Homomorphisms between multidimensional substitutive subshifts

Christopher Cabezas

LAMFA UMR CNRS Université de Picardie Jules Verne, France

Sumtopo 2022: Tiling spaces

July 20, 2022

Let (X, S, \mathbb{Z}^d) and (Y, S, \mathbb{Z}^d) be two subshifts.

Let $M \in GL(d, \mathbb{Z})$. Homomorphism associated with M: Surjective continuous map $\phi: X \to Y$ s.t. $\forall \mathbf{n} \in \mathbb{Z}^d, \ \phi \circ S^{\mathbf{n}} = S^{M\mathbf{n}} \circ \phi$.

Let (X, S, \mathbb{Z}^d) and (Y, S, \mathbb{Z}^d) be two subshifts.

Let $M \in GL(d, \mathbb{Z})$. Homomorphism associated with M: Surjective continuous map $\phi: X \to Y$ s.t. $\forall \mathbf{n} \in \mathbb{Z}^d, \ \phi \circ S^{\mathbf{n}} = S^{M\mathbf{n}} \circ \phi$.

Question

How to characterize the homomorphisms between two subshifts?

• Factor: Surjective continuous map $\phi : X \to Y$ commuting with the action, i.e., $\forall \mathbf{n} \in \mathbb{Z}^d, \ S^{\mathbf{n}} \circ \phi = \phi \circ S^{\mathbf{n}}.$

- Factor: Surjective continuous map $\phi : X \to Y$ commuting with the action, i.e., $\forall \mathbf{n} \in \mathbb{Z}^d, \ S^{\mathbf{n}} \circ \phi = \phi \circ S^{\mathbf{n}}.$
- **Conjugacy**: An invertible factor.

- Factor: Surjective continuous map $\phi : X \to Y$ commuting with the action, i.e., $\forall \mathbf{n} \in \mathbb{Z}^d, \ S^{\mathbf{n}} \circ \phi = \phi \circ S^{\mathbf{n}}.$
- **Conjugacy**: An invertible factor.
- Automorphism: A conjugacy from a space to itself.

- Factor: Surjective continuous map $\phi : X \to Y$ commuting with the action, i.e., $\forall \mathbf{n} \in \mathbb{Z}^d, \ S^{\mathbf{n}} \circ \phi = \phi \circ S^{\mathbf{n}}.$
- **Conjugacy**: An invertible factor.
- Automorphism: A conjugacy from a space to itself.

The notion of homomorphisms generalizes the notion of factors via $GL(d, \mathbb{Z})$ -conjugacies.

• Normalizer semigroup: Collection of all homomorphisms between X and itself. Denoted by $N(X, S, \mathbb{Z}^d)$.

- Normalizer semigroup: Collection of all homomorphisms between X and itself. Denoted by $N(X, S, \mathbb{Z}^d)$.
- Symmetry semigroup: Collection of matrices *M* in *GL*(*d*, ℤ) defining a homomorphism. Denoted by *N*(*X*, *S*, ℤ^d).

- Normalizer semigroup: Collection of all homomorphisms between X and itself. Denoted by $N(X, S, \mathbb{Z}^d)$.
- Symmetry semigroup: Collection of matrices M in GL(d, Z) defining a homomorphism. Denoted by N(X, S, Z^d).

We have $\langle S \rangle \trianglelefteq \operatorname{Aut}(X, S, \mathbb{Z}^d) \trianglelefteq N^*(X, S, \mathbb{Z}^d)$, and

 $N^*(X,S,\mathbb{Z}^d)/\operatorname{Aut}(X,S,\mathbb{Z}^d)\cong ec{N^*}(X,S,\mathbb{Z}^d)\leq GL(d,\mathbb{Z}).$

- Normalizer semigroup: Collection of all homomorphisms between X and itself. Denoted by $N(X, S, \mathbb{Z}^d)$.
- Symmetry semigroup: Collection of matrices M in GL(d, Z) defining a homomorphism. Denoted by N(X, S, Z^d).

