Chaotic dynamics in foliated spaces

R. Barral Lijó¹

¹Ritsumeikan University, Japan

18 July 2022

Outline

Preliminaries on chaos

Preliminaries on foliated spaces

Results

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

(X, d): metric space, $f : X \to X$ is sensitive to initial conditions (SIC) if there is c > 0 so that, for every $x \in X$, r > 0, there are $y \in X$ and $n \in \mathbb{N}$ s.t.

d(x,y) < r and $d(f^n(x), f^n(y)) \ge c$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(X, d): metric space, $f : X \to X$ is sensitive to initial conditions (SIC) if there is c > 0 so that, for every $x \in X$, r > 0, there are $y \in X$ and $n \in \mathbb{N}$ s.t.

$$d(x,y) < r$$
 and $d(f^n(x), f^n(y)) \ge c$.

We can easily adapt this definition to group actions.

(X, d): metric space, $f : X \to X$ is sensitive to initial conditions *(SIC)* if there is c > 0 so that, for every $x \in X$, r > 0, there are $y \in X$ and $n \in \mathbb{N}$ s.t.

$$d(x,y) < r$$
 and $d(f^n(x), f^n(y)) \ge c$.

► We can easily adapt this definition to group actions.

Sensitivity is usually essential in defining chaos.

(X, d): metric space, $f : X \to X$ is sensitive to initial conditions (SIC) if there is c > 0 so that, for every $x \in X$, r > 0, there are $y \in X$ and $n \in \mathbb{N}$ s.t.

$$d(x,y) < r$$
 and $d(f^n(x), f^n(y)) \ge c$.

- We can easily adapt this definition to group actions.
- Sensitivity is usually essential in defining chaos.

'Chaos: When the present determines the future, but the approximate present does not approximately determine the future.' E. Lorenz

Definition (Devaney Chaos [4])

(X, d): metric space, $f: X \to X$ is *chaotic* if

Definition (Devaney Chaos [4])

(X, d): metric space, $f: X \to X$ is *chaotic* if

1. for non-empty open U, V, there is $n \ge 0$ with

 $f^n(U) \cap V \neq \emptyset$

(f is topologically transitive (TT)),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Devaney Chaos [4])

(X, d): metric space, $f: X \to X$ is *chaotic* if

1. for non-empty open U, V, there is $n \ge 0$ with

 $f^n(U) \cap V \neq \emptyset$

(f is topologically transitive (TT)),

2. there is a dense subset of periodic points (*f* has *density of periodic orbits* (DPO)), and

Definition (Devaney Chaos [4])

(X, d): metric space, $f: X \to X$ is *chaotic* if

1. for non-empty open U, V, there is $n \ge 0$ with

 $f^n(U) \cap V \neq \emptyset$

(f is topologically transitive (TT)),

- there is a dense subset of periodic points (*f* has *density of periodic orbits* (DPO)), and
- 3. *f* is sensitive to initial conditions.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Theorem (J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey [1])

Conditions (TT) and (DPO) imply (SIC). In other words, (SIC) is redundant in Devaney's definition of chaos.

Theorem (J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey [1])

Conditions (TT) and (DPO) imply (SIC). In other words, (SIC) is redundant in Devaney's definition of chaos.

 This result was later generalized to group and semigroup actions.

Theorem (J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey [1])

Conditions (TT) and (DPO) imply (SIC). In other words, (SIC) is redundant in Devaney's definition of chaos.

- This result was later generalized to group and semigroup actions.
- ▶ Note that this holds even when *X* is NOT compact.

• $f: (X, d) \rightarrow (X, d)$: a discrete dynamical system.

- $f: (X, d) \rightarrow (X, d)$: a discrete dynamical system.
- $x \in X$ is a point of equicontinuity if there is $\epsilon \mapsto \delta(\epsilon)$ s.t.

