

On complemented copies of c_0 in spaces of vector-valued continuous function with the pointwise topology

Christian Bargetz

joint work with Jerzy Kąkol and Damian Sobota

Research supported by the Austrian Science Fund (FWF): I 4570-N and via the GAČR project 20-22230L RVO: 67985840

> Department of Mathematics Universität Innsbruck

36th Summer Topology Conference 18–22 July 2022, Vienna

We consider the space C(X, E) of continuous functions $f: X \to E$.

We equip it with the following topologies

- $C_k(X, E)$... topology of uniform convergence on compact subsets of X
- C_p(X, E) ... topology of pointwise convergence, i.e. the subspace topology induced by E^X.

If X is compact and E is a Banach space, $C_k(X, E)$ is a Banach space.

If X is hemicompact and locally compact and E is a Fréchet space, $C_k(X, E)$ is a Fréchet space.

We consider the space C(X, E) of continuous functions $f: X \to E$.

We equip it with the following topologies

- C_k(X, E) ... topology of uniform convergence on compact subsets of X
- C_p(X, E) ... topology of pointwise convergence, i.e. the subspace topology induced by E^X.

If X is compact and E is a Banach space, $C_k(X, E)$ is a Banach space.

If X is hemicompact and locally compact and E is a Fréchet space, $C_k(X, E)$ is a Fréchet space.

We consider the space C(X, E) of continuous functions $f: X \to E$.

We equip it with the following topologies

- C_k(X, E) ... topology of uniform convergence on compact subsets of X
- C_p(X, E) ... topology of pointwise convergence, i.e. the subspace topology induced by E^X.

If X is compact and E is a Banach space, $C_k(X, E)$ is a Banach space.

If X is hemicompact and locally compact and E is a Fréchet space, $C_k(X, E)$ is a Fréchet space.

We consider the space C(X, E) of continuous functions $f: X \to E$.

We equip it with the following topologies

- C_k(X, E) ... topology of uniform convergence on compact subsets of X
- C_p(X, E) ... topology of pointwise convergence, i.e. the subspace topology induced by E^X.

If X is compact and E is a Banach space, $C_k(X, E)$ is a Banach space.

If X is hemicompact and locally compact and E is a Fréchet space, $C_k(X, E)$ is a Fréchet space.

We consider the space C(X, E) of continuous functions $f: X \to E$.

We equip it with the following topologies

- C_k(X, E) ... topology of uniform convergence on compact subsets of X
- C_p(X, E) ... topology of pointwise convergence, i.e. the subspace topology induced by E^X.

If X is compact and E is a Banach space, $C_k(X, E)$ is a Banach space.

If X is hemicompact and locally compact and E is a Fréchet space, $C_k(X, E)$ is a Fréchet space.

In the case $E=\mathbb{R}$, we simply write $C_k(X)=C_k(X,\mathbb{R})$ and $\mathcal{C}_{
ho}(X)=\mathcal{C}_{
ho}(X,\mathbb{R}).$

We consider the space C(X, E) of continuous functions $f: X \to E$.

We equip it with the following topologies

- C_k(X, E) ... topology of uniform convergence on compact subsets of X
- C_p(X, E) ... topology of pointwise convergence, i.e. the subspace topology induced by E^X.

If X is compact and E is a Banach space, $C_k(X, E)$ is a Banach space.

If X is hemicompact and locally compact and E is a Fréchet space, $C_k(X, E)$ is a Fréchet space.

We consider the space C(X, E) of continuous functions $f: X \to E$.

We equip it with the following topologies

- C_k(X, E) ... topology of uniform convergence on compact subsets of X
- C_p(X, E) ... topology of pointwise convergence, i.e. the subspace topology induced by E^X.

If X is compact and E is a Banach space, $C_k(X, E)$ is a Banach space.

If X is hemicompact and locally compact and E is a Fréchet space, $C_k(X, E)$ is a Fréchet space. In the case $E = \mathbb{R}$, we simply write $C_k(X) = C_k(X, \mathbb{R})$ and $C_p(X) = C_p(X, \mathbb{R})$.

Theorem (Cembranos, Freniche)

For an infinite compact space X and an infinite-dimensional Banach space E, the Banach space C(X, E) contains a complemented copy of the Banach space c_0 .

Theorem (Domański–Drewnowski)

Let X be a Tychonoff space which contains an infinite compact subset and E a Fréchet space which is not Montel. Then the Fréchet space $C_k(X, E)$ contains a complemented copy of the space c_0 .

Under suitable assumptions on X and Y we obtain that

 $C_k(X \times Y) \approx C_k(X, C_k(Y))$

contains a complemented copy of co.

Christian Bargetz (Universität Innsbruck)

Theorem (Cembranos, Freniche)

For an infinite compact space X and an infinite-dimensional Banach space E, the Banach space C(X, E) contains a complemented copy of the Banach space c_0 .