We have $\langle S \rangle \trianglelefteq \operatorname{Aut}(X, S, \mathbb{Z}^d) \trianglelefteq N^*(X, S, \mathbb{Z}^d)$, and

 $N^*(X,S,\mathbb{Z}^d)/\operatorname{Aut}(X,S,\mathbb{Z}^d)\cong ec{N^*}(X,S,\mathbb{Z}^d)\leq GL(d,\mathbb{Z}).$

Question

How to characterize the symmetry semigroup of a subshift?

Theorem (M. Curtis, G. Hedlund, R. Lyndon (1969))

If $\phi : (X, S, \mathbb{Z}^d) \to (Y, S, \mathbb{Z}^d)$ is a factor, there exists r > 0 and a map $\Phi : \mathcal{L}_{B(\mathbf{0},r)}(X) \to \mathcal{A}_Y$ such that for all $\mathbf{n} \in \mathbb{Z}^d$, $\phi(x)_{\mathbf{n}} = \Phi(x|_{\mathbf{n}+B(\mathbf{0},r)\cap\mathbb{Z}^d})$.

Theorem (M. Curtis, G. Hedlund, R. Lyndon (1969))

If $\phi : (X, S, \mathbb{Z}^d) \to (Y, S, \mathbb{Z}^d)$ is a factor, there exists r > 0 and a map $\Phi : \mathcal{L}_{B(\mathbf{0},r)}(X) \to \mathcal{A}_Y$ such that for all $\mathbf{n} \in \mathbb{Z}^d$, $\phi(x)_{\mathbf{n}} = \Phi(x|_{\mathbf{n}+B(\mathbf{0},r)\cap\mathbb{Z}^d})$.

For homomorphisms we have a similar result: If $\phi: X \to Y$ is a homomorphism associated with a matrix $M \in GL(d, \mathbb{Z})$, then there exists r > 0 and a map $\Phi: \mathcal{L}_{B(\mathbf{0},r)}(X) \to \mathcal{A}_Y$ such that $\phi(x)_{\mathbf{n}} = \Phi(x|_{M^{-1}\mathbf{n}+B(\mathbf{0},r)\cap\mathbb{Z}^d})$.

Theorem (M. Curtis, G. Hedlund, R. Lyndon (1969))

If $\phi : (X, S, \mathbb{Z}^d) \to (Y, S, \mathbb{Z}^d)$ is a factor, there exists r > 0 and a map $\Phi : \mathcal{L}_{B(\mathbf{0},r)}(X) \to \mathcal{A}_Y$ such that for all $\mathbf{n} \in \mathbb{Z}^d$, $\phi(x)_{\mathbf{n}} = \Phi(x|_{\mathbf{n}+B(\mathbf{0},r)\cap\mathbb{Z}^d})$.

For homomorphisms we have a similar result: If $\phi: X \to Y$ is a homomorphism associated with a matrix $M \in GL(d, \mathbb{Z})$, then there exists r > 0 and a map $\Phi: \mathcal{L}_{B(\mathbf{0},r)}(X) \to \mathcal{A}_Y$ such that $\phi(x)_{\mathbf{n}} = \Phi(x|_{M^{-1}\mathbf{n}+B(\mathbf{0},r)\cap\mathbb{Z}^d})$.

In particular the semigroup $N(X, S, \mathbb{Z}^d)$ is countable and $N^*(X, S, \mathbb{Z}^d)$ is a discrete subset in Homeo(X).

• Let $L : \mathbb{R}^d \to \mathbb{R}^d$ be an expansion linear map, i.e., L is invertible, ||L|| > 1 and $||L^{-1}|| < 1$ with integer entries.

- Let $L : \mathbb{R}^d \to \mathbb{R}^d$ be an expansion linear map, i.e., L is invertible, ||L|| > 1 and $||L^{-1}|| < 1$ with integer entries.
- Let F ⊆ Z^d be a fundamental domain of L(Z^d) in Z^d, i.e., a set of representatives classes of Z^d/L(Z^d) with 0 ∈ F.

- Let $L : \mathbb{R}^d \to \mathbb{R}^d$ be an expansion linear map, i.e., L is invertible, ||L|| > 1 and $||L^{-1}|| < 1$ with integer entries.
- Let F ⊆ Z^d be a fundamental domain of L(Z^d) in Z^d, i.e., a set of representatives classes of Z^d/L(Z^d) with 0 ∈ F.
- Let \mathcal{A} be a finite alphabet.

A multidimensional constant-shape substitution ζ is a map $\mathcal{A} \to \mathcal{A}^F$. *F* is the **support** of the substitution.

A multidimensional constant-shape substitution ζ is a map $\mathcal{A} \to \mathcal{A}^F$. *F* is the **support** of the substitution.

Example of a multidimensional constant-shape substitution:

For any n > 0 the *n*-th iteration is defined as $\zeta^n : \mathcal{A} \to \mathcal{A}^{F_n^{\zeta}}$, with $F_{n+1}^{\zeta} = L_{\zeta}(F_n^{\zeta}) + F_1^{\zeta}$.

For any n > 0 the *n*-th iteration is defined as $\zeta^n : \mathcal{A} \to \mathcal{A}^{F_n^{\zeta}}$, with $F_{n+1}^{\zeta} = L_{\zeta}(F_n^{\zeta}) + F_1^{\zeta}$.

Remark

We assume the sequence (F_n^{ζ}) is a Følner^a sequence, i.e., for all $\mathbf{n} \in \mathbb{Z}^d$ we have

$$\lim_{n\to\infty}\frac{|F_n\Delta(\mathbf{n}+F_n)|}{|F_n|}=0.$$

^aThis is not the exact definition of Følner sequence in group theory.

Example of iterations of a substitution:

Figure: First and second iteration of a substitution.

Example of iterations of a substitution:

Figure: First and second iteration of a substitution.

Example of iterations of a substitution:

Figure: Second and third iteration of a substitution.

A **pattern** is an element $p \in \mathcal{A}^P$, for some finite subset P of \mathbb{Z}^d .

A **pattern** is an element $p \in \mathcal{A}^P$, for some finite subset P of \mathbb{Z}^d .

The language of a substitution is the set

$$\mathcal{L}_{\zeta} = \{ p : p \text{ ocurrs in } \zeta^n(a), \text{ for some } n > 0, a \in \mathcal{A} \}.$$

A **pattern** is an element $p \in \mathcal{A}^P$, for some finite subset P of \mathbb{Z}^d .

The language of a substitution is the set

$$\mathcal{L}_{\zeta} = \{ p : p \text{ ocurrs in } \zeta^n(a), \text{ for some } n > 0, a \in \mathcal{A} \}.$$

With the language we define the subshift $X_{\zeta} \subseteq \mathcal{A}^{\mathbb{Z}^d}$ as the set of all sequences $x \in \mathcal{A}^{\mathbb{Z}^d}$ such that every pattern of x is in \mathcal{L}_{ζ} .

The action of \mathbb{Z}^d on X_{ζ} is defined by shifts:

$$\forall \mathbf{n} \in \mathbb{Z}^d, \ (S^{\mathbf{n}}x)_{\mathbf{k}} = x_{\mathbf{n}+\mathbf{k}}, \forall \mathbf{k} \in \mathbb{Z}^d.$$

 $(X_{\zeta}, S, \mathbb{Z}^d)$ is a substitutive dynamical system.

The action of \mathbb{Z}^d on X_{ζ} is defined by shifts:

$$\forall \mathbf{n} \in \mathbb{Z}^d, \ (S^{\mathbf{n}}x)_{\mathbf{k}} = x_{\mathbf{n}+\mathbf{k}}, \forall \mathbf{k} \in \mathbb{Z}^d.$$

 $(X_{\zeta}, S, \mathbb{Z}^d)$ is a substitutive dynamical system.

We say that the substitution ζ is **aperiodic** if there are no non-trivial periods, i.e., if $S^{\mathbf{p}}x = x$ for some $x \in X_{\zeta}$, then $\mathbf{p} = 0$.

Theorem (C. (2021))

Let ζ be an aperiodic primitive substitution satisfying certain geometric and dynamical properties. Then

Theorem (C. (2021))

Let ζ be an aperiodic primitive substitution satisfying certain geometric and dynamical properties. Then

• Any homomorphism in the normalizer semigroup $N(X_{\zeta}, S, \mathbb{Z}^d)$ is invertible.

Theorem (C. (2021))

Let ζ be an aperiodic primitive substitution satisfying certain geometric and dynamical properties. Then

- **(**) Any homomorphism in the normalizer semigroup $N(X_{\zeta}, S, \mathbb{Z}^d)$ is invertible.
- 2 The group $N(X_{\zeta}, S, \mathbb{Z}^d) / \langle S \rangle$ is finite.

