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Main themes

The class of “Topology implies Dynamics” theorems here start
with a model map with known, complicated dynamics. This
dynamics is shown to be preserved under large perturbations
constrained by topological considerations, eg. in the same
homotopy class or on the same manifold.

Such theorems go under various names “Homotopy stability of
dynamics” or “Topological persistence”.

These theorems only require coarse, topological data about
systems and so can be valuable in real world applications where
information is just known approximately.

We mainly focus here on applications of the basic theorems.
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Main tools

Hyperbolicity implies dynamical stability. Hyperbolicity in action on
H1, locally with fixed point index, hyperbolic metrics, . . .

Exponential growth rates

Use of covering spaces to unravel the dynamics.

Morphism from perturbed system to model system is often of low
regularity.
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First example: angle doubling on the circle
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Basic Dynamics

A dynamical system here is a pair (X, f) with f : X → X

continuous and X compact, metric usually a manifold.

An orbit is o(x, f) = {. . . , f−2(x), f−1(x), x, f(x), f2(x), . . . } when
f is invertible and o+(x, f) = {x, f(x), f2(x), . . . } when it isn’t and
fn is repeated composition n-times.

A morphism in the category is called a semi-conjugacy from (Y, g)

to (X, f) is a continuous, onto map α : Y → X with

Y
g−−−−→ Y

α





y





y

α

X
f−−−−→ X

In this case the dynamics of g are at least as complicated as
those of f
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Dynamics of angle-doubling

Angle doubling is d : S1 → S1 via d(θ) = 2θ where S1 = R/Z, or
on the unit interval x 7→ 2x mod 1.

It has all the features of a complicated or chaotic dynamical
system.

The set {θ : o(θ, d) is dense} is dense, Gδ and has full Lebesgue
measure.

The set {θ : o(θ, d) is periodic} is dense.

The topological entropy of d is htop(d) = log(2), and so uncertainty
about position grows like exp(log(2)n) = 2n under iteration.

The dynamics of d can be coded by the shift on {0, 1}N and so are
as complicated and random as a sequence of coin tosses
(Bernoulli process).
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First example: angle doubling

Now assume that g : S1 → S1 is homotopic to d.

Lifting to the universal cover R yields d̃(x̃) = 2x̃ and
g̃(x̃) = 2x̃+ ϕ(x̃) with ϕ(x̃+ 1) = ϕ(x̃)

Now iterate, d̃n(x̃) = 2nx̃ and an easy induction yields

g̃n(x̃) = 2nx̃+
n−1
∑

i=0

2n−i−1ϕ(g̃i(x̃))

Thus for most x̃, |g̃(x̃)| → ∞ at the rate of 2n.
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The semi-conjugacy

So we normalize by this rate and obtain

lim
n→∞

g̃n(x̃)

2n
= x̃+

∞
∑

i=0

ϕ(g̃i(x̃))

2i+1

which converges by the Weierstrass M-test uniformly to a
continuous function α̃ with α̃(x̃+ 1) = α̃(x̃) + 1.

By construction α̃ ◦ g̃ = d̃ ◦ α̃ and so projecting to the base

S1 g−−−−→ S1

α





y





y

α

S1 d−−−−→ S1
d

g

α   (θ)-1
(α   (θ)) -1g

= α   (   (θ))-1
d

α
α
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The semi-conjugacy

So we conclude: If g acts on H1(S
1) as k 7→ 2k, then g is

semiconjugate to angle doubling, so its dynamics are at least as
complicated as doubling.

What can we say about the semiconjugacy and its fibers? The
fact that formula looks like the definition of a Weierstrass nowhere
differentiable function is a hint.

The figures on the next page show numerical approximations of
the semiconjugacies by computing g̃7/27 for various g
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Graphs of g̃7/2≈α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SumTopo22 – p.10



The monotone-light factorization

Now α can have intervals in its point inverses. This implies that g
has periodic intervals, or wandering intervals, or smashes
intervals to points. This part of the dynamics can be studied
independently, so we “collapse it out”.

A map m is monotone if all point inverses are connected and ℓ is
light if all point inverses are completely disconnected.

Whyburn & Eilenberg (indepen-
dently): Any f : X → Y of com-
pact metric spaces can be fac-
tored f = ℓ ◦m.

m

f

X

Z

Y

l
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The monotone-light factorization

The space Z is the identification space that collapses each
component of f−1 to a point.

In the case at hand, X = Y = S1 and so each component of
α−1(x) is an interval and so Z = S1 also.