Theorem (Domański–Drewnowski)

Let X be a Tychonoff space which contains an infinite compact subset and E a Fréchet space which is not Montel. Then the Fréchet space $C_k(X, E)$ contains a complemented copy of the space c_0 .

Under suitable assumptions on X and Y we obtain that

 $C_k(X \times Y) \approx C_k(X, C_k(Y))$

contains a complemented copy of *c*0.

Christian Bargetz (Universität Innsbruck)

Theorem (Cembranos, Freniche)

For an infinite compact space X and an infinite-dimensional Banach space E, the Banach space C(X, E) contains a complemented copy of the Banach space c_0 .

Theorem (Domański–Drewnowski)

Let X be a Tychonoff space which contains an infinite compact subset and E a Fréchet space which is not Montel. Then the Fréchet space $C_k(X, E)$ contains a complemented copy of the space c_0 .

Under suitable assumptions on X and Y we obtain that

$$C_k(X \times Y) \approx C_k(X, C_k(Y))$$

contains a complemented copy of c_0 .

- Complemented subspaces of a Banach space with the Grothendieck property have the Grothendieck property.
- Separable Banach spaces have the Grothendieck property if and only if they are reflexive.
- c_0 is separable and not reflexive.
- A Banach space which contains c₀ as a complemented subspace does not have the Grothendieck property.
- The Banach space C(K), K compact, has the Grothendieck property if and only if it does not contain a complemented copy of c₀.

- Complemented subspaces of a Banach space with the Grothendieck property have the Grothendieck property.
- Separable Banach spaces have the Grothendieck property if and only if they are reflexive.
- c_0 is separable and not reflexive.
- A Banach space which contains c₀ as a complemented subspace does not have the Grothendieck property.
- The Banach space C(K), K compact, has the Grothendieck property if and only if it does not contain a complemented copy of c₀.

- Complemented subspaces of a Banach space with the Grothendieck property have the Grothendieck property.
- Separable Banach spaces have the Grothendieck property if and only if they are reflexive.
- c₀ is separable and not reflexive.
- A Banach space which contains c₀ as a complemented subspace does not have the Grothendieck property.
- The Banach space *C*(*K*), *K* compact, has the Grothendieck property if and only if it does not contain a complemented copy of *c*₀.

- Complemented subspaces of a Banach space with the Grothendieck property have the Grothendieck property.
- Separable Banach spaces have the Grothendieck property if and only if they are reflexive.
- c_0 is separable and not reflexive.
- A Banach space which contains c₀ as a complemented subspace does not have the Grothendieck property.
- The Banach space C(K), K compact, has the Grothendieck property if and only if it does not contain a complemented copy of c₀.

- Complemented subspaces of a Banach space with the Grothendieck property have the Grothendieck property.
- Separable Banach spaces have the Grothendieck property if and only if they are reflexive.
- c_0 is separable and not reflexive.
- A Banach space which contains c₀ as a complemented subspace does not have the Grothendieck property.
- The Banach space *C*(*K*), *K* compact, has the Grothendieck property if and only if it does not contain a complemented copy of *c*₀.

- Complemented subspaces of a Banach space with the Grothendieck property have the Grothendieck property.
- Separable Banach spaces have the Grothendieck property if and only if they are reflexive.
- c_0 is separable and not reflexive.
- A Banach space which contains c₀ as a complemented subspace does not have the Grothendieck property.
- The Banach space *C*(*K*), *K* compact, has the Grothendieck property if and only if it does not contain a complemented copy of *c*₀.

Goal: A corresponding result for $C_p(X, E)$ -spaces

Let $(c_0)_p = \{x \in \mathbb{R}^{\omega} : x(n) \to 0\}$ be endowed with the pointwise topology inherited from \mathbb{R}^{ω} .

Question

When does a given space $C_{\rho}(X, E)$ contain a complemented copy of the space $(c_0)_{\rho}$?

The proofs for $C_k(X, E)$ use a variant of the Josefson-Nissenzweig theorem.

Theorem (Josefson-Nissenzweig)

Let X be an infinite dimensional Banach space. There is a sequence $(x_n)_{n \in \omega}$ in X^{*} which is a weak^{*}-null sequence and $||x_n|| = 1$ for all $n \in \omega$.

Goal: A corresponding result for $C_p(X, E)$ -spaces

Let $(c_0)_p = \{x \in \mathbb{R}^{\omega} : x(n) \to 0\}$ be endowed with the pointwise topology inherited from \mathbb{R}^{ω} .

Question

When does a given space $C_p(X, E)$ contain a complemented copy of the space $(c_0)_p$?

The proofs for *C_k(X, E*) use a variant of the Josefson-Nissenzweig theorem.

Theorem (Josefson-Nissenzweig)

Let X be an infinite dimensional Banach space. There is a sequence $(x_n)_{n \in \omega}$ in X^{*} which is a weak^{*}-null sequence and $||x_n|| = 1$ for all $n \in \omega$.