 $f^n(B(x,\delta(\epsilon))) \subset B(f(x),\epsilon) \quad \forall n \in \mathbb{N}, \ \epsilon > 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $f: (X, d) \rightarrow (X, d)$: a discrete dynamical system.
- $x \in X$ is a point of equicontinuity if there is $\epsilon \mapsto \delta(\epsilon)$ s.t.

 $f^n(B(x,\delta(\epsilon))) \subset B(f(x),\epsilon) \quad \forall n \in \mathbb{N}, \ \epsilon > 0.$

► the system is *equicontinuous* if every point is a point of equicontinuity (if X is compact, then ε → δ(ε) is uniform and this does not depend on the metric).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $f: (X, d) \rightarrow (X, d)$: a discrete dynamical system.
- $x \in X$ is a point of equicontinuity if there is $\epsilon \mapsto \delta(\epsilon)$ s.t.

 $f^n(B(x,\delta(\epsilon))) \subset B(f(x),\epsilon) \quad \forall n \in \mathbb{N}, \ \epsilon > 0.$

- ► the system is *equicontinuous* if every point is a point of equicontinuity (if X is compact, then ε → δ(ε) is uniform and this does not depend on the metric).
- the system is almost equicontinuous if the points of equicontinuity are dense.

Classical result:

Theorem (Auslander-Yorke dichotomy)

Let (X, d) be a compact metric space, and let $f: X \to X$ be topologically transitive. Then, either f is sensitive to initial conditions, or it is almost equicontinuous. If f is minimal, then it is either SIC or equicontinuous.

These are the four key points we have introduced

These are the four key points we have introduced

Definition of sensitivity

These are the four key points we have introduced

- Definition of sensitivity
- Definition of chaos

These are the four key points we have introduced

- Definition of sensitivity
- Definition of chaos
- ► (TT) + (DPO) imply (SIC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

These are the four key points we have introduced

- Definition of sensitivity
- Definition of chaos
- ► (TT) + (DPO) imply (SIC)
- Auslander-Yorke dichotomy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let's review previous definitions of chaos for foliations:

Let's review previous definitions of chaos for foliations:

Definition (Churchill [3])

A foliation is chaotic if

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let's review previous definitions of chaos for foliations:

Definition (Churchill [3])

A foliation is chaotic if

1. it has a dense leaf and

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let's review previous definitions of chaos for foliations:

Definition (Churchill [3])

- A foliation is chaotic if
 - 1. it has a dense leaf and
 - 2. the set of compact leaves is dense.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let's review previous definitions of chaos for foliations:

Definition (Churchill [3])

A foliation is chaotic if

- $1. \,$ it has a dense leaf and
- 2. the set of compact leaves is dense.

Definition (Bazaikin, Galaev & Zhukova [2])

A foliation is chaotic if

Let's review previous definitions of chaos for foliations:

Definition (Churchill [3])

A foliation is chaotic if

- $1. \,$ it has a dense leaf and
- 2. the set of compact leaves is dense.

Definition (Bazaikin, Galaev & Zhukova [2])

A foliation is chaotic if

1. it has a dense leaf and

Let's review previous definitions of chaos for foliations:

Definition (Churchill [3])

A foliation is chaotic if

- $1. \,$ it has a dense leaf and
- 2. the set of compact leaves is dense.

Definition (Bazaikin, Galaev & Zhukova [2])

A foliation is chaotic if

- $1. \,$ it has a dense leaf and
- 2. the set of closed leaves is dense.

Let's review previous definitions of chaos for foliations:

Definition (Churchill [3])

A foliation is chaotic if

- $1. \,$ it has a dense leaf and
- 2. the set of compact leaves is dense.

Definition (Bazaikin, Galaev & Zhukova [2])

A foliation is chaotic if

- $1. \,$ it has a dense leaf and
- 2. the set of closed leaves is dense.

These definitions coincide for compact foliations.

Let's review previous definitions of chaos for foliations:

Definition (Churchill [3])

A foliation is chaotic if

- $1. \,$ it has a dense leaf and
- 2. the set of compact leaves is dense.