A. Bustos, D. Luz, N. Mañibo (2021): Point (2) for bijective block substitutions.

The table tiling:

Figure: A pattern of the table tiling

Proposition

For the table tiling, we have $N(X_t, S, \mathbb{Z}^2) \cong \mathbb{Z}^2 \rtimes D_4$.

Geometric property: Polytope

ł

The matrix L_{ζ}^{-1} is a contraction in \mathbb{R}^d . We define a contraction in the collection $\mathcal{C}(\mathbb{R}^d)$ of nonempty compact subsets of \mathbb{R}^d equipped with the Hausdorff metric h

$$egin{array}{rll} egin{array}{rll} egin{arra$$

Geometric property: Polytope

The matrix L_{ζ}^{-1} is a contraction in \mathbb{R}^d . We define a contraction in the collection $\mathcal{C}(\mathbb{R}^d)$ of nonempty compact subsets of \mathbb{R}^d equipped with the Hausdorff metric h

$$egin{array}{rcl} {\sf F}:& ({\mathcal C}({\mathbb R}^d),h)&
ightarrow&({\mathcal C}({\mathbb R}^d),h)\ A&\mapsto& igcup_{{f g}\in F_1^{\zeta}}(L_\zeta^{-1}(A)+{f g}), \end{array}$$

There exists a compact subset $T_{\zeta} \subseteq \mathbb{R}^d$ (called **digit tile** of the substitution) such that $F(T_{\zeta}) = T_{\zeta}$.

Geometric property: Polytope

The matrix L_{ζ}^{-1} is a contraction in \mathbb{R}^d . We define a contraction in the collection $\mathcal{C}(\mathbb{R}^d)$ of nonempty compact subsets of \mathbb{R}^d equipped with the Hausdorff metric h

$$egin{array}{rcl} {\sf F}:& ({\mathcal C}({\mathbb R}^d),h)&
ightarrow&({\mathcal C}({\mathbb R}^d),h)\ A&\mapsto& igcup_{{f g}\in F_1^{\zeta}}(L_\zeta^{-1}(A)+{f g}), \end{array}$$

There exists a compact subset $T_{\zeta} \subseteq \mathbb{R}^d$ (called **digit tile** of the substitution) such that $F(T_{\zeta}) = T_{\zeta}$.

We can approximate the digit tile: $T_{\zeta} = \lim_{n \to \infty} L_{\zeta}^{-n}(F_n^{\zeta}).$

(

Figure: Approximation of some digit tiles: (a) Gasket, (b) Twin Dragon.

$$\begin{array}{ll} \bullet & L_{\zeta_{(a)}} & = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \\ & F_1^{\zeta_{(a)}} & = \{(0,0), (1,0), (0,1), (-1,-1)\} \, . \end{array}$$

$$\begin{array}{ll} & L_{\zeta_{(b)}} & = \left(\begin{smallmatrix} 1 & -1 \\ 1 & 1 \end{smallmatrix}\right) \\ & F_1^{\zeta_{(b)}} & = \left\{(0,0), (1,0)\right\}. \end{array}$$

A polytope substitution ζ is such that

The convex hull conv(T_ζ) is a polytope, i.e., has a finite number of extreme points.

A polytope substitution $\boldsymbol{\zeta}$ is such that

- The convex hull conv(*T*_ζ) is a polytope, i.e., has a finite number of extreme points.
- **2** The substitution ζ is *bijective*, i.e., for any $\mathbf{f} \in F_1^{\zeta}$, we have $|\{\zeta(a)_{\mathbf{f}} : a \in \mathcal{A}\}| = |\mathcal{A}|.$

A polytope substitution $\boldsymbol{\zeta}$ is such that

- The convex hull conv(*T*_ζ) is a polytope, i.e., has a finite number of extreme points.
- **2** The substitution ζ is *bijective*, i.e., for any $\mathbf{f} \in F_1^{\zeta}$, we have $|\{\zeta(a)_{\mathbf{f}} : a \in \mathcal{A}\}| = |\mathcal{A}|.$

The first condition only depend on the expansion matrix and the support.

