foliation such that $\omega(\frac{\partial}{\partial \theta}) = 1$, which gives a continuous connection $M \to \Sigma$. Taking the average yields

$$\overline{\omega} := rac{1}{2\pi} \int_0^{2\pi} \phi_{ heta}^* \omega \; d heta$$

a continuous S^1 -connection. From Harnack's inequality and the isoperimetric inequality, we see that $\overline{\omega}$ has curvature K with $|K| \leq 1$.

Sketch of the proof for rigidity

Step 4. We show

$$e(\rho) = \frac{1}{2\pi} \int_{\Sigma} K(z) \mathrm{vol}_{\mathrm{hyp}}(dz).$$

When Σ is closed, this is well-known. When Σ has m cusps, we cut off their neighborhood and obtain a compact surface Σ^s with boundary $\bigcup_{i=1}^m c_i^s$, where c_i^s is a horocircle that approach to i-th cusp as $s \to \infty$.

$$\frac{1}{2\pi}\int_{\Sigma^s} K(z) \mathrm{vol}_{\mathrm{hyp}}(dz) = \sum_{i=1}^m \tau(\widetilde{\mathrm{hol}}_{\overline{\omega}}(c_i^s)) \xrightarrow{s \to \infty} - \sum_{i=1}^m \tau(\widetilde{\rho}(c_i)).$$

This step completes the proof for $|e(\rho)| \leq -e(\Sigma)$.

Sketch of the proof for rigidity

$$\omega = d\theta - \sum_{k=1}^{2} \omega_{k}(z, \theta) dx^{k}$$

Step 5. Assume $e(\rho) = e(\Sigma)$. We must have K = -1 a.e.. From Step 3,

$$\begin{split} -\mathcal{K}(z) &= \frac{(1-|z|^2)^2}{4\pi} \int_0^{2\pi} \frac{1}{2} \left(-\frac{\partial \omega_1}{\partial \theta}(z,\theta) \omega_2(z,\theta) + \frac{\partial \omega_2}{\partial \theta}(z,\theta) \omega_1(z,\theta) \right) d\theta \\ \stackrel{\text{Isoperimetric}}{\leq} \frac{(1-|z|^2)^2}{4\pi} \cdot \frac{1}{4\pi} \left(\int_0^{2\pi} \sqrt{\left(\frac{\partial \log h}{\partial x_1}\right)^2 + \left(\frac{\partial \log h}{\partial x_2}\right)^2} d\theta \right)^2 \\ &= \frac{1}{4\pi^2} \left(\int_0^{2\pi} |d \log h|_{\mathrm{hyp}} d\theta \right)^2 \\ \stackrel{\text{Harnack}}{\leq} 1. \end{split}$$

Since the both equality holds, the harmonic measure must be of the form

$$h(z, e^{it}) = \frac{1 - |z|^2}{|m(e^{it}) - z|^2}$$

where $m \in \text{Homeo}_+(S^1)$ is (ρ, ρ_0) -equivariant.

7/8