Definition (Bazaikin, Galaev & Zhukova [2])

A foliation is chaotic if

- $1. \,$ it has a dense leaf and
- 2. the set of closed leaves is dense.

These definitions coincide for compact foliations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Previous definitions of chaos II

- What about sensitivity?
- The omission is motivated because (TT) and (DPO) imply (SIC) for semigroup actions.

- What about sensitivity?
- The omission is motivated because (TT) and (DPO) imply (SIC) for semigroup actions.
- Main motivation: to learn whether and when this omission is warranted.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @
Preliminaries on chaos

Preliminaries on foliated spaces

Results

12 / 27

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Foliated spaces

Preliminaries on foliated spaces

Foliated spaces

- ► A foliated space (X, F) is a generalized foliation such that the local transversals do not have to be manifolds.
- Examples: foliations, attractors & solenoids

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Preliminaries on foliated spaces

Foliated spaces

- ► A foliated space (X, F) is a generalized foliation such that the local transversals do not have to be manifolds.
- Examples: foliations, attractors & solenoids
- Smale-Williams attractor:

- ► A foliated space (X, F) is a generalized foliation such that the local transversals do not have to be manifolds.
- Examples: foliations, attractors & solenoids
- Smale-Williams attractor:

(Image by Jim.belk)

- ► A foliated space (X, F) is a generalized foliation such that the local transversals do not have to be manifolds.
- Examples: foliations, attractors & solenoids
- Smale-Williams attractor:

(Image by Jim.belk)

- ► A foliated space (X, F) is a generalized foliation such that the local transversals do not have to be manifolds.
- Examples: foliations, attractors & solenoids
- Smale-Williams attractor:

(Image by Jim.belk)

- ► A foliated space (X, F) is a generalized foliation such that the local transversals do not have to be manifolds.
- Examples: foliations, attractors & solenoids
- Smale-Williams attractor:

(Image by Jim.belk)

- ► A foliated space (X, F) is a generalized foliation such that the local transversals do not have to be manifolds.
- Examples: foliations, attractors & solenoids
- Smale-Williams attractor:

(Image by Jim.belk)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ► A foliated space (X, F) is a generalized foliation such that the local transversals do not have to be manifolds.
- Examples: foliations, attractors & solenoids
- Smale-Williams attractor:

(Image by Jim.belk)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

If not familiar, just think of a foliation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- If not familiar, just think of a foliation.
- Guiding principle: foliated spaces are generalized dynamical systems.

- If not familiar, just think of a foliation.
- Guiding principle: foliated spaces are generalized dynamical systems.
- The leaves \approx the "orbits".

- If not familiar, just think of a foliation.
- Guiding principle: foliated spaces are generalized dynamical systems.
- The leaves \approx the "orbits".
- Using the words of Churchill, they are dynamical systems "in the absence of time."

To model foliated dynamics, we use pseudogroups:

Definition

A *Pseudogroup* G on X is a family of homeomorphisms between open subsets of X closed under composition, inversion, restriction to open subsets and combination.

Foliated spaces have holonomy pseudogroups.

To model foliated dynamics, we use pseudogroups:

Definition

A *Pseudogroup* G on X is a family of homeomorphisms between open subsets of X closed under composition, inversion, restriction to open subsets and combination.

- Foliated spaces have holonomy pseudogroups.
- It is unique up to etalé equivalence.

To model foliated dynamics, we use pseudogroups:

Definition

A *Pseudogroup* G on X is a family of homeomorphisms between open subsets of X closed under composition, inversion, restriction to open subsets and combination.

- Foliated spaces have holonomy pseudogroups.
- It is unique up to etalé equivalence.
- Definitions have to be invariant by etalé equivalences!

To model foliated dynamics, we use pseudogroups:

Definition

A *Pseudogroup* G on X is a family of homeomorphisms between open subsets of X closed under composition, inversion, restriction to open subsets and combination.

