Cohomology groups for N-fold tilings

N. Bédaride, Franz Gähler, Ana G. Lecuona

Université d'Aix Marseille (I2M)

Let E be a 2-dimensional vectorial plane of \mathbb{R}^{n} and let $\gamma \in \mathbb{R}^{n}$, with $n \geq 3$.

Consider the two following orthogonal projections: one on E and one on E^{\perp}. Denote them by π and π^{\prime}.
The window W_{γ} is the projection of $\gamma+[0,1]^{n}$ on E^{\perp}.

Tiling

The vertices of the tiling are the projections of certain points of \mathbb{Z}^{n} onto E. Specifically we will look at those v such that $\pi^{\prime}(v)$ is inside the window W_{γ} :

$$
\left\{\pi(v) \mid v \in \mathbb{Z}^{n}, \pi^{\prime}(v) \in W_{\gamma}\right\}
$$

The rhombuses are the images by π of the two-dimensional faces of \mathbb{Z}^{n}.

This is called a $n \rightarrow 2$ tiling by cut and projection (or model set).
We could also make a tiling if E is not of dimension two...

Cohomology groups for N-fold tilings
$\left\llcorner_{\text {Introduction }}\right.$

Some examples

$2 \rightarrow 1$
$4 \rightarrow 2$
$7 \rightarrow 2$

Example $2 \rightarrow 1$

Figure: The square $[0,1]^{2}+\gamma$ and E.
Link with sturmian word.

L Introduction

Example $4 \rightarrow 2$

Example $7 \rightarrow 2$

Topology of tilings

Fix the set of proto tiles.
Define a distance on the set of tilings of E :
Two tilings are close if they agree on a big ball centered at the origin, up to a small translation.

Open sets

For this topology, the open sets are elements of the form: open set of \mathbb{R}^{2} times a Cantor set.

Properties

- The space of tilings of E is connected,
- it is non path connected,
- The connected components are contractible.

Main object

Consider the tiling T of E obtained by cut and projection for a parameter γ.
Let us denote Ω_{E}^{γ} the closure of the orbit of the tiling T under the action of the group of translations of E.

We want to understand the topology of this space.
One way: Compute the cohomology groups of Ω_{E}^{γ} with integer coefficients.

Remark that simplicial and singular cohomologies are not usefull. We use Cech cohomology.

We need to find three groups since $\operatorname{dim} E=2$:

$$
H^{0}\left(\Omega_{E}^{\gamma}\right), H^{1}\left(\Omega_{E}^{\gamma}\right), H^{2}\left(\Omega_{E}^{\gamma}\right)
$$

By definition $H^{0}\left(\Omega_{E}^{\gamma}\right)=\mathbb{Z}$.
In all the following E will denote a plane not containing a vector of \mathbb{Z}^{n}.

We can think that $n=4 \ldots$

We fix an integer n. Then we are in $\mathbb{R}^{N}{ }_{\left(\mathbb{R}^{n} \text { or } \mathbb{R}^{n / 2} \text { depending on the parity of } n\right)}$ and we consider the plane E_{n} spanned by the two following N dimensional vectors

$$
\left(\cos \frac{2 k \pi}{n}\right)_{0 \leq k \leq N-1}, \quad \text { and } \quad\left(\sin \frac{2 k \pi}{n}\right)_{0 \leq k \leq N-1}
$$

If $\gamma=0$, then we call the tilings N-fold tilings. If $\gamma \neq 0$ we call them generalized n-fold tiling.

Particular names

- $n=8$ Ammann-Beenker.
- $n=5$ Penrose.
- $n=12$ Socolar or hexagonal.

Theorem (Gahler-Hunton-Kellendonk-...2013)
We have

	$H^{0}\left(\Omega_{E_{n}}^{\gamma}\right)$	$H^{1}\left(\Omega_{E_{n}}^{\gamma}\right)$	$H^{2}\left(\Omega_{E_{n}}^{\gamma}\right)$
$n=8$	\mathbb{Z}	\mathbb{Z}^{5}	\mathbb{Z}^{9}
$n=5, \gamma \in \mathbb{Z}[\varphi]$	\mathbb{Z}	\mathbb{Z}^{5}	\mathbb{Z}^{8}
$n=5, \gamma \notin \mathbb{Z}[\varphi]$	\mathbb{Z}	\mathbb{Z}^{10}	\mathbb{Z}^{34}
$n=12, \gamma=0$	\mathbb{Z}	\mathbb{Z}^{7}	\mathbb{Z}^{28}
$n=7, \gamma=0$	\mathbb{Z}	\mathbb{Z}	$\mathbf{》}$

Remark

If $\gamma=0$, there is in fact another method for the previous examples, since the tilings are substitutive. However the computations are not substantially easier.

If $n=7$, then the groups are not finitely generated.

Our result

Complete description of the cohomology groups of the generalized 12-fold tilings.

All values for H^{1}.
All values up to 2 orbits by direction, for H^{2} obtained by computer program.

For more orbits by direction, too hard ...
Conjecture on the maximal value for the two groups:

$$
\mathbb{Z}^{25}, \mathbb{Z}^{564}
$$

To be continued ?

Dynamical properties in $\Omega_{E_{12}, \gamma}$.
Window of a $2 n$-fold, with $n>6$.
Tiling of \mathbb{R}^{3}. Method to obtain H^{3} ?
Information on the tilings ?

General result

Lemma (Julien 2010)

The cohomology groups of Ω_{E}^{γ} are finitely generated if and only if

$$
\beta=2-4+r k \Gamma
$$

In any case we have $\beta \geq 2-4+r k \Gamma$.
Theorem (Gähler-Hunton-Kellendonk-2013)
The free abelian parts of the cohomology groups of Ω_{E}^{γ}, if finitely generated, are given by

- $H^{0}=\mathbb{Z}$
- $H^{1}=\mathbb{Z}^{4+L_{1}-R_{1}}$
- $H^{2}=\mathbb{Z}^{3+L_{1}+e-R_{1}}$
with $e=-L_{0}+\sum_{\alpha \in I_{1}} L_{0}^{\alpha}$.

Let us denote Γ the set $\pi^{\prime}\left(\mathbb{Z}^{n}\right)$ in the space E^{\perp}.

$$
\bar{\Gamma} \sim \mathbb{Z}^{k} \oplus \mathbb{R}^{\prime}
$$

We denote Δ the discrete part of $\bar{\Gamma}$ and $F=\operatorname{vect}(\Delta)$.

$$
E^{\perp}=F \oplus F^{\perp}
$$

Let P be the collection of spaces parallel to F^{\perp} defined as

$$
P=\bigcup_{\delta \in \Delta}\left(F^{\perp}+\delta\right)
$$

Our case

$$
\mathbb{R}^{6}=E \oplus E^{\prime} \oplus F
$$

The window W_{γ} is a four dimensional polytope.
The cut of W_{γ} by a plane parallel to F^{\perp} defines a polygon.

We study W_{γ} and its intersection with P.
We obtain polygons and need to understand the orbit of these lines under the action of Γ.

Works only if $\operatorname{dimF}^{\perp}=2$.

Definition

The main objects are lines. They are directed by f_{1}, \ldots, f_{n} projections of the canonical basis of \mathbb{R}^{n}.

- Action of Γ on these lines. Set I_{1} of 1 -singularities
- Intersection of such lines. Set I_{0} of 0 -singularities.
- We denote Γ^{i} the stabilizer under Γ of the line $\operatorname{Vect}\left(f_{i}\right)$. Its rank is denoted $1+\beta_{i}$.
- Let us denote R_{1} the rank of the module generated by $\Lambda_{2} \Gamma^{\alpha}, \alpha \in \ldots$
- The number β is then defined by $\beta=\max \left\{\sum_{I} \beta_{i},||I|=2\}\right.$.
- L_{1} number of lines,
- L_{0} number of points.
- $1+\beta_{1}$ number of orbits of points on each line.

Some parallel lines can be in the same 「 orbit ...
Some intersection points on different lines can be in the same Γ orbit . . .

$$
\begin{gathered}
L_{0}^{\alpha}=1+\beta_{1}=3, \\
L_{0}^{\alpha^{\prime}}=1+\beta_{2}=2 \\
L_{1}=7 \\
L_{0} \leq 5
\end{gathered}
$$

Restriction on γ :
The action of Γ on lines has two parts: one is discrete, and a continuous one.

Only continuous one is interesting. Thus we can restrict to $\gamma \in F^{\perp}$.

We move the window by γ and it changes the lines.

Window

The polytope has 52 vertices.
They are splitted in points, triangles and hexagons.
$4 * 1+8 * 3+4 * 6=52$.
The faces of dimension three are like cubes.

Window for $\gamma=0$

Figure: Black=points, red=triangles, green=hexagons

Window with $\gamma \neq 0$

We want to describe the lines supporting the edges of the polygons.
The lines are at intersections of the cube with the plane $F^{\perp}+\gamma$.
In dimension four, a plane can cut a cube without intersection with an edge.

Intersection of cubes with the plane P_{γ}.
Each intersection is either an hexagon, or a triangle, or a segment.
For each line we know the direction and a point.

We need to compute the number of orbits of lines, and the number of orbits of intersections of points.

Easy case

- $r k\left(H^{1}\left(\Omega_{E_{12}, 0}\right)\right)=4+6-3$.
$-r k\left(H^{2}\left(\Omega_{E_{12}, 0}\right)\right)=3+6-14+6 * 6-3=28$.

There are 6 directions. On each direction α, we have $L_{0}^{\alpha}=6$. We also have $L_{0}=14<6 * 6$.

Figure: $L_{0}=14$.

Six lines in six directions if $\gamma=0$.
Otherwise 24 lines in six directions. 4 parallel lines in each direction.

Now γ has two parameters.

Cohomology groups for N －fold tilings

$\left\llcorner_{\text {General }}\right.$ case

The following cases are possible for the number of orbits of lines.

- $6=3+3$
- $9=3 * 2+3$
- $15=3 * 3+3 * 2$
- $18=3 * 3+3 * 3$
- $21=3 * 4+3 * 3$
- $24=3 * 4+3 * 4$

We can have one, two, three up to four lines by direction.

The end

