Cohomology groups for N-fold tilings

N. Bédaride, Franz Gähler, Ana G. Lecuona

Université d'Aix Marseille (I2M)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let *E* be a 2-dimensional vectorial plane of \mathbb{R}^n and let $\gamma \in \mathbb{R}^n$, with $n \geq 3$.

Consider the two following orthogonal projections: one on E and one on $E^{\perp}.$ Denote them by π and $\pi'.$

The **window** W_{γ} is the projection of $\gamma + [0, 1]^n$ on E^{\perp} .

Tiling

The vertices of the tiling are the projections of certain points of \mathbb{Z}^n onto *E*. Specifically we will look at those *v* such that $\pi'(v)$ is inside the window W_{γ} :

$$\{\pi(v) \mid v \in \mathbb{Z}^n, \pi'(v) \in W_{\gamma}\}$$

The rhombuses are the images by π of the two-dimensional faces of \mathbb{Z}^n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

This is called a $n \rightarrow 2$ tiling by cut and projection (or model set).

We could also make a tiling if E is not of dimension two...

Some examples

2
ightarrow 1

 $4 \rightarrow 2$

7
ightarrow 2

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Example $2 \rightarrow 1$

Figure: The square $[0,1]^2 + \gamma$ and *E*.

Link with sturmian word.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example 4 \rightarrow 2

Example $7 \rightarrow 2$

Topology of tilings

Fix the set of proto tiles. Define a distance on the set of tilings of *E*:

Two tilings are **close** if they agree on a **big** ball centered at the origin, up to a **small** translation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Open sets

For this topology, the open sets are elements of the form: open set of \mathbb{R}^2 times a Cantor set.

Properties

- ▶ The space of tilings of *E* is connected,
- it is non path connected,
- The connected components are contractible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main object

Consider the tiling T of E obtained by cut and projection for a parameter γ .

Let us denote Ω_E^{γ} the closure of the orbit of the tiling T under the action of the group of translations of E.

We want to understand the topology of this space.

One way: Compute the cohomology groups of Ω_E^γ with integer coefficients.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark that simplicial and singular cohomologies are not usefull. We use Cech cohomology.

We need to find three groups since dimE = 2:

 $H^0(\Omega_E^{\gamma}), H^1(\Omega_E^{\gamma}), H^2(\Omega_E^{\gamma}).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

By definition $H^0(\Omega_E^{\gamma}) = \mathbb{Z}$.

In all the following *E* will denote a plane not containing a vector of \mathbb{Z}^n .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

We can think that $n = 4 \dots$

We fix an integer *n*. Then we are in \mathbb{R}^N (\mathbb{R}^n or $\mathbb{R}^{n/2}$ depending on the parity of *n*) and we consider the plane E_n spanned by the two following *N* dimensional vectors

$$(\cos \frac{2k\pi}{n})_{0 \le k \le N-1}$$
, and $(\sin \frac{2k\pi}{n})_{0 \le k \le N-1}$

If $\gamma = 0$, then we call the tilings *N*-fold tilings. If $\gamma \neq 0$ we call them *generalized n-fold tiling*.

Particular names

- > n = 8 Ammann-Beenker.
- n = 5 Penrose.
- n = 12 Socolar or hexagonal.

Cohomology groups for *N*-fold tilings $\Box_{Our \ planes}$

Theorem (Gahler-Hunton-Kellendonk-...2013) We have

	$H^0(\Omega_{E_n}^{\gamma})$	$H^1(\Omega_{E_n}^{\gamma})$	$H^2(\Omega_{E_n}^{\gamma})$
<i>n</i> = 8	\mathbb{Z}	\mathbb{Z}^5	\mathbb{Z}^9
$n = 5, \gamma \in \mathbb{Z}[\varphi]$	\mathbb{Z}	\mathbb{Z}^5	\mathbb{Z}^8
$n = 5, \gamma \notin \mathbb{Z}[\varphi]$	\mathbb{Z}	\mathbb{Z}^{10}	\mathbb{Z}^{34}
$n=12, \gamma=0$	\mathbb{Z}	\mathbb{Z}^7	\mathbb{Z}^{28}
$n = 7, \gamma = 0$	¥	¥	¥

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Remark

If $\gamma = 0$, there is in fact another method for the previous examples, since the tilings are substitutive. However the computations are not substantially easier.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If n = 7, then the groups are not finitely generated.

Cohomology groups for *N*-fold tilings \Box_{Results}

Our result

Complete description of the cohomology groups of the generalized 12-fold tilings.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

All values for H^1 .

All values up to 2 orbits by direction, for H^2 obtained by computer program.

For more orbits by direction, too hard

Conjecture on the maximal value for the two groups:

 $\mathbb{Z}^{25}, \mathbb{Z}^{564}.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Cohomology groups for N-fold tilings

Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

To be continued ?

Dynamical properties in $\Omega_{E_{12},\gamma}$. Window of a 2*n*-fold, with n > 6. Tiling of \mathbb{R}^3 . Method to obtain H^3 ? Information on the tilings ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cohomology groups for N-fold tilings \Box Technical tools

General result

Lemma (Julien 2010)

The cohomology groups of Ω_{E}^{γ} are finitely generated if and only if

$$\beta = 2 - 4 + rk\Gamma$$

In any case we have $\beta \geq 2 - 4 + rk\Gamma$.