- Foliated spaces have holonomy pseudogroups.
- ▶ It is unique up to *etalé equivalence*.
- Definitions have to be invariant by etalé equivalences!
- There is a 1-to-1 correspondence between leaves of X and orbits in the holonomy pseudogroup.

Outline

Preliminaries on chaos

Preliminaries on foliated spaces

Results

15 / 27

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Our first contribution: a definition of (SIC). (1st key point)

- Our first contribution: a definition of (SIC). (1st key point)
- The main trouble comes from the combination axiom.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Our first contribution: a definition of (SIC). (1st key point)
- The main trouble comes from the combination axiom.
- We state it in term of generating pseudo*groups.

- Our first contribution: a definition of (SIC). (1st key point)
- The main trouble comes from the combination axiom.
- ▶ We state it in term of *generating pseudo***groups*.
- We are following known ideas by Hector and Hirsch, Matsumoto [5], Álvarez and Candel...

The following results validate our definition:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The following results validate our definition:

Theorem

Sensitivity is invariant by etalé equivalences.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The following results validate our definition:

Theorem

Sensitivity is invariant by etalé equivalences.

Theorem

If G is a f.g. group acting on a compact space X, then the action $G \curvearrowright X$ is sensitive if and only if the induced pseudogroup \mathcal{G} is.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Let G → X be an action where G is not f.g. or X is not compact.
- ▶ Let *G* be the pseudogroup generated by the action.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Let G ∩ X be an action where G is not f.g. or X is not compact.
- ▶ Let *G* be the pseudogroup generated by the action.
- In general, G being sensitive is a stronger condition than G being sensitive.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

18 / 27

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Results on SIC 2

- Let G ∩ X be an action where G is not f.g. or X is not compact.
- ▶ Let *G* be the pseudogroup generated by the action.
- In general, G being sensitive is a stronger condition than G being sensitive.
- We manage to produce an explicit example where the action is sensitive but the pseudogroup is not for
 - $F_2 \curvearrowright T^2 \times \mathbb{Z}$, and
 - a non f.g. group acting on T^2 .

Devaney chaos for foliated space

Definition

A foliated space X is (topologically) transitive if, for every non-empty open U, V, there is a leaf L with

 $L \cap U \neq \emptyset, \quad L \cap V \neq \emptyset.$

Devaney chaos for foliated space

Definition

A foliated space X is (topologically) transitive if, for every non-empty open U, V, there is a leaf L with

$$L \cap U \neq \emptyset, \quad L \cap V \neq \emptyset.$$

Definition

A foliated space X is *minimal* if every leaf is dense.

Devaney chaos for foliated space

Definition

A foliated space X is (topologically) transitive if, for every non-empty open U, V, there is a leaf L with

 $L \cap U \neq \emptyset, \quad L \cap V \neq \emptyset.$

Definition

A foliated space X is *minimal* if every leaf is dense.

Definition

A foliated space X is SIC, equicontinuous or almost equicontinuous if its holonomy pseudogroup is.

Theorem (Auslander-Yorke dichotomy, (4th key point))

A compact and transitive foliated space X is either SIC or almost equicontinuous. If X is minimal, then it is either SIC or equicontinuous.

- Examples: a Riemannian or Lie foliation is equicontinuous.
- The geodesic foliation on the unit tangent bundle of a compact hyperbolic surface is SIC.
- ▶ The Reeb foliation on the solid torus is almost equicontinuous.

With all these concepts, we can define Devaney chaos for fol spaces:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

With all these concepts, we can define Devaney chaos for fol spaces:

Definition (Devaney chaos (2nd key point))

- A foliated space X is *chaotic* if
 - 1. it is topologically transitive,
 - 2. the set of compact leaves is dense in X, and
 - 3. the holonomy pseudogroup is sensitive to initial conditions.
With all these concepts, we can define Devaney chaos for fol spaces:

Definition (Devaney chaos (2nd key point))

- A foliated space X is *chaotic* if
 - 1. it is topologically transitive,
 - 2. the set of compact leaves is dense in X, and
 - 3. the holonomy pseudogroup is sensitive to initial conditions.