So to simplify matters we just consider the light part of α and then
glue the intervals back in to get α.

m

l

S1 S1g

S1 S1

S1 S1

m

l
d

g
α α
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Theorem

Assume g is a continuous, degree-two circle map with a light
semiconjugacy α. The following are equivalent:

(a) The map g̃ is not injective,

(b) The map α is not injective,

(c) There exists a full measure, dense, Gδ-set Λ ⊂ S1 so that θ ∈ Λ

implies that α−1(θ) is completely disconnected and uncountable
and thus contains a Cantor set.

(d) The topological entropy of g satisfies htop(g) > log(2),

(e) For all nontrivial intervals J ⊂ S1, the map α|J is not of bounded
variation (BV).
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Remarks on Theorem

If any of the conditions are negated, then α is a homeomorphism
and so the dynamics of g and angle-doubling d are the same up to
conjugacy, i.e. change of coordinates.

Since g and d are always semiconjugate, htop(g) ≥ htop(d); the
content of (d) is the strict inequality. It means that there is
nontrivial dynamics in the way g sends fibers α−1(θ) to α−1(d(θ))

Using the summation formula if g is λ-Lipschitz then α is Hölder
with exponent ν = log(2)/ log(λ).
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Generalizing to other manifolds
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Generalizing to other manifolds

For simplicity of exposition we assume M is a smooth, compact,
connected manifold with H1(M ;Z) torsion-free and first
betti-number b.

Terminology: The hyperbolic part of the spectrum of a matrix A is
the eigenvalues off the unit circle and A is called hyperbolic if its
entire spectrum is hyperbolic.

Since we consider action on homology, the appropriate cover is
the universal Abelian cover.

The universal Abelian cover, M̃Ab, has deck or covering group
H1(M,Z) ∼= Zb and is obtained by moding out the universal cover
by the action of the commutator subgroup of π1(M).

Every f :M →M lifts to M̃Ab since the action on π1 preserves
commutators.
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The universal Abelian cover

It is useful to have a concrete realization of M̃Ab inside Rb.

This is commonly done (cf. Jacobi) using a collection of closed
one-forms ωi whose classes form a basis for de Rham
cohomology H1

dR(M,R) and are dual to a basis of H1(M,Z).

Now lift the forms to ω̃i and pick a basepoint z̃0 ∈ M̃Ab and for
each z̃ define the ith component of β : M̃Ab → R

b as

βi(z̃) =

∫

γ̃

ω̃i,

where γ̃ is any smooth path connecting z̃0 to z̃. This is well
defined since forms are closed.
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The universal Abelian cover

Then β : M̃Ab → R
b is the desired embedding and henceforth M̃Ab

means this embedded copy in Rb.
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The universal Abelian cover

Further, for a homeomorphism f :M →M , its lift f̃ : M̃Ab → M̃Ab

acts as

f̃(z̃) = Az̃ + φ(z)

where A = f∗ : H1(M) → H1(M), and φ :M → Rb is a
continuous function, while z is the projection of z̃ down to M .

So, up to a bounded error (or coarsely or on large scales) the lift
of f acts like the action of f on homology.
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Averages and semi-conjugacies

Assume now that f∗ : H1(M,R) → H1(M,R) has a real
eigenvalue µ > 1 with eigenvector ~v and fix a lift f̃ : M̃Ab → M̃Ab.

We know there will be motion under f̃n at rate µn in the direction
~v, so we normalize the rate out and attempt to compute

lim
n→∞

πµ(f̃
n(z̃))

µn
,

where πµ : Rb → ~v is the projection onto the eigen-direction.

Recall now that f̃(z̃) = Ax̃+ φ(x) and so a simple induction yields

f̃nz̃ = An z̃ +
n
∑

i=1

An−i φ(f i−1(z))
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Averages and semiconjugacies

So projecting onto ~v we have

πµ(f̃
n(z̃)) = µnπµ(z̃) +

n
∑

i=1

µn−iπµ(φ̃(f̃
i−1(z̃)))

Thus letting φµ denote πµ ◦ φ̃ pushed to the base, our desired
average

lim
n→∞

πµ(f̃
n(z̃))

µn
= πµ(z̃) +

∞
∑

i=0

φµ(f
i(z))

µi+1
,

converges uniformly by the Weierstrass M-test.