Goal: A corresponding result for $C_{\rho}(X, E)$ -spaces

Let $(c_0)_p = \{x \in \mathbb{R}^{\omega} : x(n) \to 0\}$ be endowed with the pointwise topology inherited from \mathbb{R}^{ω} .

Question

When does a given space $C_p(X, E)$ contain a complemented copy of the space $(c_0)_p$?

The proofs for $C_k(X, E)$ use a variant of the Josefson-Nissenzweig theorem.

Theorem (Josefson-Nissenzweig)

Let X be an infinite dimensional Banach space. There is a sequence $(x_n)_{n \in \omega}$ in X^{*} which is a weak^{*}-null sequence and $||x_n|| = 1$ for all $n \in \omega$.

Let X be a Tychonoff space. Every element of the dual space $\varphi \in L_p(X) = C_p(X)'$ has a unique representation as a finite linear combination of point measures

$$\varphi = \sum a_x \delta_x.$$

We set

Let X be a Tychonoff space. Every element of the dual space $\varphi \in L_p(X) = C_p(X)'$ has a unique representation as a finite linear combination of point measures

$$\varphi = \sum a_x \delta_x.$$

We set

$$\|\varphi\| = \sum_{x \in \operatorname{supp} \varphi} |a_x|.$$

Let X be a Tychonoff space. Every element of the dual space $\varphi \in L_p(X) = C_p(X)'$ has a unique representation as a finite linear combination of point measures

$$\varphi = \sum a_x \delta_x.$$

We set

$$\|\varphi\| = \sum_{x \in \operatorname{supp} \varphi} |a_x|.$$

Definition (Banakh and Gabriyelyan)

A locally convex space *E* has the Josefson–Nissenzweig Property (JNP) if the identity map $(E', \sigma(E', E)) \rightarrow (E', \beta^*(E', E))$ on the topological dual *E'* of *E* is not sequentially continuous.

The topology $\beta^*(E', E)$ is the of uniform convergence on barrel-bounded subsets of E, i.e. on sets which are absorbed by all barrels. If E is barrelled we have $\beta^*(E', E) = \beta(E', E)$.

Proposition (Banakh and Gabriyelyan)

For every Tychonoff space X, the space $C_p(X)$ has the JNP if and only if there exists a sequence of functionals $(\varphi_n)_{n \in \omega}$ in the dual space $L_p(X)$ of $C_p(X)$ such that $\varphi_n(f) \to 0$ for every $f \in C(X)$ and $||\varphi_n|| = 1$ for every $n \in \omega$.

Definition (Banakh and Gabriyelyan)

A locally convex space *E* has the Josefson–Nissenzweig Property (JNP) if the identity map $(E', \sigma(E', E)) \rightarrow (E', \beta^*(E', E))$ on the topological dual *E'* of *E* is not sequentially continuous.

The topology $\beta^*(E', E)$ is the of uniform convergence on barrel-bounded subsets of E, i.e. on sets which are absorbed by all barrels. If E is barrelled we have $\beta^*(E', E) = \beta(E', E)$.

Proposition (Banakh and Gabriyelyan)

For every Tychonoff space X, the space $C_p(X)$ has the JNP if and only if there exists a sequence of functionals $(\varphi_n)_{n \in \omega}$ in the dual space $L_p(X)$ of $C_p(X)$ such that $\varphi_n(f) \to 0$ for every $f \in C(X)$ and $\|\varphi_n\| = 1$ for every $n \in \omega$.

Theorem (Banakh–Kąkol–Śliwa)

Let X be an infinite Tychonoff space. Then, the following conditions are equivalent:

- 1 $C_p(X)$ has the JNP;
- **2** $C_p(X)$ contains a complemented copy of $(c_0)_p$;
- **3** $C_p(X)$ admits a continuous linear surjection onto $(c_0)_p$.
- C_p(βN) where βN is the Stone-Čech compactification of N does not have the Josefson-Nissenzweig property.
- If X contains a nontrivial convergent sequence $x_n \to x$ the space $C_p(X)$ has the Josefson-Nissenzweig property: take $\varphi_n = \frac{1}{2}(\delta_{x_n} \delta_x).$

Theorem (Banakh–Kąkol–Śliwa)

Let X be an infinite Tychonoff space. Then, the following conditions are equivalent:

- 1 $C_p(X)$ has the JNP;
- **2** $C_p(X)$ contains a complemented copy of $(c_0)_p$;
- **3** $C_p(X)$ admits a continuous linear surjection onto $(c_0)_p$.
- C_p(βℕ) where βℕ is the Stone-Čech compactification of ℕ does not have the Josefson-Nissenzweig property.
- If X contains a nontrivial convergent sequence $x_n \to x$ the space $C_p(X)$ has the Josefson-Nissenzweig property: take $\varphi_n = \frac{1}{2}(\delta_{x_n} \delta_x)$.