Does (1) + (2) imply (3)? (3rd key point)

Results on SIC

Theorem

If X is a compact fol. space, then (TT) and (DPO) imply (SIC).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Results on SIC

Theorem

If X is a compact fol. space, then (TT) and (DPO) imply (SIC).

So the "compact" case works as for group actions.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Results on SIC

Theorem

If X is a compact fol. space, then (TT) and (DPO) imply (SIC).

So the "compact" case works as for group actions. What about non-compact foliations?

Theorem

There is an affine foliation by surfaces on a non-compact 4-manifold satisfying:

- it is topologically transitive (there is a dense leaf),
- the set of compact leaves is dense, but
- the foliation is not sensitive.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In less abstract terms: there is a foliation on a 4-mfd X with a dense leaf and a dense set of compact leaves,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- In less abstract terms: there is a foliation on a 4-mfd X with a dense leaf and a dense set of compact leaves,
- ▶ with a loc. fin. atlas (U_i, ϕ_i) , $\phi_i : U_i \to \mathbb{R}^2 \times \mathbb{R}^2$,

- In less abstract terms: there is a foliation on a 4-mfd X with a dense leaf and a dense set of compact leaves,
- ▶ with a loc. fin. atlas (U_i, ϕ_i) , $\phi_i : U_i \to \mathbb{R}^2 \times \mathbb{R}^2$,
- metrics d_i on the transversals $\cong \mathbb{R}^2$,

- In less abstract terms: there is a foliation on a 4-mfd X with a dense leaf and a dense set of compact leaves,
- ▶ with a loc. fin. atlas (U_i, ϕ_i) , $\phi_i : U_i \to \mathbb{R}^2 \times \mathbb{R}^2$,
- metrics d_i on the transversals $\cong \mathbb{R}^2$,
- and a closed non-compact leaf L such that

- In less abstract terms: there is a foliation on a 4-mfd X with a dense leaf and a dense set of compact leaves,
- with a loc. fin. atlas $(U_i, \phi_i), \phi_i \colon U_i \to \mathbb{R}^2 \times \mathbb{R}^2$,
- metrics d_i on the transversals $\cong \mathbb{R}^2$,
- and a closed non-compact leaf L such that
- every holonomy transformation defined on L is an isometry.

- In less abstract terms: there is a foliation on a 4-mfd X with a dense leaf and a dense set of compact leaves,
- with a loc. fin. atlas $(U_i, \phi_i), \phi_i \colon U_i \to \mathbb{R}^2 \times \mathbb{R}^2$,
- metrics d_i on the transversals $\cong \mathbb{R}^2$,
- and a closed non-compact leaf L such that
- every holonomy transformation defined on L is an isometry.
- So there is no "butterfly effect" around *L*.

-Results

Based on the contents of Chaos for foliated spaces and pseudogroups, ____ (2022), arXiv:2202.09983

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

References I

- G. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey. On Devaney's definition of chaos. *The American Mathematical Monthly*, 99(4):332–334, April 1992.
- Y. Bazaikin, A. Galaev, and N. Zhukova. Chaos in Cartan foliations. *Chaos*, 30(103116), 2020.

R. C. Churchill.

On defining chaos in the absence of time.

In D. Hobill, A. Burd, and A. Coley, editors, *Deterministic chaos in general relativity*, volume 332 of *NATO ASI Series (Series B: Physics)*, pages 107–112. Springer, Boston, MA, 1994.

References II

R. L. Devaney.

An Introduction to Chaotic Dynamical Systems. Addison-Wesley, 3rd edition, 1989.

S. Matsumoto.

The dichotomy of harmonic measures of compact hyperbolic laminations.

Tohoku Math. J. (2), 64(4):569–592, 2012.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @