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General setting and notions Main results

Let (X ,S ,Zd) and (Y ,S ,Zd) be two subshifts.

Let M ∈ GL(d ,Z). Homomorphism associated with M: Surjective continuous map
φ : X → Y s.t. ∀n ∈ Zd , φ ◦ Sn = SMn ◦ φ.

Question

How to characterize the homomorphisms between two subshifts?
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General setting and notions Main results

Examples: If M = idRd .

Factor: Surjective continuous map φ : X → Y commuting with the action, i.e.,
∀n ∈ Zd , Sn ◦ φ = φ ◦ Sn.

Conjugacy: An invertible factor.

Automorphism: A conjugacy from a space to itself.

The notion of homomorphisms generalizes the notion of factors via
GL(d ,Z)-conjugacies.
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General setting and notions Main results

Normalizer semigroup: Collection of all homomorphisms between X and itself.
Denoted by N(X ,S ,Zd).

Symmetry semigroup: Collection of matrices M in GL(d ,Z) defining a
homomorphism. Denoted by ~N(X , S ,Zd).

We have 〈S〉 E Aut(X ,S ,Zd) E N∗(X ,S ,Zd), and

N∗(X ,S ,Zd)/Aut(X ,S ,Zd) ∼= ~N∗(X ,S ,Zd) ≤ GL(d ,Z).

Question

How to characterize the symmetry semigroup of a subshift?
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General setting and notions Main results

Theorem (M. Curtis, G. Hedlund, R. Lyndon (1969))

If φ : (X , S ,Zd)→ (Y , S ,Zd) is a factor, there exists r > 0 and a map
Φ : LB(0,r)(X )→ AY such that for all n ∈ Zd , φ(x)n = Φ(x |n+B(0,r)∩Zd ).

For homomorphisms we have a similar result: If φ : X → Y is a homomorphism
associated with a matrix M ∈ GL(d ,Z), then there exists r > 0 and a map
Φ : LB(0,r)(X )→ AY such that φ(x)n = Φ(x |M−1n+B(0,r)∩Zd ).

In particular the semigroup N(X ,S ,Zd) is countable and N∗(X ,S ,Zd) is a discrete
subset in Homeo(X ).
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General setting and notions Main results

Let L : Rd → Rd be an expansion linear map, i.e., L is invertible, ‖L‖ > 1 and
‖L−1‖ < 1 with integer entries.

Let F ⊆ Zd be a fundamental domain of L(Zd) in Zd , i.e., a set of representatives
classes of Zd/L(Zd) with 0 ∈ F .

Let A be a finite alphabet.
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General setting and notions Main results

A multidimensional constant-shape substitution ζ is a map A → AF . F is the
support of the substitution.

Example of a multidimensional constant-shape substitution:

L =

(
2 0
0 2

)
, F =

{(
0

0

)
,

(
1

0

)
,

(
0

1

)
,

(
−1

−1

)}
:

7→ 7→

7→ 7→
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General setting and notions Main results

For any n > 0 the n-th iteration is defined as ζn : A → AF ζ
n , with F ζn+1 = Lζ(F ζn ) +F ζ1 .

Remark

We assume the sequence (F ζn ) is a Følnera sequence, i.e., for all n ∈ Zd we have

lim
n→∞

|Fn∆(n + Fn)|
|Fn|

= 0.

aThis is not the exact definition of Følner sequence in group theory.
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General setting and notions Main results

Example of iterations of a substitution:

7→

7→

Figure: First and second iteration of a substitution.
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Example of iterations of a substitution:

7→ 7→

Figure: First and second iteration of a substitution.
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General setting and notions Main results

Example of iterations of a substitution:

7→

Figure: Second and third iteration of a substitution.
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General setting and notions Main results

A substitution is primitive if there exists a positive integer n > 0, such that for every
a, b ∈ A, b occurs in ζn(a).

A pattern is an element p ∈ AP , for some finite subset P of Zd .

The language of a substitution is the set

Lζ = {p : p ocurrs in ζn(a), for some n > 0, a ∈ A}.

With the language we define the subshift Xζ ⊆ AZd
as the set of all sequences

x ∈ AZd
such that every pattern of x is in Lζ .
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General setting and notions Main results

The action of Zd on Xζ is defined by shifts:

∀n ∈ Zd , (Snx)k = xn+k, ∀k ∈ Zd .

(Xζ , S ,Zd) is a substitutive dynamical system.

We say that the substitution ζ is aperiodic if there are no non-trivial periods, i.e., if
Spx = x for some x ∈ Xζ , then p = 0.
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General setting and notions Main results

Theorem (C. (2021))

Let ζ be an aperiodic primitive substitution satisfying certain geometric and
dynamical properties. Then

1 Any homomorphism in the normalizer semigroup N(Xζ ,S ,Zd) is invertible.

2 The group N(Xζ , S ,Zd)/ 〈S〉 is finite.

A. Bustos, D. Luz, N. Mañibo (2021): Point (2) for bijective block substitutions.
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General setting and notions Main results

The table tiling:
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General setting and notions Main results

Figure: A pattern of the table tiling
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General setting and notions Main results

The table tiling: Lt =

(
2 0
0 2

)
, F t

1 = [0, 1]2 ∩ Z2

0 7→ 3 0
1 0

, 1 7→ 1 1
0 2

, 2 7→ 2 3
2 1

, 3 7→ 0 2
3 3

.

1

3

0 2

1 1

3 3

0 2

0 2
1

3

0

0

2

2

1

3

Proposition

For the table tiling, we have N(Xt ,S ,Z2) ∼= Z2 o D4.
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General setting and notions Main results

Geometric property: Polytope

The matrix L−1
ζ is a contraction in Rd . We define a contraction in the collection

C(Rd) of nonempty compact subsets of Rd equipped with the Hausdorff metric h

F : (C(Rd), h) → (C(Rd), h)

A 7→
⋃

g∈F ζ
1

(L−1
ζ (A) + g),

There exists a compact subset Tζ ⊆ Rd (called digit tile of the substitution) such that
F (Tζ) = Tζ .

We can approximate the digit tile: Tζ = lim
n→∞

L−nζ (F ζn ).
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General setting and notions Main results

(a) (b)

Figure: Approximation of some digit tiles: (a) Gasket, (b) Twin Dragon.

(a)
Lζ(a)

= ( 2 0
0 2 )

F
ζ(a)

1 = {(0, 0), (1, 0), (0, 1), (−1,−1)} .

(b)
Lζ(b)

=
(

1 −1
1 1

)
F
ζ(b)

1 = {(0, 0), (1, 0)} .
18 / 27



General setting and notions Main results

A polytope substitution ζ is such that

1 The convex hull conv(Tζ) is a polytope, i.e., has a finite number of extreme
points.

2 The substitution ζ is bijective, i.e., for any f ∈ F ζ1 , we have
|{ζ(a)f : a ∈ A}| = |A|.

The first condition only depend on the expansion matrix and the support.
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General setting and notions Main results

L =

(
2 0
0 3

)
and F1 =

{(
0

0

)
,

(
0

1

)
,

(
0

2

)
,

(
1

0

)
,

(
1

2

)
,

(
1

−2

)}
.

Figure: Example conv(Tζ) not a poytope.
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General setting and notions Main results

The chair tiling:

Discrete chair tiling: Lt =

(
2 0
0 2

)
, F t

1 = [0, 1]2 ∩ Z2

0 7→ 3 0
0 1

, 1 7→ 1 2
0 1

, 2 7→ 3 2
2 1

, 3 7→ 3 2
0 3

.

Example of a not bijective substitution.
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General setting and notions Main results

Dynamical property: Non-deterministic directions for (Xζ , S ,Zd).

A vector v ∈ Sd−1 is deterministic for (Xζ ,T ,Zd) if and only if

∀x , y ∈ Xζ : xHv∩Zd = y |Hv∩Zd =⇒ x = y ,

where Hv = {t ∈ Rd : 〈v, t〉 < 0}.

We are interested in the set ND(Xζ ,S ,Zd) of non-deterministic directions.

M. Boyle, D. Lind (1997): Introduction of the notion of expansive subdynamics.
V. Cyr, B. Kra (2015): Use of non-expansive directions for a weak version of the
Nivat’s conjecture.
P. Guillon, J. Kari, C. Zinoviadis (2015): Determinism for 2D-subshifts.
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General setting and notions Main results

Proposition

Let ζ be an aperiodic primitive constant-shape substitution. Then for all
v ∈ ND(Xζ , S ,Zd) and M ∈ ~N(Xζ , S ,Zd), we have M∗v/‖M∗v‖ ∈ ND(Xζ , S ,Zd).
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General setting and notions Main results

Theorem (C., 2021)

Let ζ be an aperiodic primitive polytope substitution. The non-deterministic directions
ND(Xζ ,S ,Zd) is the intersection of Sd−1 with a non-empty union of opposite normal

cones of the form N̂G(conv(Tζ)), where G is a face of conv(Tζ).

N̂G(conv(Tζ)) = {v ∈ Rd : min
t∈conv(Tζ)

〈v, t〉 = 〈v,p〉 , ∀ p ∈ G}.

24 / 27



General setting and notions Main results

Theorem (C. (2021))

Let ζ be an aperiodic primitive polytope substitution with rank(ND(Xζ ,S ,Zd)) = d.
Then

1 Any homomorphism in the normalizer semigroup N(Xζ , S ,Zd) is invertible.

2 The group N(Xζ , S ,Zd)/ 〈S〉 is finite.
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General setting and notions Main results

Question

Does there exists an aperiodic d-dimensional constant-shape substitution with less
than d linearly independent nondeterministic directions? Partially answered.

Question

What can be said about the normalizer group for nonpolytope constant-shape
substitutions?

Question

What subgroups of GL(d ,Z) can be realized as the symmetry group of a
constant-shape substitution?

Question

Is it decidable the question of whether a constant-shape substitution satisfies
ND(Xζ ,S ,Zd) = Sd−1?

and so on...
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