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Preliminaries on chaos

Definition

(X , d): metric space, f : X → X is sensitive to initial conditions
(SIC) if there is c > 0 so that, for every x ∈ X , r > 0 , there are
y ∈ X and n ∈ N s.t.

d(x , y) < r and d(f n(x), f n(y)) ≥ c .

▶ We can easily adapt this definition to group actions.

▶ Sensitivity is usually essential in defining chaos.

‘Chaos: When the present determines the future, but the
approximate present does not approximately determine the
future.’ E. Lorenz
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Preliminaries on chaos

Definition (Devaney Chaos [4])

(X , d): metric space, f : X → X is chaotic if

1. for non-empty open U,V , there is n ≥ 0 with

f n(U) ∩ V ̸= ∅

(f is topologically transitive (TT)),

2. there is a dense subset of periodic points (f has density of
periodic orbits (DPO)), and

3. f is sensitive to initial conditions.
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Preliminaries on chaos

▶ Again, we can adapt for group actions.
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Preliminaries on chaos

Theorem (J. Banks, J. Brooks, G. Cairns, G. Davis, and
P. Stacey [1])

Conditions (TT) and (DPO) imply (SIC). In other words, (SIC) is
redundant in Devaney’s definition of chaos.

▶ This result was later generalized to group and semigroup
actions.

▶ Note that this holds even when X is NOT compact.
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Preliminaries on chaos

The conceptual opposite of sensitivity is equicontinuity

▶ f : (X , d) → (X , d): a discrete dynamical system.

▶ x ∈ X is a point of equicontinuity if there is ϵ 7→ δ(ϵ) s.t.

f n(B(x , δ(ϵ))) ⊂ B(f (x), ϵ) ∀n ∈ N, ϵ > 0.

▶ the system is equicontinuous if every point is a point of
equicontinuity (if X is compact, then ϵ 7→ δ(ϵ) is uniform and
this does not depend on the metric).

▶ the system is almost equicontinuous if the points of
equicontinuity are dense.
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Preliminaries on chaos

Classical result:

Theorem (Auslander-Yorke dichotomy)

Let (X , d) be a compact metric space, and let f : X → X be
topologically transitive. Then, either f is sensitive to initial
conditions, or it is almost equicontinuous. If f is minimal, then it is
either SIC or equicontinuous.
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Preliminaries on chaos

These are the four key points we have introduced

▶ Definition of sensitivity

▶ Definition of chaos

▶ (TT) + (DPO) imply (SIC)

▶ Auslander-Yorke dichotomy.
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Preliminaries on chaos

Previous definitions of chaos

Let’s review previous definitions of chaos for foliations:

Definition (Churchill [3])

A foliation is chaotic if

1. it has a dense leaf and

2. the set of compact leaves is dense.

Definition (Bazaikin, Galaev & Zhukova [2])

A foliation is chaotic if

1. it has a dense leaf and

2. the set of closed leaves is dense.

These definitions coincide for compact foliations.
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Preliminaries on chaos

Previous definitions of chaos II

▶ What about sensitivity?

▶ The omission is motivated because (TT) and (DPO) imply
(SIC) for semigroup actions.

▶ Main motivation: to learn whether and when this omission is
warranted.
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Preliminaries on foliated spaces

Foliated spaces

▶ A foliated space (X ,F) is a generalized foliation such that the
local transversals do not have to be manifolds.

▶ Examples: foliations, attractors & solenoids

▶ Smale-Williams attractor:
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Preliminaries on foliated spaces

Foliated spaces 3

▶ If not familiar, just think of a foliation.

▶ Guiding principle: foliated spaces are generalized dynamical
systems.

▶ The leaves ≈ the “orbits”.

▶ Using the words of Churchill, they are dynamical systems “in
the absence of time.”
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Preliminaries on foliated spaces

Holonomy pseudogroup

To model foliated dynamics, we use pseudogroups:

Definition

A Pseudogroup G on X is a family of homeomorphisms between
open subsets of X closed under composition, inversion, restriction
to open subsets and combination.

▶ Foliated spaces have holonomy pseudogroups.

▶ It is unique up to etalé equivalence.

▶ Definitions have to be invariant by etalé equivalences!

▶ There is a 1-to-1 correspondence between leaves of X and
orbits in the holonomy pseudogroup.
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Results

▶ Our first contribution: a definition of (SIC). (1st key point)

▶ The main trouble comes from the combination axiom.

▶ We state it in term of generating pseudo∗groups.
▶ We are following known ideas by Hector and Hirsch,

Matsumoto [5], Álvarez and Candel. . .
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Results

Results on SIC

The following results validate our definition:

Theorem

Sensitivity is invariant by etalé equivalences.

Theorem

If G is a f.g. group acting on a compact space X , then the action
G ↷ X is sensitive if and only if the induced pseudogroup G is.
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Results

Results on SIC 2

▶ Let G ↷ X be an action where G is not f.g. or X is not
compact.

▶ Let G be the pseudogroup generated by the action.

▶ In general, G being sensitive is a stronger condition than G
being sensitive.

▶ We manage to produce an explicit example where the action
is sensitive but the pseudogroup is not for
▶ F2 ↷ T 2 × Z, and
▶ a non f.g. group acting on T 2.
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Results

Devaney chaos for foliated space

Definition

A foliated space X is (topologically) transitive if, for every
non-empty open U,V , there is a leaf L with

L ∩ U ̸= ∅, L ∩ V ̸= ∅.

Definition

A foliated space X is minimal if every leaf is dense.

Definition

A foliated space X is SIC, equicontinuous or almost equicontinuous
if its holonomy pseudogroup is.
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Results

Theorem (Auslander-Yorke dichotomy, (4th key point))

A compact and transitive foliated space X is either SIC or almost
equicontinuous. If X is minimal, then it is either SIC or
equicontinuous.

▶ Examples: a Riemannian or Lie foliation is equicontinuous.

▶ The geodesic foliation on the unit tangent bundle of a
compact hyperbolic surface is SIC.

▶ The Reeb foliation on the solid torus is almost equicontinuous.
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With all these concepts, we can define Devaney chaos for fol
spaces:

Definition (Devaney chaos (2nd key point))

A foliated space X is chaotic if

1. it is topologically transitive,

2. the set of compact leaves is dense in X , and

3. the holonomy pseudogroup is sensitive to initial conditions.

Does (1) + (2) imply (3)? (3rd key point)
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Results on SIC

Theorem

If X is a compact fol. space, then (TT) and (DPO) imply (SIC).

So the “compact” case works as for group actions. What about
non-compact foliations?
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Counterexample

Theorem

There is an affine foliation by surfaces on a non-compact
4-manifold satisfying:

▶ it is topologically transitive (there is a dense leaf),

▶ the set of compact leaves is dense, but

▶ the foliation is not sensitive.
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Counterexample

▶ In less abstract terms: there is a foliation on a 4-mfd X with a
dense leaf and a dense set of compact leaves,

▶ with a loc. fin. atlas (Ui , ϕi ), ϕi : Ui → R2 × R2,

▶ metrics di on the transversals ∼= R2,

▶ and a closed non-compact leaf L such that

▶ every holonomy transformation defined on L is an isometry.

▶ So there is no “butterfly effect” around L.
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Based on the contents of
Chaos for foliated spaces and pseudogroups, (2022),
arXiv:2202.09983
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