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Setting the stage

Let X be a Tychonoff space and E be a locally convex space.

We consider the space C (X ,E ) of continuous functions f : X → E .

We equip it with the following topologies
Ck(X ,E ) . . . topology of uniform convergence on compact
subsets of X
Cp(X ,E ) . . . topology of pointwise convergence, i.e. the
subspace topology induced by EX .

If X is compact and E is a Banach space, Ck(X ,E ) is a Banach
space.
If X is hemicompact and locally compact and E is a Fréchet space,
Ck(X ,E ) is a Fréchet space.
In the case E = R, we simply write Ck(X ) = Ck(X ,R) and
Cp(X ) = Cp(X ,R).
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Motivation

Theorem (Cembranos, Freniche)

For an infinite compact space X and an infinite-dimensional Banach
space E , the Banach space C (X ,E ) contains a complemented copy
of the Banach space c0.

Theorem (Domański–Drewnowski)

Let X be a Tychonoff space which contains an infinite compact
subset and E a Fréchet space which is not Montel. Then the
Fréchet space Ck(X ,E ) contains a complemented copy of the
space c0.

Under suitable assumptions on X and Y we obtain that

Ck(X × Y ) ≈ Ck(X ,Ck(Y ))

contains a complemented copy of c0.
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Motivation: The Grothendieck property

A Banach space X has the Grothendieck property if every
weak∗-convergent sequence is weakly convergent.

Complemented subspaces of a Banach space with the
Grothendieck property have the Grothendieck property.
Separable Banach spaces have the Grothendieck property if
and only if they are reflexive.
c0 is separable and not reflexive.
A Banach space which contains c0 as a complemented
subspace does not have the Grothendieck property.
The Banach space C (K ), K compact, has the Grothendieck
property if and only if it does not contain a complemented
copy of c0.
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Goal: A corresponding result for Cp(X ,E )-spaces

Let (c0)p = {x ∈ Rω : x(n)→ 0} be endowed with the pointwise
topology inherited from Rω.

Question

When does a given space Cp(X ,E ) contain a complemented copy
of the space (c0)p?

The proofs for Ck(X ,E ) use a variant of the Josefson-Nissenzweig
theorem.

Theorem (Josefson-Nissenzweig)

Let X be an infinite dimensional Banach space. There is a
sequence (xn)n∈ω in X ∗ which is a weak∗-null sequence and
‖xn‖ = 1 for all n ∈ ω.
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The dual of Cp(X )

Let X be a Tychonoff space. Every element of the dual space
ϕ ∈ Lp(X ) = Cp(X )′ has a unique representation as a finite linear
combination of point measures

ϕ =
∑

axδx .

We set
‖ϕ‖ =

∑
x∈suppϕ

|ax |.
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The Josefson-Nissenzweig property

Definition (Banakh and Gabriyelyan)

A locally convex space E has the Josefson–Nissenzweig Property
(JNP) if the identity map (E ′, σ(E ′,E ))→ (E ′, β∗(E ′,E )) on the
topological dual E ′ of E is not sequentially continuous.

The topology β∗(E ′,E ) is the of uniform convergence on
barrel-bounded subsets of E , i.e. on sets which are absorbed by all
barrels. If E is barrelled we have β∗(E ′,E ) = β(E ′,E ).

Proposition (Banakh and Gabriyelyan)

For every Tychonoff space X , the space Cp(X ) has the JNP if and
only if there exists a sequence of functionals (ϕn)n∈ω in the dual
space Lp(X ) of Cp(X ) such that ϕn(f )→ 0 for every f ∈ C (X )
and ‖ϕn‖ = 1 for every n ∈ ω.
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JNP and complemented copies of (c0)p in Cp(X )

Theorem (Banakh–Kąkol–Śliwa)

Let X be an infinite Tychonoff space. Then, the following
conditions are equivalent:

1 Cp(X ) has the JNP;
2 Cp(X ) contains a complemented copy of (c0)p;
3 Cp(X ) admits a continuous linear surjection onto (c0)p.

Cp(βN) where βN is the Stone-Čech compactification of N
does not have the Josefson-Nissenzweig property.
If X contains a nontrivial convergent sequence xn → x the
space Cp(X ) has the Josefson-Nissenzweig property: take
ϕn = 1

2(δxn − δx).
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Complemented copies of (c0)p in Cp(X ,E )

Theorem
Let E be a barrelled locally convex space with the
Josefson–Nissenzweig property and let X be a Tychonoff space
containing an infinite compact set. Then Cp(X ,E ) contains a
complemented copy of (c0)p.

Proof sketch I
Since E is barrelled and has the JNP, there is a weak∗ null
sequence (x∗n )n∈ω in E ′ which is not convergent for the
β(E ′,E )-topology. Hence we may choose a bounded sequence
(xn)n∈ω in E with

〈x∗n , xn〉 = 1.
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Complemented copies of (c0)p in Cp(X ,E ), II

(x∗n )n∈ω weak∗-null sequence in E ′, (xn)n∈ω in E with 〈x∗n , xn〉 = 1.

Sketch of proof II.

Let K ⊂ X be an infinite compact set. Since X is Tychonoff, we
may choose a sequence of continuous functions ϕn : X → [0, 1]
with disjoint support and ϕn(tn) = 1 for some tn ∈ K .
We set

J : (c0)p → Cp(X ,E ), (an)n∈ω
J
7−→
∑
n∈ω

anϕn(t)xn

and
P : Cp(X ,E )→ (c0)p, f

P
7−→
(
〈x∗n , f (tn)〉

)
n∈ω.

Finally we show that J and P are continuous, J isomorphic
embedding, P surjective and JPJP = JP .
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Applications

Corollary

Let X be a Tychonoff space containing an infinite compact
subspace and let E be a Fréchet space which is not Montel. If
Ck(X ,E ) is an infinite-dimensional Fréchet space, then Ck(X ,E )
contains a complemented copy of the Banach space c0.

Proof.
Follows using the closed graph theory.

Question

Does the theorem say something for the particular case
E = Cp(Y )?

No
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Cp(X ,Cp(Y )) and Cp(X × Y )

Recall that Ck(X ,Ck(Y )) ≈ Ck(X × Y ) if Y is locally compact.
An isomorphism is given by the mapping

Ck(X ,Ck(Y ))→ Ck(X × Y ), f 7→ g

where g(x , y) := f (x)(y).
Similarly, consider the case of Cp(X ,Cp(Y )), i.e.

Cp(X ,Cp(Y ))→, f 7→ g ,

where SC (X × Y ) denotes the space of separately continuous
functions on X × Y .

Theorem (Folklore)

The above mapping defines an isomorphism between Cp(X ,Cp(Y ))
and SCp(X × Y ).
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Cp(X ,Cp(Y ))→ SCp(X × Y ), f 7→ g ,

where SC (X × Y ) denotes the space of separately continuous
functions on X × Y .

Theorem (Folklore)

The above mapping defines an isomorphism between Cp(X ,Cp(Y ))
and SCp(X × Y ).
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The topology σ on X × Y

Let X and Y be Tychonoff spaces. By σ let us denote the weak
topology on X × Y generated by the family of all separately
continuous functions.

Proposition (Henriksen–Woods)

(X × Y , σ) is a Tychonoff space
C (X × Y , σ) = SC (X × Y ), i.e. every continuous function on
(X × Y , σ) is separately continuous on X × Y and vice versa
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The JNP for spaces of the form Cp(X ,Cp(Y ))

Let X and Y be infinite Tychonoff spaces.

Theorem
Cp(X × Y , σ) has the JNP ⇔ either Cp(X ) or Cp(Y ) has the JNP.

Proof sketch.
⇐: assume w.l.o.g. Cp(X ) has the JNP, i.e. there is a JN-sequence
(ϕn) on X with ϕn =

∑kn
i=1 α

n
i δxni . Fix y ∈ Y and define the

functional ψn on Cp(X × Y , σ) by

ψn =
kn∑
i=1

αn
i δ(xni ,y).

Then (ψn)n∈ω is a JN-sequence on (X × Y , σ).
⇒ is more involved
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The dual of Cp(X ,E )

Let X be a Tychonoff space and let E be a locally convex space.
The topological dual space of Cp(X ,E ) is algebraically isomorphic
to the space Lp(X )⊗ E ′ [Ferrando–Kąkol]
Each functional ϕ ∈ Cp(X ,E )

′ may be represented as∑
i ,j

αi ,j(δxi ⊗ e ′j ),

where xi ∈ X and e ′j ∈ E ′. Hence, if E = Cp(Y ) for some
Tychonoff space Y , then each ϕ ∈ Cp(X ,E )

′ may be written as a
finite sum ∑

i ,j

αi ,j(δxi ⊗ δyj ).

Let us define the norm of ϕ (in Lp(X )⊗ Lp(Y )) in the following
natural way:

‖ϕ‖ =
∑
i ,j

|αi ,j |.
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The JNP for spaces Cp(X ,Cp(Y ))

Proposition

For every Tychonoff spaces X and Y the space Cp(X × Y , σ) has
the JNP if and only if there exists a sequence (ψn)n∈ω in the dual
Lp(X )⊗ Lp(Y ) which is weakly∗ convergent to 0 and such that
‖ψn‖ = 1 for every n ∈ ω.