Theorem (Gähler-Hunton-Kellendonk-2013)

The free abelian parts of the cohomology groups of $\Omega_{E}^{\gamma},$ if finitely generated, are given by

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$H^{0} = \mathbb{Z}$$

$$H^{1} = \mathbb{Z}^{4+L_{1}-R_{1}}$$

$$H^{2} = \mathbb{Z}^{3+L_{1}+e-R_{1}}$$
with $e = -L_{0} + \sum_{\alpha \in h} L_{0}^{\alpha}$.

Let us denote Γ the set $\pi'(\mathbb{Z}^n)$ in the space E^{\perp} .

$$\overline{\Gamma} \sim \mathbb{Z}^k \oplus \mathbb{R}^{\prime}$$

We denote Δ the discrete part of $\overline{\Gamma}$ and $F = vect(\Delta)$.

$$E^{\perp} = F \oplus F^{\perp}$$

Let P be the collection of spaces parallel to F^{\perp} defined as

$$P = \bigcup_{\delta \in \Delta} (F^{\perp} + \delta).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cohomology groups for *N*-fold tilings

Our case

$$\mathbb{R}^6 = E \oplus E' \oplus F.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The window W_{γ} is a four dimensional polytope.

The cut of W_{γ} by a plane parallel to F^{\perp} defines a polygon.

We study W_{γ} and its intersection with P.

We obtain polygons and need to understand the orbit of these lines under the action of $\boldsymbol{\Gamma}.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Works only if $dimF^{\perp} = 2$.

Definition

The main objects are lines. They are directed by f_1, \ldots, f_n projections of the canonical basis of \mathbb{R}^n .

- Action of Γ on these lines. Set I_1 of 1-singularities
- Intersection of such lines. Set I_0 of 0-singularities.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- We denote Γ^i the stabilizer under Γ of the line $Vect(f_i)$. Its rank is denoted $1 + \beta_i$.
- Let us denote R_1 the rank of the module generated by $\Lambda_2 \Gamma^{\alpha}, \alpha \in ...$
- The number β is then defined by $\beta = \max\{\sum_{I} \beta_{i}, ||I| = 2\}.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- L₁ number of lines,
- \blacktriangleright *L*₀ number of points.
- $1 + \beta_1$ number of orbits of points on each line.

Some parallel lines can be in the same Γ orbit ...

Some intersection points on different lines can be in the same Γ orbit \ldots

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cohomology groups for N-fold tilings

- Technical tools

$$L_0^{\alpha} = 1 + \beta_1 = 3,$$

 $L_0^{\alpha'} = 1 + \beta_2 = 2$
 $L_1 = 7$
 $L_0 \le 5$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Restriction on γ :

The action of Γ on lines has two parts: one is discrete, and a continuous one.

Only continuous one is interesting. Thus we can restrict to $\gamma \in \mathcal{F}^{\perp}.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

We move the window by γ and it changes the lines.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cohomology groups for N-fold tilings \Box Technical tools

Window

The polytope has 52 vertices.

They are splitted in points, triangles and hexagons. 4 * 1 + 8 * 3 + 4 * 6 = 52.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The faces of dimension three are like cubes.

Cohomology groups for N-fold tilings \Box Technical tools

Window for $\gamma = 0$

Figure: Black=points, red=triangles, green=hexagons

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Cohomology groups for N-fold tilings \Box Technical tools

```
Window with \gamma \neq 0
```

We want to describe the lines supporting the edges of the polygons. The lines are at intersections of the cube with the plane $F^{\perp} + \gamma$. In dimension four, a plane can cut a cube without intersection with an edge.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intersection of cubes with the plane P_{γ} .

Each intersection is either an hexagon, or a triangle, or a segment. For each line we know the direction and a point.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We need to compute the number of orbits of lines, and the number of orbits of intersections of points.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Cohomology groups for *N*-fold tilings $\Box_{\text{Case } \gamma} = 0$

Easy case

►
$$rk(H^1(\Omega_{E_{12},0})) = 4 + 6 - 3.$$

► $rk(H^2(\Omega_{E_{12},0})) = 3 + 6 - 14 + 6 * 6 - 3 = 28.$

There are 6 directions. On each direction α , we have $L_0^{\alpha} = 6$. We also have $L_0 = 14 < 6 * 6$.

Figure: $L_0 = 14$.

Six lines in six directions if $\gamma = 0$.

Otherwise 24 lines in six directions. 4 parallel lines in each direction.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Now γ has two parameters.

Cohomology groups for N-fold tilings $\[b]_{-}$ General case

・・

The following cases are possible for the number of orbits of lines.

6 = 3 + 3
9 = 3 * 2 + 3
15 = 3 * 3 + 3 * 2
18 = 3 * 3 + 3 * 3
21 = 3 * 4 + 3 * 3
24 = 3 * 4 + 3 * 4

We can have one, two, three up to four lines by direction.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

The end

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)