Theorem (Banakh-Kąkol-Śliwa)

Let X be an infinite Tychonoff space. Then, the following conditions are equivalent:

- 1 $C_p(X)$ has the JNP;
- **2** $C_p(X)$ contains a complemented copy of $(c_0)_p$;
- **3** $C_p(X)$ admits a continuous linear surjection onto $(c_0)_p$.
- C_p(βℕ) where βℕ is the Stone-Čech compactification of ℕ does not have the Josefson-Nissenzweig property.
- If X contains a nontrivial convergent sequence $x_n \to x$ the space $C_p(X)$ has the Josefson-Nissenzweig property: take $\varphi_n = \frac{1}{2}(\delta_{x_n} \delta_x)$.

Theorem

Let E be a barrelled locally convex space with the Josefson–Nissenzweig property and let X be a Tychonoff space containing an infinite compact set. Then $C_p(X, E)$ contains a complemented copy of $(c_0)_p$.

Proof sketch

Since *E* is barrelled and has the JNP, there is a weak* null sequence $(x_n^*)_{n\in\omega}$ in *E'* which is not convergent for the $\beta(E', E)$ -topology. Hence we may choose a bounded sequence $(x_n)_{n\in\omega}$ in *E* with

 $\langle x_n^*, x_n \rangle = 1.$

Theorem

Let E be a barrelled locally convex space with the Josefson–Nissenzweig property and let X be a Tychonoff space containing an infinite compact set. Then $C_p(X, E)$ contains a complemented copy of $(c_0)_p$.

Proof sketch I

Since *E* is barrelled and has the JNP, there is a weak* null sequence $(x_n^*)_{n \in \omega}$ in *E'* which is not convergent for the $\beta(E', E)$ -topology. Hence we may choose a bounded sequence $(x_n)_{n \in \omega}$ in *E* with

$$\langle x_n^*, x_n \rangle = 1.$$

Complemented copies of $(c_0)_p$ in $C_p(X, E)$, II

$(x_n^*)_{n\in\omega}$ weak*-null sequence in E', $(x_n)_{n\in\omega}$ in E with $\langle x_n^*, x_n \rangle = 1$.

Sketch of proof II.

Let $K \subset X$ be an infinite compact set. Since X is Tychonoff, we may choose a sequence of continuous functions $\varphi_n \colon X \to [0, 1]$ with disjoint support and $\varphi_n(t_n) = 1$ for some $t_n \in K$. We set

 $J: (c_0)_p \to C_p(X, E), \qquad (a_n)_{n \in \omega} \stackrel{J}{\mapsto} \sum_{n \in \omega} a_n \varphi_n(t) x_n$

and

 $P\colon C_p(X,E)\to (c_0)_p, \qquad f\mapsto \left(\langle x_n^*,f(t_n)\rangle\right)_{n\in\omega}$

Finally we show that J and P are continuous, J isomorphic embedding, P surjective and JPJP = JP.

Complemented copies of $(c_0)_p$ in $C_p(X, E)$, II

 $(x_n^*)_{n\in\omega}$ weak*-null sequence in E', $(x_n)_{n\in\omega}$ in E with $\langle x_n^*, x_n \rangle = 1$.

Sketch of proof II.

Let $K \subset X$ be an infinite compact set. Since X is Tychonoff, we may choose a sequence of continuous functions $\varphi_n \colon X \to [0, 1]$ with disjoint support and $\varphi_n(t_n) = 1$ for some $t_n \in K$. We set

$$J\colon (c_0)_p\to C_p(X,E), \qquad (a_n)_{n\in\omega}\stackrel{J}{\longmapsto}\sum_{n\in\omega}a_n\varphi_n(t)x_n$$

and

$$P\colon C_p(X,E)\to (c_0)_p, \qquad f\overset{P}\longmapsto \bigl(\langle x_n^*,f(t_n)\rangle\bigr)_{n\in\omega}.$$

Finally we show that *J* and *P* are continuous, *J* isomorphic embedding, *P* surjective and *JPJP* = *JP*.

Complemented copies of $(c_0)_p$ in $C_p(X, E)$, II

 $(x_n^*)_{n\in\omega}$ weak*-null sequence in E', $(x_n)_{n\in\omega}$ in E with $\langle x_n^*, x_n \rangle = 1$.

Sketch of proof II.

Let $K \subset X$ be an infinite compact set. Since X is Tychonoff, we may choose a sequence of continuous functions $\varphi_n \colon X \to [0, 1]$ with disjoint support and $\varphi_n(t_n) = 1$ for some $t_n \in K$. We set

$$J\colon (c_0)_p\to C_p(X,E), \qquad (a_n)_{n\in\omega}\stackrel{J}{\longmapsto}\sum_{n\in\omega}a_n\varphi_n(t)x_n$$

and

$$P\colon C_p(X,E)\to (c_0)_p, \qquad f\overset{P}{\longmapsto}\bigl(\langle x_n^*,f(t_n)\rangle\bigr)_{n\in\omega}.$$

Finally we show that J and P are continuous, J isomorphic embedding, P surjective and JPJP = JP.

Corollary

Let X be a Tychonoff space containing an infinite compact subspace and let E be a Fréchet space which is not Montel. If $C_k(X, E)$ is an infinite-dimensional Fréchet space, then $C_k(X, E)$ contains a complemented copy of the Banach space c_0 .

Proof.

Follows using the closed graph theory.

Question

Does the theorem say something for the particular case $E = C_p(Y)$?

No

Christian Bargetz (Universität Innsbruck)

Corollary

Let X be a Tychonoff space containing an infinite compact subspace and let E be a Fréchet space which is not Montel. If $C_k(X, E)$ is an infinite-dimensional Fréchet space, then $C_k(X, E)$ contains a complemented copy of the Banach space c_0 .

Proof.

Follows using the closed graph theory.

Question

Does the theorem say something for the particular case $E = C_p(Y)$?

No

Corollary

Let X be a Tychonoff space containing an infinite compact subspace and let E be a Fréchet space which is not Montel. If $C_k(X, E)$ is an infinite-dimensional Fréchet space, then $C_k(X, E)$ contains a complemented copy of the Banach space c_0 .

Proof.

Follows using the closed graph theory.

Question

Does the theorem say something for the particular case $E = C_p(Y)$?

No

Recall that $C_k(X, C_k(Y)) \approx C_k(X \times Y)$ if Y is locally compact. An isomorphism is given by the mapping

 $C_k(X, C_k(Y)) \to C_k(X \times Y), \qquad f \mapsto g$

where g(x, y) := f(x)(y).

Similarly, consider the case of $C_p(X, C_p(Y))$, i.e.

 $C_{\rho}(X, C_{\rho}(Y)) \rightarrow, \qquad f \mapsto g,$

where $SC(C \times Y)$ denotes the space of separately continuous functions on $\mathcal{K} \times Y$.

Theorem (Folklore)

Recall that $C_k(X, C_k(Y)) \approx C_k(X \times Y)$ if Y is locally compact. An isomorphism is given by the mapping

$$C_k(X, C_k(Y)) o C_k(X imes Y), \qquad f \mapsto g$$

where g(x, y) := f(x)(y). Similarly, consider the case of $C_p(X, C_p(Y))$, i.e.

$$C_{\rho}(X, C_{\rho}(Y)) \rightarrow ?, \qquad f \mapsto g,$$

where $SC(X \times Y)$ denotes the space of separately continuous functions on $X \times Y$.

Theorem (Folklore)

Recall that $C_k(X, C_k(Y)) \approx C_k(X \times Y)$ if Y is locally compact. An isomorphism is given by the mapping

$$C_k(X, C_k(Y)) o C_k(X imes Y), \qquad f \mapsto g$$

where g(x, y) := f(x)(y). Similarly, consider the case of $C_p(X, C_p(Y))$, i.e.

$$C_p(X, C_p(Y)) \to SC_p(X \times Y), \qquad f \mapsto g,$$

where $SC(X \times Y)$ denotes the space of separately continuous functions on $X \times Y$.

Theorem (Folklore)

Recall that $C_k(X, C_k(Y)) \approx C_k(X \times Y)$ if Y is locally compact. An isomorphism is given by the mapping

$$C_k(X, C_k(Y)) o C_k(X imes Y), \qquad f \mapsto g$$

where g(x, y) := f(x)(y). Similarly, consider the case of $C_p(X, C_p(Y))$, i.e.

$$C_{\rho}(X, C_{\rho}(Y)) \rightarrow SC_{\rho}(X \times Y), \qquad f \mapsto g,$$

where $SC(X \times Y)$ denotes the space of separately continuous functions on $X \times Y$.

Theorem (Folklore)

Let X and Y be Tychonoff spaces. By σ let us denote the weak topology on $X \times Y$ generated by the family of all separately continuous functions.

Proposition (Henriksen–Woods)

(X × Y, σ) is a Tychonoff space
 C(X × Y, σ) = SC(X × Y), i.e. every continuous function on (X × Y, σ) is separately continuous on X × Y and vice versa

Let X and Y be Tychonoff spaces. By σ let us denote the weak topology on $X \times Y$ generated by the family of all separately continuous functions.

Proposition (Henriksen–Woods)

•
$$(X \times Y, \sigma)$$
 is a Tychonoff space

• $C(X \times Y, \sigma) = SC(X \times Y)$, i.e. every continuous function on $(X \times Y, \sigma)$ is separately continuous on $X \times Y$ and vice versa

The JNP for spaces of the form $C_p(X, C_p(Y))$

Let X and Y be infinite Tychonoff spaces.

Theorem

 $C_p(X \times Y, \sigma)$ has the JNP \Leftrightarrow either $C_p(X)$ or $C_p(Y)$ has the JNP.

Proof sketch

⇐: assume w.l.o.g. $C_{\rho}(X)$ has the JNP, i.e. there is a JN-sequence (φ_n) on X with $\varphi_n = \sum_{i=1}^{k_n} \alpha_i^n \delta_{x_i^n}$. Fix $y \in Y$ and define the functional ψ_n on $C_{\rho}(X \times Y, \sigma)$ by

$$\psi_n = \sum_{i=1}^{k_n} \alpha_i^n \delta_{(x_i^n, y)}.$$

Then $(\psi_n)_{n\in\omega}$ is a JN-sequence on $(X \times Y, \sigma)$. \Rightarrow is more involved

Christian Bargetz (Universität Innsbruck)

 $C_p(X, E)$ -spaces 14 / 21

The JNP for spaces of the form $C_p(X, C_p(Y))$

Let X and Y be infinite Tychonoff spaces.

Theorem

 $C_p(X \times Y, \sigma)$ has the JNP \Leftrightarrow either $C_p(X)$ or $C_p(Y)$ has the JNP.

Proof sketch.

 \Leftarrow : assume w.l.o.g. $C_p(X)$ has the JNP, i.e. there is a JN-sequence (φ_n) on X with $\varphi_n = \sum_{i=1}^{k_n} \alpha_i^n \delta_{x_i^n}$. Fix $y \in Y$ and define the functional ψ_n on $C_p(X \times Y, \sigma)$ by

$$\psi_n = \sum_{i=1}^{k_n} \alpha_i^n \delta_{(x_i^n, y)}.$$

Then $(\psi_n)_{n \in \omega}$ is a JN-sequence on $(X \times Y, \sigma)$. \Rightarrow is more involved

The JNP for spaces of the form $C_p(X, C_p(Y))$

Let X and Y be infinite Tychonoff spaces.

Theorem

 $C_p(X \times Y, \sigma)$ has the JNP \Leftrightarrow either $C_p(X)$ or $C_p(Y)$ has the JNP.

Proof sketch.

 \Leftarrow : assume w.l.o.g. $C_p(X)$ has the JNP, i.e. there is a JN-sequence (φ_n) on X with $\varphi_n = \sum_{i=1}^{k_n} \alpha_i^n \delta_{x_i^n}$. Fix $y \in Y$ and define the functional ψ_n on $C_p(X \times Y, \sigma)$ by

$$\psi_n = \sum_{i=1}^{k_n} \alpha_i^n \delta_{(x_i^n, y)}.$$

Then $(\psi_n)_{n \in \omega}$ is a JN-sequence on $(X \times Y, \sigma)$. \Rightarrow is more involved

The dual of $C_p(X, E)$

Let X be a Tychonoff space and let E be a locally convex space. The topological dual space of $C_p(X, E)$ is algebraically isomorphic to the space $L_p(X) \otimes E'$ [Ferrando–Kąkol]

Each functional $\varphi \in C_p(X, E)'$ may be represented as

where $x_i \in X$ and $e'_j \in E'$. Hence, if $E = C_p(Y)$ for some Tychonoff space Y, then each $\varphi \in C_p(X, E)'$ may be written as a finite sum

$$\sum_{i,j} \alpha_{i,j} (\delta_{x_i} \otimes \delta_{y_j}).$$

$$\|\varphi\| = \sum_{i,j} |\alpha_{i,j}|.$$

 \mathbf{X}

The dual of $C_p(X, E)$

Let X be a Tychonoff space and let E be a locally convex space. The topological dual space of $C_p(X, E)$ is algebraically isomorphic to the space $L_p(X) \otimes E'$ [Ferrando–Kąkol] Each functional $\varphi \in C_p(X, E)'$ may be represented as

$$\sum_{i,j} \alpha_{i,j} (\delta_{\mathbf{x}_i} \otimes \mathbf{e}'_j),$$

where $x_i \in X$ and $e'_j \in E'$. Hence, if $E = C_p(Y)$ for some Tychonoff space Y, then each $\varphi \in C_p(X, E)'$ may be written as a finite sum

$$\sum_{i,j} \alpha_{i,j} (\delta_{x_i} \otimes \delta_{y_j}).$$

$$\|\varphi\| = \sum_{i,j} |\alpha_{i,j}|.$$

The dual of $C_p(X, E)$

Let X be a Tychonoff space and let E be a locally convex space. The topological dual space of $C_p(X, E)$ is algebraically isomorphic to the space $L_p(X) \otimes E'$ [Ferrando–Kąkol] Each functional $\varphi \in C_p(X, E)'$ may be represented as

$$\sum_{i,j} \alpha_{i,j} (\delta_{\mathbf{x}_i} \otimes \mathbf{e}'_j),$$

where $x_i \in X$ and $e'_j \in E'$. Hence, if $E = C_p(Y)$ for some Tychonoff space Y, then each $\varphi \in C_p(X, E)'$ may be written as a finite sum

$$\sum_{i,j} \alpha_{i,j} (\delta_{\mathsf{x}_i} \otimes \delta_{\mathsf{y}_j}).$$

$$\|\varphi\| = \sum_{i,j} |\alpha_{i,j}|.$$

The dual of $C_p(X, E)$

Let X be a Tychonoff space and let E be a locally convex space. The topological dual space of $C_p(X, E)$ is algebraically isomorphic to the space $L_p(X) \otimes E'$ [Ferrando–Kąkol] Each functional $\varphi \in C_p(X, E)'$ may be represented as

$$\sum_{i,j} \alpha_{i,j} (\delta_{\mathsf{x}_i} \otimes \mathbf{e}'_j),$$

where $x_i \in X$ and $e'_j \in E'$. Hence, if $E = C_p(Y)$ for some Tychonoff space Y, then each $\varphi \in C_p(X, E)'$ may be written as a finite sum

$$\sum_{i,j} \alpha_{i,j} (\delta_{\mathsf{x}_i} \otimes \delta_{\mathsf{y}_j}).$$

$$\|\varphi\| = \sum_{i,j} |\alpha_{i,j}|.$$

For every Tychonoff spaces X and Y the space $C_p(X \times Y, \sigma)$ has the JNP if and only if there exists a sequence $(\psi_n)_{n \in \omega}$ in the dual $L_p(X) \otimes L_p(Y)$ which is weakly^{*} convergent to 0 and such that $\|\psi_n\| = 1$ for every $n \in \omega$.

Proposition

For every Tychonoff space X and Y the space $C_p(X, C_p(Y))$ has the JNP if and only if there exists a sequence $(\psi_n)_{n \in \omega}$ in $L_p(X) \otimes L_p(Y)$ such that $||\psi_n|| = 1$ for every $n \in \omega$ and $\psi_n(f) \to 0$ for every $f \in C_p(X, C_p(Y))$.

For every Tychonoff spaces X and Y the space $C_p(X \times Y, \sigma)$ has the JNP if and only if there exists a sequence $(\psi_n)_{n \in \omega}$ in the dual $L_p(X) \otimes L_p(Y)$ which is weakly^{*} convergent to 0 and such that $\|\psi_n\| = 1$ for every $n \in \omega$.

Proposition

For every Tychonoff space X and Y the space $C_p(X, C_p(Y))$ has the JNP if and only if there exists a sequence $(\psi_n)_{n \in \omega}$ in $L_p(X) \otimes L_p(Y)$ such that $\|\psi_n\| = 1$ for every $n \in \omega$ and $\psi_n(f) \to 0$ for every $f \in C_p(X, C_p(Y))$.

Let X be a Tychonoff space and let E be a locally convex space. If $C_p(X)$ has the JNP or E has the JNP, then the same is true for the space $C_p(X, E)$.

Proof Sketch

Assume that *E* has the Josefson–Nissenzweig property. Pick a weak* null sequence $(\varphi_n)_{n \in \omega}$ in *E'* and a barrel-bounded set $B \subset E$ on which it does not converge to zero uniformly. Let $f \in C_p(X)$ and $x \in X$ be such that f(x) = 1. For each $n \in \omega$ set $\psi_n = \delta_x \otimes \varphi_n$; of course, $\psi_n \in L_p(X) \otimes E'$. Note that for every $g \in C_p(X, E)$ we have $\langle \psi_n, g \rangle = \langle \varphi_n, g(x) \rangle \to 0$ as $n \to \infty$, so $(\psi_n)_{n \in \omega}$ is a weak* null sequence in $(C_p(X, E))'$.

Let X be a Tychonoff space and let E be a locally convex space. If $C_p(X)$ has the JNP or E has the JNP, then the same is true for the space $C_p(X, E)$.

Proof Sketch I

Assume that *E* has the Josefson-Nissenzweig property. Pick a weak* null sequence $(\varphi_n)_{n\in\omega}$ in *E'* and a barrel-bounded set $B \subset E$ on which it does not converge to zero uniformly. Let $f \in C_p(X)$ and $x \in X$ be such that f(x) = 1. For each $n \in \omega$ set $\psi_n = \delta_x \otimes \varphi_n$; of course, $\psi_n \in L_p(X) \otimes E'$. Note that for every $g \in C_p(X, E)$ we have $\langle \psi_n, g \rangle = \langle \varphi_n, g(x) \rangle \to 0$ as $n \to \infty$, so $(\psi_n)_{n\in\omega}$ is a weak* null sequence in $(C_p(X, E))'$.