Proposition

For every Tychonoff space X and Y the space Cp(X ,Cp(Y )) has
the JNP if and only if there exists a sequence (ψn)n∈ω in
Lp(X )⊗ Lp(Y ) such that ‖ψn‖ = 1 for every n ∈ ω and ψn(f )→ 0
for every f ∈ Cp(X ,Cp(Y )).
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The Josefson-Nissenzweig property of Cp(X ,E )

Proposition

Let X be a Tychonoff space and let E be a locally convex space. If
Cp(X ) has the JNP or E has the JNP, then the same is true for the
space Cp(X ,E ).

Proof Sketch I
Assume that E has the Josefson–Nissenzweig property. Pick a
weak∗ null sequence (ϕn)n∈ω in E ′ and a barrel-bounded set B ⊂ E
on which it does not converge to zero uniformly. Let f ∈ Cp(X )
and x ∈ X be such that f (x) = 1. For each n ∈ ω set
ψn = δx ⊗ ϕn; of course, ψn ∈ Lp(X )⊗ E ′. Note that for every
g ∈ Cp(X ,E ) we have 〈ψn, g〉 = 〈ϕn, g(x)〉 → 0 as n→∞, so
(ψn)n∈ω is a weak∗ null sequence in (Cp(X ,E ))

′.

Christian Bargetz (Universität Innsbruck) Cp(X , E)-spaces 17 / 21



The Josefson-Nissenzweig property of Cp(X ,E )

Proposition

Let X be a Tychonoff space and let E be a locally convex space. If
Cp(X ) has the JNP or E has the JNP, then the same is true for the
space Cp(X ,E ).

Proof Sketch I
Assume that E has the Josefson–Nissenzweig property. Pick a
weak∗ null sequence (ϕn)n∈ω in E ′ and a barrel-bounded set B ⊂ E
on which it does not converge to zero uniformly. Let f ∈ Cp(X )
and x ∈ X be such that f (x) = 1. For each n ∈ ω set
ψn = δx ⊗ ϕn; of course, ψn ∈ Lp(X )⊗ E ′. Note that for every
g ∈ Cp(X ,E ) we have 〈ψn, g〉 = 〈ϕn, g(x)〉 → 0 as n→∞, so
(ψn)n∈ω is a weak∗ null sequence in (Cp(X ,E ))

′.

Christian Bargetz (Universität Innsbruck) Cp(X , E)-spaces 17 / 21



The Josefson-Nissenzweig property of Cp(X ,E )

ψn = δx ⊗ ϕn which is a weak∗ null sequence in (Cp(X ,E ))
′.

f ∈ Cp(X ) and x ∈ X be such that f (x) = 1
B ⊂ E barrel-bounded, ϕn 6→ 0 on B

Proof.
Proof Sketch II

Cp(X )⊗ E 3
∑
i

fi ⊗ ei 7−→
[
x 7→

∑
i

fi (x)ei
]
∈ Cp(X ,E ).

Check that f ⊗ B is barrel-bounded in Cp(X ,E ) and

sup
g∈f⊗B

|〈ψn, g〉| = sup
e∈B
|〈δx ⊗ ϕn, f ⊗ e〉| = sup

e∈B
|〈ϕn, f (x)e〉|

= sup
e∈B
|〈ϕn, e〉| 6→ 0
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Summary of the case of E = Cp(Y )

Theorem
Let X and Y be infinite Tychonoff spaces. Then, the following
conditions are equivalent:

1 Cp(X ,Cp(Y )) has the JNP;
2 Cp(X ,Cp(Y )) contains a complemented copy of (c0)p;
3 Cp(X ,Cp(Y )) admits a continuous linear surjection onto (c0)p;
4 Cp(X ) contains a complemented copy of (c0)p or Cp(Y )

contains a complemented copy of (c0)p;
5 Cp(X ) admits a continuous linear surjection onto (c0)p or

Cp(Y ) admits a continuous linear surjection onto (c0)p;
6 Cp(X ) has the JNP or Cp(Y ) has the JNP.
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Open Problems

Let X be a Tychonoff space (containing an infinite compact
subspace) and E a locally convex space. Assume that
Cp(X ,E ) has the JNP. Does it follow that Cp(X ,E ) contains
a complemented copy of (c0)p?
Let X be a Tychonoff space and E a locally convex space.
Assume that the space Cp(X ,E ) has the JNP. Does it follow
that Cp(X ) has the JNP or E has the JNP?
Can the Josefson–Nissenzweig property of the spaces Cp(X ,E )
for X Tychonoff and E an arbitrary locally convex space be
characterised in terms of some special “JN-sequences” in
Lp(X )⊗ E ′, like it is done in the case of E = Cp(Y ) for Y
Tychonoff?
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