Let α̃ : M̃Ab → R be the continuous function defined by this sum.
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Averages and semiconjugacies

Now that we have convergence of

α̃(z̃) = lim
n→∞

πµ(f̃
n(z̃))

µn
,

it follows directly that

M̃Ab
f̃−−−−→ M̃Ab

α̃





y





y
α̃

R
×µ−−−−→ R
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Averages and semiconjugacies

So in dynamical language, we have obtained a semiconjugacy
between f̃ acting on M̃Ab and multiplication by µ on R. Its existence
depends just on the action of f on H1.
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Franks-Shub Theorem:

Franks-Shub Theorem: Assume that f :M →M is a continuous map
of the smooth, connected manifold M and µ ∈ R is a simple real
eigenvalue of f∗ : H1(M ;Z) → H1(M ;Z) with |µ| > 1. For each lift
f̃ : M̃Ab → M̃Ab of f to the universal Abelian cover M̃Ab, there exists a
unique map α̃µ : M̃Ab → R with

α̃µ ◦ f̃ = µ α̃µ

The above argument is an variant of Franks (68) doing one
eigenvalue at a time or a translation of Shub (78) from Alexander
cocycles.

The cases of complex and generalized eigenvalues are easily
dealt with.
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Additional structures

Each eigenvalue |µ| > 1 of the action of f on H1 yields a
semiconjugacy α̃µ.

If f is invertible and 0 < |µ| < 1 then using f−1 and µ−1 also
yields a semiconjugacy.

In turn, each semiconjugacy yields an invariant decomposition
and an arc cocyle as explained next.
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Additional structures

First, a f̃ -invariant continuous decomposition of M̃Ab into level sets
X̃r = α̃−1

µ (r). Since, α̃µ ◦ f̃ = µ α̃µ, we have f̃(X̃r) = X̃µr. This
descends to a f -invariant decomposition {Xr} of M .
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Additional structures

Second, a “transverse structure” to the decomposition defined on
paths in the cover M̃Ab as F̃µ(γ̃) = α̃(γ̃(1))− α̃(γ̃(0)). F̃µ descends to
Fµ a way of assigning numbers to paths in M which is eigen.
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Additional structures

These structures are quite general and depend just on the action
of f on H1. With more hypothesis on f (like pseudoAnsosv) they
interact with invariant foliations yielding transverse Hölder
distributions, etc.
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Example: linear Anosov map

Let

A =





2 1

1 1





A induces a homeomorphism φA of T2 := R
2/Z2,

R2 A−−−−→ R2

π





y





y

π

T
2 φA−−−−→ T

2

The map φA is an example of a linear Anosov map.
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Example: linear Anosov map

The eigenvalues of A are λ > 1

and λ−1. The eigenvectors have ir-
rational slope and project down to
dense wrappings of T2. The folia-
tions of the plane in the stable and
unstable directions project down to
a pair of invariant transverse folia-
tions, one expanding and one con-
tracting.

These are the two decompositions discussed above for this special
case of φA and φ−1

A
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Example: linear Anosov map

The map φA

is ergodic and mixing w.r.t. Lebesgue measure,

has dense orbits (is transitive) and the set of periodic point is
dense,

has a Markov partition which yields a (semiconjugacy) to a
mixing subshift of finite type,

has topological entropy and everywhere Lyapunov exponents
of log(|λ|), where |λ| > 1 is the largest eigenvalue of A.

Now we allow perturbations of φA but remain in the same isotopy
class.
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Application to linear Anosovs on tori

Theorem: Franks If g is isotopic to φA then there is a
semiconjugacy

T
2 g−−−−→ T

2

α





y





y

α

T2 φA−−−−→ T2

So any homeomorphism isotopic to a φA has at least its dynamics.

The proof goes by applying the basic semiconjugacy theorem in
M̃Ab to λ > 1 and then to λ−1 < 1 using g−1 and φ−1

A and then
projecting to the base.

We can obtain more information about the semiconjugacy using
the monotone-light decompositions.
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Reduction to a light semiconjugacy

Lemma: Every component of a point inverse α−1(z) of the
semiconjugacy α is cell-like (non-separating).

Thus by Bing-Moore, if ∼ corresponds to collapsing components
of point inverses to points, then T

2/∼ = T
2.

Further, g descends to a homeomorphism g whose
semiconjugacy α has point inverses all of whose components are
points, thus each α−1(z) is completely disconnected.

g

φ

g
α α

α α

T 2

T 2T 2

T 2

T 2
T 2
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Theorem on the semi-conjugacy

Theorem: Assume g is a homeomorphism of two-dimensional T2 that
is isotopic to the linear Anosov φ and has a light semiconjugacy α. The
following are equivalent:

(a) The map α is not injective,

(b) There exists a full measure, dense, Gδ-set Λ ⊂ T2 so that z ∈ Λ

implies that its point inverse α−1(z) is completely disconnected
and uncountable and thus contains a Cantor set,

(c) The topological entropy of g satisfies htop(g)>htop(φ).
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Theorem on the semi-conjugacy

So if α isn’t injective, there is entropy carried in the fibers of the
semiconjugacy.

The proof uses two results of Blokh, Oversteegen and Tymchatyn

First, the image of an open set under a light map has interior. This
implies that anything light-semiconjugate to a transitive map is
transitive (transitive = has a dense orbit)

Thus if α is not locally 1− 1 somewhere, it is not locally 1− 1

everywhere

Second, a light, nowhere locally injective map between manifolds
has the property that the topologically generic point has a Cantor
set as its point inverse.
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General hyperbolic actions

The general version of Franks theorem starts with a compact,
connected CW-complex X and a map g : X → X for which g∗
acting on H1(X,R) = Rb is hyperbolic.

The target is the linear Anosov on Tb defined by matrix A.

In the general case, the semiconjugacy is into T
b not onto.

For the proof use all the semiconjugacies with |µ| 6= 1 from M̃Ab to
R

n and they descend to M → T
n.

An example application is maps on a wedge of circles homotopic
to the map induced by a hyperbolic free group endomorphism.
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Isotopy stability on surfaces: back to the experiment
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Experiment by Mark Stremler, see Boyland, P., Aref, H. and Stremler, M., Topological 

fluid mechanics of stirring, J. Fluid Mech., 403, 277--304, 2000. 

PseudoAnosov Finite Order 

Initial state 



Experiment by Mark Stremler, see Boyland, P., Aref, H. and Stremler, M., Topological 

fluid mechanics of stirring, J. Fluid Mech., 403, 277--304, 2000. 

PseudoAnosov Finite Order 

1 iterate 



Experiment by Mark Stremler, see Boyland, P., Aref, H. and Stremler, M., Topological 

fluid mechanics of stirring, J. Fluid Mech., 403, 277--304, 2000. 

PseudoAnosov Finite Order 

2 iterates 



Experiment by Mark Stremler, see Boyland, P., Aref, H. and Stremler, M., Topological 

fluid mechanics of stirring, J. Fluid Mech., 403, 277--304, 2000. 

PseudoAnosov Finite Order 

9 iterates 





Recall the mixing experiment

We want to use use the isotopy stability results on the torus to
analyze the results of the experiment. Specifically, homotopy
stability of dynamics in the isotopy class of the fluid motion rel the
stirrers.

The appropriate tool to connect the torus to the disk minus the
stirrers is hyperelliptic involution (Lattés, Birman, Katok . . . ).

This involution is realized in C by the Weierstrass P-function.

The linear torus map φA that is connected to the experiment
comes from the matrix

A =





2 1

1 1




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Connection to experiment: the torus to the sphere

The linear map A
commutes with an
involution. Moding out
this hyperelliptic
involution gives a
sphere with 4 branch
points. The map φA
descends to a
pseudoAnosov (pA)
map Φ on the sphere.

One of the branch
points ∞ is fixed by
Φ and the other three
form a periodic orbit P .

φ

rotate
by π

Φ

P
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Connection to experiment: the torus to the disk

Now blow up ∞ on the sphere to get a disk. The map is called ΦA.

The matrix A was chosen so that the resulting map ΦA is in the
isotopy class which gives rise to the experiment braid but the
same construction works for any A ∈ SL(2,Z) and yields pA maps
when |trace(A)| > 2.

The pA map ΦA shares most of the properties of φA: a Markov
partition, mixing, dense periodic points, etc.

Pushing down Franks Theorem we can that any map isotopic to
ΦA (for example, the fluid motion) has at least its dynamics.

One particular feature of interest is the emergent structure which
we examine first in the torus case. (closely connected to invariant
decompositions above).
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Grayson, Kitchen & Zetter
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connection to the experiment

In plane, under iteration by the linear map A, open sets converge to
the unstable eigen-direction. This line projects by a Weierstrass
P-function down to a “labyrinth” in the disk.

P-function

A
n
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Connection to the experiment

The projection of the unstable manifolds of the three periodic points of
the linear Anosov gives rise to the experiment’s “emergent structure”.
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Isotopy Stability

The general theory of isotopy stability of surface dynamics rests
on Thurston’s classification of surface isotopy classes into
pseudoAnosov (pA), finite order and reducible.

The stability theorems apply to the pA classes.

In each pA class there is a pA map which has a pair of invariant
measured foliations with mild singularities. The pA map has all the
nice dynamical properties of linear Anosovs.

Handel’s Theorem says that anything isotopic to a pA map has at
least its dynamics.

The crucial difference is that one doesn’t get a global
semiconjugacy, but rather all the pA dynamics are present in
some invariant set of the general map

Rather than explicitly state these results we focus on applications.
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A tool for applications

A useful tool for applications is that any map in a pA isotopy class
the lengths of topologically nontrivial arcs always grow
exponentially fast under iteration at a rate dictated by the pA class.

This will be applied to fluid motions that satisfy Euler’s equations.

We first formalize the notion of the topological growth rate of arcs
and loops under iteration.
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One-dimensional topological growth rate

Let Ltop(γ) be the least length among curves in γ′s homotopy
class with respect to some fixed Riemannian metric.

After n-iterates the normalized length is

Ltop
n (γ, g) =

Ltop(gn ◦ γ)
Ltop(γ)

So we evolve curve forward for n iterates and then shrink to the
least length in homotopy class.
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Exponential growth and the dilatation

(Thurston): Given a pseudoAnosov map Φ there exist constants
λ > 1 (the dilatation) and 0 < C1 < C2 such that for all g isotopic
to Φ and for every essential curve or arc γ,

C1λ
n ≤ Ltop

n (γ, g) ≤ C2λ
n.

Alternatively, on a punctured surface λ is the exponential word
length growth under the free group automorphism induced by g.

In the experiment λ = (3 +
√
5)/2.
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Exponential growth and the dilatation

For this pA stirring pro-
tocol, λ ≈ 2.62, and
so in this figure after
9 iterates material lines
have been stretched by
at least λ9 ≈ 5, 778.
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Exponential growth for Euler fluid motions

Now we consider Euler fluid flows stirred by pA motions of the
stirrers, so their isotopy classes rel the stirrers are of pA type.

Under a fluid flow scalar fields (like cream in coffee) are pushed
forward (passively advected). Thus by Thurston’s Theorem
lengths of generic level sets grow exponentially. Since the area is
preserved, the level sets get closer together and so the gradient of
the scalar field grows exponentially.
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Exponential growth for Euler fluid motions

The Helmholtz-Kelvin Theorem says vorticity is a passively
advected scalar for an Euler fluid motion and by the previous
observation, the gradient of the vorticity grows exponentially.

Theorem: Let Mt be a time-periodic stirring protocol of pA type
with Euler fluid motion ψt. If the initial vorticity ω0 is a generic
C2-function, there are positive constants c, c′ so that

sup
x∈M0

‖∇ωt(x)‖ ≥ cλt and
∫

Mt

‖∇ωt(x)‖ ≥ c′λt

for all t ∈ R where λ > 1 is the dilation of the pA protocol.
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A partial order on periodic orbits

Sharkovski’s theorem applies to maps of the real line and says
that any map with a periodic orbit of a given period (say 3) implies
that it has periodic orbits of other periods (all periods).

For homeomorphisms of the disk we specify a periodic orbit not
by its period, but rather by the isotopy class on its complement.

If this isotopy class is of pA type (like the fluid) then the isotopy
stability theorem for that pA map implies that the given map has
all the infinitely many periodic points of the pA map.

These periodic orbits are then dominated by the original one.

Roughly speaking, “one braid implies another braid”
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A partial order on periodic orbits

For simplicity we restrict to the closed, two-dimensional disk D2.

The main objects are pairs (g, P ) where g : D2 → D2 an
orientation preserving homeomorphism and P = P0, . . . , Pn−1

with Pi = gi(P0) mod n in i

Say that (g, P ) ∼ (g′, P ′) if there exists an orientation preserving
homeomorphism h : (D2, P ) → (D2, P ′) with the following
commuting up to isotopy.

D2 − P
g−−−−→ D2 − P

h





y





y
h

D2 − P ′
g′

−−−−→ D2 − P ′
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A partial order on periodic orbits

So (g, P ) ∼ (g′, P ′) means that the action on the complement of
the orbits have conjugate isotopy classes.

This is obviously an equivalence relation and the equivalence
class of (g, P ) is called its braidtype and denoted bt(g, P ).

Note that bt(g, P ) is naturally identified with a conjugacy class in
the braid group Bn where n is the period of P .

For g : D2 → D2, let bt(g) = {bt(g, P ) : P is a periodic orbit of g}.