The Josefson-Nissenzweig property of $C_{\rho}(X, E)$

- $\psi_n = \delta_x \otimes \varphi_n$ which is a weak* null sequence in $(C_p(X, E))'$.
- $f \in C_{\rho}(X)$ and $x \in X$ be such that f(x) = 1
- $B \subset E$ barrel-bounded, $\varphi_n \not\rightarrow 0$ on B

Proof.

Proof Sketch II

$$C_{\rho}(X)\otimes E \ni \sum_{i}f_{i}\otimes e_{i}\longmapsto [x\mapsto \sum_{i}f_{i}(x)e_{i}]\in C_{\rho}(X,E).$$

Check that $f \otimes B$ is barrel-bounded in $C_p(X, E)$ and

$$\sup_{g \in f \otimes B} |\langle \psi_n, g \rangle| = \sup_{e \in B} |\langle \delta_x \otimes \varphi_n, f \otimes e \rangle| = \sup_{e \in B} |\langle \varphi_n, f(x)e \rangle|$$
$$= \sup_{e \in B} |\langle \varphi_n, e \rangle| \not\to 0$$

Theorem

Let X and Y be infinite Tychonoff spaces. Then, the following conditions are equivalent:

- 1 $C_p(X, C_p(Y))$ has the JNP;
- **2** $C_p(X, C_p(Y))$ contains a complemented copy of $(c_0)_p$;
- **3** $C_p(X, C_p(Y))$ admits a continuous linear surjection onto $(c_0)_p$;
- C_p(X) contains a complemented copy of (c₀)_p or C_p(Y) contains a complemented copy of (c₀)_p;
- C_p(X) admits a continuous linear surjection onto (c₀)_p or C_p(Y) admits a continuous linear surjection onto (c₀)_p;
- **6** $C_p(X)$ has the JNP or $C_p(Y)$ has the JNP.

- Let X be a Tychonoff space (containing an infinite compact subspace) and E a locally convex space. Assume that $C_p(X, E)$ has the JNP. Does it follow that $C_p(X, E)$ contains a complemented copy of $(c_0)_p$?
- Let X be a Tychonoff space and E a locally convex space. Assume that the space $C_p(X, E)$ has the JNP. Does it follow that $C_p(X)$ has the JNP or E has the JNP?
- Can the Josefson–Nissenzweig property of the spaces $C_p(X, E)$ for X Tychonoff and E an arbitrary locally convex space be characterised in terms of some special "JN-sequences" in $L_p(X) \otimes E'$, like it is done in the case of $E = C_p(Y)$ for Y Tychonoff?

- Let X be a Tychonoff space (containing an infinite compact subspace) and E a locally convex space. Assume that $C_p(X, E)$ has the JNP. Does it follow that $C_p(X, E)$ contains a complemented copy of $(c_0)_p$?
- Let X be a Tychonoff space and E a locally convex space. Assume that the space $C_p(X, E)$ has the JNP. Does it follow that $C_p(X)$ has the JNP or E has the JNP?
- Can the Josefson–Nissenzweig property of the spaces $C_p(X, E)$ for X Tychonoff and E an arbitrary locally convex space be characterised in terms of some special "JN-sequences" in $L_p(X) \otimes E'$, like it is done in the case of $E = C_p(Y)$ for Y Tychonoff?

- Let X be a Tychonoff space (containing an infinite compact subspace) and E a locally convex space. Assume that $C_p(X, E)$ has the JNP. Does it follow that $C_p(X, E)$ contains a complemented copy of $(c_0)_p$?
- Let X be a Tychonoff space and E a locally convex space. Assume that the space $C_p(X, E)$ has the JNP. Does it follow that $C_p(X)$ has the JNP or E has the JNP?
- Can the Josefson–Nissenzweig property of the spaces $C_p(X, E)$ for X Tychonoff and E an arbitrary locally convex space be characterised in terms of some special "JN-sequences" in $L_p(X) \otimes E'$, like it is done in the case of $E = C_p(Y)$ for Y Tychonoff?

- C. Bargetz, J. Kąkol, D. Sobota: On complemented copies of the space c_0 in spaces $C_p(X, E)$. Preprint (arxiv:2107.03211)
- T. Banakh, S. Gabriyelyan, *The Josefson–Nissenzweig property* for locally convex spaces, preprint (arXiv:2003.06764), 2020.
- P. Cembranos, C(K, E) contains a complemented copy of c_0 , Proc. Amer. Math. Soc. **91** (1984), no. 4, 556–558.
- P. Domański, L. Drewnowski, Fréchet spaces of continuous vector-valued functions. Complementability in dual Fréchet spaces and injectivity, Studia Math. 102 (1992), 257–267.
- F.J. Freniche, *Barrelledness of the space of vector valued and simple functions*, Math. Ann. 267 (1984), 479–486.
- M. Henriksen, R.G. Woods, *Separate versus joint continuity: A tale of four topologies*, Topol. Appl. **97** (1999), 175–205.