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ccc

An ordered set (P,≤) is said to be ccc if it has no uncountable antichains.

In the topological side, just consider the family of all non-empty sets τ ̸=∅

ordered by inclusion (therefore, an antichain is a family of mutually

disjoint non-empty sets).

3



ccc

An ordered set (P,≤) is said to be ccc if it has no uncountable antichains.

In the topological side, just consider the family of all non-empty sets τ ̸=∅

ordered by inclusion

(therefore, an antichain is a family of mutually

disjoint non-empty sets).

3



ccc

An ordered set (P,≤) is said to be ccc if it has no uncountable antichains.

In the topological side, just consider the family of all non-empty sets τ ̸=∅

ordered by inclusion (therefore, an antichain is a family of mutually

disjoint non-empty sets).

3



Important example

If X is a separable space, then X is ccc. Not only this, it has a stronger

property related to products:

Proposition
If X is separable and Y is ccc, then X × Y is ccc.

This becomes more interesting when one remembers the following well

known fact:

Theorem
The statement “If X and Y are ccc, then X × Y is ccc” is independent

from the ZFC axioms.

So the general preservation of the ccc property cannot be decided in

ZFC, but it is possible to decide it for specific classes of spaces.
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Internal characterization

Given an ordered set X , we say that a collection A of antichains is large

if
⋃

A is uncountable. Given a large collection A, define

F(A) =
⋃
A∈A

[A]<ℵ0

ordered by the reverse inclusion relation.

It turns out that incompatibility in F(A) is somehow related to

compatibility in X :

Lemma
Given P,Q ∈ F(A), P⊥Q if, and only if, P ∪ Q /∈ F(A).

Theorem
Given an ordered space X , X is productively ccc if, and only if, F(A) is

not ccc for every large collection A.
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First, an application

We say that A ⊂ X is linked if each two elements a, b ∈ A are compatible.

We say that X has the Knaster property if, for every uncountable subset

A ⊂ X , there is an uncountable B ⊂ A that is linked.

Lemma
Let X be a space and A a large collection of antichains. Suppose that

A ⊂
⋃
A is a linked set. Then {{a} : a ∈ A} is an antichain in F(A).

Proof.
Just note that, given a, b ∈ A with a ̸= b, a, b are compatible. Therefore,

{a, b} is not a subset of any antichain.

Corollary
If X has the Knaster property, X is productively ccc.
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Digression

In 2018, A. and Zdomskyy found a characterization for when a space X is

productively Lindelöf. There, the idea was to build a hyperspace Y(X )

using open coverings of X . Then the characterization has the following

shape:

Theorem (A., Zdomskyy)
A regular space X is productively Lindelöf space if, and only if,

X × Y(X ) for every “reasonable hyperspace” Y(X ).

Trying to do the same thing for the ccc property, we obtain:

Theorem (Discarded)
A space X is productively ccc if, and only if, X × Y(X ) is ccc for every

“reasonable hyperspace” Y(X ).

It turns out that “X ×Y(X ) being ccc for Y(X ) reasonable” is equivalent

to F(A) being non-ccc. And everything get much more simple.
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Proof of the main theorem (part I)

Theorem
Given an ordered space X , X is productively ccc if, and only if, F(A) is

not ccc for every large collection A.

Proof.

Suppose that F(A) =
⋃

A∈A[A]
<w is ccc. It is enough to show that

X × F(A) is not ccc.

Suppose not and let T = {(p, {p}) : p ∈
⋃
A}. Since A is large, T

cannot be an antichain. Therefore, there are two distinct p, q ∈
⋃
A

such that (p, {p}), (q, {q}) are compatible. Which means that {p, q} is

subset of some antichain, at the same time that p and q are compatible -

contradiction.
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Proof of the main theorem (part II)

Theorem
Given an ordered space X , X is productively ccc if, and only if, F(A) is

not ccc for every large collection A.

Proof.

Suppose that X is not productively ccc. We need to find a large A such

that F(A) is ccc.

Let Y be a ccc ordered set such that X × Y is not ccc. Let W ⊂ X × Y

be an uncountable antichain. For every y ∈ Y , let

Ay = {x ∈ X : ∃y ′ ≥ y (x , y ′) ∈ W }.

We will prove that A = {Ay : y ∈ Y } is the desired collection.

12



Proof of the main theorem (part II)

Theorem
Given an ordered space X , X is productively ccc if, and only if, F(A) is

not ccc for every large collection A.

Proof.

Suppose that X is not productively ccc.

We need to find a large A such

that F(A) is ccc.

Let Y be a ccc ordered set such that X × Y is not ccc. Let W ⊂ X × Y

be an uncountable antichain. For every y ∈ Y , let

Ay = {x ∈ X : ∃y ′ ≥ y (x , y ′) ∈ W }.

We will prove that A = {Ay : y ∈ Y } is the desired collection.

12



Proof of the main theorem (part II)

Theorem
Given an ordered space X , X is productively ccc if, and only if, F(A) is

not ccc for every large collection A.

Proof.

Suppose that X is not productively ccc. We need to find a large A such

that F(A) is ccc.