Let BT be the collection of all braidtypes of all orientation
preserving homeomorphisms of the disk.
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A partial order on periodic orbits

For two braidtypes β, β′ ∈ BT say that β � β′ if for every g,
β ∈ bt(g) implies β′ ∈ bt(g).

Thus β � β′ means that any g that has a braidtype β also has one
β′.

Define htop(β) = inf{htop(g) : β ∈ bt(g)}. When β is pA, Thurston
showed htop(β) = htop(φ) where φ is a pA map in the isotopy
class of β.
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A partial order on periodic orbits

Theorem:

1. � is a partial order on BT

2. If β 6= β′ are pA braidtypes with β � β′ then htop(β) > htop(β
′)

3. If β is a pA braidtype and φ a pA representative, then
{β′ : β � β′} = bt(φ).

4. There exist pairs β, β′ which are unrelated under � but have the
same entropy.

5. If g is C1+ν then htop(g) = sup{htop(β)} : β ∈ bt(g) using Katok.
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A partial order on periodic orbits

By 3. the order is computable once the dynamics of a pA can be
computed which is possible via train tracks.

The order in general is very complicated and very un-tree-like.
There are well understood linear suborders in which the entropy is
monotonic (Hall and de Calvalho).

The order constrains the way in which periodic orbits are built in
parameterized families (bifurcation theory).
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General hyperbolic actions

The general version of Franks theorem starts with a compact,
connected CW-complex X and a map g : X → X for which g∗
acting on H1(X,R) = Rb is hyperbolic.

The target is the linear Anosov on Tb defined by matrix A.

In the general case, the semiconjugacy is into T
b not onto.

For the proof use all the semiconjugacies with |µ| 6= 1 from M̃Ab to
R

n and they descend to M → T
n.

For example, maps on a wedge of circles homotopic to the map
induced by a hyperbolic free group endomorphism.
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General hyperbolic actions

The general version of Franks theorem works on a compact,
connected CW-complex X and a map g : X → X for which g∗ = A

acting on H1(X,Z) is hyperbolic.

In this case the target is the linear Anosov defined by the b× b

matrix A and is φA : Tb → T
b which is the descent of A : Rb → R

b

to R
b/Zb.
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General hyperbolic actions

Theorem: Franks Assume X is a connected, compact CW
complex with first betti number b and g :M →M is such that
A := g∗ : H1(M,Z) → H1(M,Z) is a hyperbolic matrix A and
φA : T b → Tb is the corresponding linear Anosov map there is
map α :M → T

b with

X
g−−−−→ X

α





y





y

α

Tn φA−−−−→ Tn
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General hyperbolic actions

For the proof use all the semiconjugacies with |µ| 6= 1 from M̃Ab to
Rn and they descend to M → Tn.

Note that in general, α is no longer onto.

We give an application of the general theorem to pseudoAnosov
maps.

Another application is to hyperbolic free group endomorphisms
treated as expanding maps of a wedge of circles.
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Example: Evil Twin

Let M be a genus two surface and ψ a pseudoAnosov map.

Assume the characteristic polynomial of ψ acting on
H1(M ;Z) ∼= Z4 splits over the integers into a pair of irreducible
quadratic factors with roots 0 < λ−1 < µ−1 < 1 < µ < λ (recall
that ψ∗ is symplectic).

The eigenvalues/vectors yield four semi-conjugacies α̃λ, α̃λ−1 , α̃µ,

and α̃µ−1 .

Fathi shows that the Franks semiconjugacy into T4 splits and
descends into paired maps βλ := (αλ, αλ−1) and βµ := (αµ, αµ−1),
each a semiconjugacy onto a linear, two-dimensional toral
automorphism. But one can prove that the characters of the two
semiconjugacies are quite different.
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Example:Evil twin

βλ is a branched cover
(Franks and Ryyken) and so
is locally a diffeomorphism
at all but finitely many points
and point inverses are finite
sets.

βµ is Hölder with exponent
ν = log(µ)/ log(λ), but no
larger ν’s. It is nowhere dif-
ferentiable and nowhere lo-
cally injective or BV. Typi-
cal point inverses are Cantor
sets.
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PseudoAnosov homeomorphisms

A homeomorphism Φ :M2 →M2 of a compact surface is called
pseudoAnosov (pA) if it has a pair of transverse, invariant
foliations, one stable and the other unstable.

The foliations have a finite number of well-behaved singularities

(Figure from A.Yu. Zhirov)
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