Let Y be a ccc ordered set such that X × Y is not ccc. Let W ⊂ X × Y

be an uncountable antichain. For every y ∈ Y , let

Ay = {x ∈ X : ∃y ′ ≥ y (x , y ′) ∈ W }.

We will prove that A = {Ay : y ∈ Y } is the desired collection.

12



Proof of the main theorem (part II)

Theorem
Given an ordered space X , X is productively ccc if, and only if, F(A) is

not ccc for every large collection A.

Proof.

Suppose that X is not productively ccc. We need to find a large A such

that F(A) is ccc.

Let Y be a ccc ordered set such that X × Y is not ccc. Let W ⊂ X × Y

be an uncountable antichain.

For every y ∈ Y , let

Ay = {x ∈ X : ∃y ′ ≥ y (x , y ′) ∈ W }.

We will prove that A = {Ay : y ∈ Y } is the desired collection.

12



Proof of the main theorem (part II)

Theorem
Given an ordered space X , X is productively ccc if, and only if, F(A) is

not ccc for every large collection A.

Proof.

Suppose that X is not productively ccc. We need to find a large A such

that F(A) is ccc.

Let Y be a ccc ordered set such that X × Y is not ccc. Let W ⊂ X × Y

be an uncountable antichain. For every y ∈ Y , let

Ay = {x ∈ X : ∃y ′ ≥ y (x , y ′) ∈ W }.

We will prove that A = {Ay : y ∈ Y } is the desired collection.

12



Proof of the main theorem (part II)

Theorem
Given an ordered space X , X is productively ccc if, and only if, F(A) is

not ccc for every large collection A.

Proof.

Suppose that X is not productively ccc. We need to find a large A such

that F(A) is ccc.

Let Y be a ccc ordered set such that X × Y is not ccc. Let W ⊂ X × Y

be an uncountable antichain. For every y ∈ Y , let

Ay = {x ∈ X : ∃y ′ ≥ y (x , y ′) ∈ W }.

We will prove that A = {Ay : y ∈ Y } is the desired collection.

12



Proving it is a large collection

Ay = {x ∈ X : ∃y ′ ≥ y (x , y ′) ∈ W }

A = {Ay : y ∈ Y }

Note that each Ay is indeed an antichain. Since π : W →
⋃
A defined

by π(x , y) = x is surjective, if
⋃

A is countable, then for some x0,

π−1(x0) is uncountable. Then {y : (x0, y) ∈ W } is an uncountable

antichain in Y , which is a contradiction. Therefore, A is large.
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Proving it is ccc
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Let F ⊂ F(A) be an uncountable set. For each F ∈ F , let yF ∈ Y be

such that F ⊂ AyF . Consider R = {yF : F ∈ F}. We have two cases:

� R is countable. Then there are y ∈ Y , F ,G ∈ F such that

F ,G ⊂ Ay . Therefore F ∪ G ∈ Ay - thus F and G are compatible.

� R is uncountable. Since Y is ccc, there are y , yF , yG ∈ Y , F ,G ∈ F
such that y ≤ yF , yG . Therefore Ay ⊃ AyF ,AyG , thus F ∪ G ∈ Ay . I.

e., F and G are compatible.

Thus F(A) is ccc.
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Why not all the finite antichains of
⋃

A?

Ay = {x ∈ X : ∃y ′ ≥ y (x , y ′) ∈ W }
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F ,G ⊂ Ay . Therefore F ∪ G ∈ Ay - thus F and G are compatible.

� R is uncountable. Since Y is ccc, there are y , yF , yG ∈ Y , F ,G ∈ F
such that y ≤ yF , yG . Therefore Ay ⊃ AyF ,AyG , thus F ∪ G ∈ Ay . I.

e., F and G are compatible.

Thus F(A) is ccc.
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There is no need to talk only about countable antichains

Given an ordered set X , define

c(X ) = sup{|A| : A ⊂ X is an antichain}

(so saying that X is ccc is the same as saying that c(X ) = ℵ0)

We can ask the same kind of question as before, and work with this more

general setting, asking for which cardinals we can bound c(X × Y ).
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The spectrum

With this in mind, fixed an ordered set X , we define

Sp(X ) = {κ ≥ ℵ0 : ∀Y (c(Y ) ≤ κ ⇒ c(X × Y ) ≤ κ)}.

With this notation, asking if X is productively ccc is the same as asking

if ℵ0 ∈ Sp(X ).

(Basically we are copying what Arhangel’skii did in 1981 to the tightness

property)
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The characterization

The ccc case characterization works the same way in the general case:

Theorem
Given an ordered space X and κ ≥ ℵ0, κ ∈ Sp(X ) if, and only if,

c(F(A)) > κ for every κ-large collection A.

Where a collection A of antichains is κ-large if |
⋃
A| > κ.
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Which cardinals are in Sp(X )?

Using the characterization, k ∈ Sp(X ) if, and only if, for every κ-large

collection A, c(F(A)) > κ. Note that, if κ > |X |, there is (trivially) no

κ-large collection, therefore κ ∈ Sp(X ). Thus it makes sense to define

pc(X ) = min{κ : κ ∈ Sp(X )}.

And, by the previous observation, pc(X ) ≤ |X |.
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A bit less trivial

We can do better, taking the density of the order d(X ) (π-weight for

topological spaces).

Proposition
If κ ≥ d(X ), then κ ∈ Sp(X ).

Proof.
Let A be a κ-large collection. Let D ⊂ X be a dense subset of cardinality

d(X ). There is a d ∈ D such that A = {a ∈
⋃
A : d ≤ a} is such that

|A| > κ. Then {{a} : a ∈ A} shows that c(F(A)) > κ.
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Good behavior on products

Proposition
If X and Y are topological spaces, then Sp(X × Y ) = Sp(X ) ∩ Sp(Y ).

Even better:

Theorem
If each Xi is a topological space, then Sp(

∏
i∈I Xi ) =

⋂
i∈I Sp(Xi ).

Corollary
If each Xi is a topological space, then supi∈I d(Xi ) ∈ Sp(

∏
i∈I Xi ).

Which is a generalization of

Theorem (Fremlin)
Every product of separable spaces is productively ccc.
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Back to Knaster

We can generalize the Knaster property as follows.

Given an n ∈ ω, we

say that X has the Kn property if, for every uncountable set A ⊂ X ,

there is an uncountable B ⊂ Y which is n-linked. Where B is n-linked if,

for every C ∈ [B]n, there is a p ≤ c for every c ∈ C .

(note that linked is the same as 2-linked and Knaster is the same as K2)

Following this notation, is convenient to define < ω-linked as centered

(i.e. for every F ∈ [X ]<ω, there is a p ∈ X such that p ≤ q for all

q ∈ F ). And, call K<ω the property to have ℵ1-precaliber (i.e. every

uncountable subset has an uncountable < ω-linked subset).
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Generalizing

We can repeat the generalization from ccc to celullarity to the Knaster

properties.

Given a space X and α ∈ ω ∪ {< ω}, we define

Kα(X ) = min{κ > ℵ0 : ∀A ∈ [X ]κ
+

∃B ∈ [A]κ
+

B is α-linked}

Note that if n < m < ω, then Kn(X ) ≤ Km(X ) < K<ω(X ). Also, with

the same density argument as before, we note that K<ω ≤ d(X ). Finally,

the same way that we prove that having the Knaster property implies

productively ccc, we can prove that pc(X ) ≤ K2(X ).

Therefore, we have

pc(X ) ≤ K2(X ) ≤ · · · ≤ Kn(X ) ≤ K<ω(X ) ≤ d(X ).
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Some questions

This is known:

Theorem (Todorcevic, Velickovic (1987))
MAℵ1 is equivalent to

∀X (c(X ) = ℵ0 ⇒ K<ω(X ) = ℵ0).

This is not:

Question (Larson, Todorcevic (2001))
Does

∀X (c(X ) = ℵ0 ⇒ K2(X ) = ℵ0) or

∀X (c(X ) = ℵ0 ⇒ pc(X ) = ℵ0)

implies MAℵ1?

Question
What can we say around c(X ) = K2(X ) or c(X ) = pc(X )?
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Bonus

And now for something completely different.
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Graphs
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Graphs
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Unfriendly partitions

We say that π : V (G ) → 2 is unfriendly at v ∈ V if

|{w ∈ N(v) : π(w) ̸= π(v)}| ≥ |{w ∈ N(v) : π(w) = π(v)}|

And we say that π is unfriendly if it is unfriendly for every v .
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Which graphs have unfriendly partitions?

� Finite graphs;

� Locally finite graphs;

� Infinite regular graphs (regular: every vertex has the same degree);

� “Almost” locally finite (non trivial) or “almost” regular graphs.
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Counterexamples

In 1990, Milner and Shelah provided two graphs with no vertices of finite

degree with no unfriendly partitions:

� If there is an ω1 generated p-point, then there is an example of

cardinality ℵω;

� In ZFC, there is an example of cardinality c+ω (the first limit

cardinal above c).
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Is there an smaller one?

In 1990, Aharoni, Milner and Prikry proved that if a graph has no vertices

with finite degree and there is a finite set F of regular cardinals such that

d(v) ∈ F for every v , then the graph has an unfriendly partition.

In particular, this says that any counterexample has to have cardinality at

least ℵω. So, if ℵω > c, there is no smaller counterexample. Let Γ be the

cardinality of the smallest counterexample.

Theorem (A., Real)
The statements:

� Γ = ℵω;

� Γ = (c)+ω

are independent from ZFC + ℵω < c.
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Big question

So the big question in the field is

Question
Does every countable graph have an unfriendly partition?
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Partial results

There are some partial results (like the ones about “almost regular”): the

main one is about graphs that have no “forbidden substructures”

(Berger, 2017).
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Another one

Theorem (A., Real)
If G is a countable graph such that there are no two adjacent vertices of

finite degree, then G has an unfriendly partition.
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A decomposition

37



A decomposition

38



A decomposition

39



A decomposition

40



A decomposition

41



A decomposition

42



A decomposition
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This is a joint work with Lucas Real.

44



Thank you (×2)
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