General setting and notions ${\scriptstyle 0000000000}$

$$L = \left(\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right) \text{ and } F_1 = \bigg\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \end{pmatrix} \bigg\}.$$

Figure: Example conv(T_{ζ}) **not** a poytope.

The chair tiling:

The chair tiling:

Discrete chair tiling:
$$L_t = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
, $F_1^t = [0, 1]^2 \cap \mathbb{Z}^2$
 $0 \mapsto \begin{array}{ccc} 3 & 0 \\ 0 & 1 \end{array}$, $1 \mapsto \begin{array}{ccc} 1 & 2 \\ 0 & 1 \end{array}$, $2 \mapsto \begin{array}{ccc} 3 & 2 \\ 2 & 1 \end{array}$, $3 \mapsto \begin{array}{ccc} 3 & 2 \\ 0 & 3 \end{array}$.

The chair tiling:

Discrete chair tiling:
$$L_t = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
, $F_1^t = [0, 1]^2 \cap \mathbb{Z}^2$
 $0 \mapsto \begin{array}{cccc} 3 & 0 \\ 0 & 1 \end{array}$, $1 \mapsto \begin{array}{cccc} 1 & 2 \\ 0 & 1 \end{array}$, $2 \mapsto \begin{array}{cccc} 3 & 2 \\ 2 & 1 \end{array}$, $3 \mapsto \begin{array}{cccc} 3 & 2 \\ 0 & 3 \end{array}$.

Example of a **not** bijective substitution.

Dynamical property: Non-deterministic directions for $(X_{\zeta}, S, \mathbb{Z}^d)$.

A vector $\mathbf{v} \in \mathbb{S}^{d-1}$ is **deterministic** for $(X_{\zeta}, \mathcal{T}, \mathbb{Z}^d)$ if and only if

$$\forall x, y \in X_{\zeta} : x_{H_{\mathbf{v}} \cap \mathbb{Z}^d} = y|_{H_{\mathbf{v}} \cap \mathbb{Z}^d} \implies x = y,$$

where $H_{\mathbf{v}} = \{ \mathbf{t} \in \mathbb{R}^d : \langle \mathbf{v}, \mathbf{t} \rangle < 0 \}.$

Dynamical property: Non-deterministic directions for $(X_{\zeta}, S, \mathbb{Z}^d)$.

A vector $\mathbf{v} \in \mathbb{S}^{d-1}$ is **deterministic** for $(X_{\zeta}, T, \mathbb{Z}^d)$ if and only if

$$\forall x, y \in X_{\zeta} : x_{H_{\mathbf{v}} \cap \mathbb{Z}^d} = y|_{H_{\mathbf{v}} \cap \mathbb{Z}^d} \implies x = y,$$

where $H_{\mathbf{v}} = \{ \mathbf{t} \in \mathbb{R}^d : \langle \mathbf{v}, \mathbf{t} \rangle < 0 \}.$

We are interested in the set ND($X_{\zeta}, S, \mathbb{Z}^d$) of **non-deterministic directions**.

Dynamical property: Non-deterministic directions for $(X_{\zeta}, S, \mathbb{Z}^d)$.

A vector $\mathbf{v} \in \mathbb{S}^{d-1}$ is **deterministic** for $(X_{\zeta}, T, \mathbb{Z}^d)$ if and only if

$$\forall x, y \in X_{\zeta} : x_{H_{\mathbf{v}} \cap \mathbb{Z}^d} = y|_{H_{\mathbf{v}} \cap \mathbb{Z}^d} \implies x = y,$$
 where $H_{\mathbf{v}} = \{ \mathbf{t} \in \mathbb{R}^d : \langle \mathbf{v}, \mathbf{t} \rangle < 0 \}.$

We are interested in the set ND($X_{\zeta}, S, \mathbb{Z}^d$) of **non-deterministic directions**.

M. Boyle, D. Lind (1997): Introduction of the notion of expansive subdynamics. V. Cyr, B. Kra (2015): Use of non-expansive directions for a weak version of the Nivat's conjecture.

P. Guillon, J. Kari, C. Zinoviadis (2015): Determinism for 2D-subshifts.

Proposition

Let ζ be an aperiodic primitive constant-shape substitution. Then for all $\mathbf{v} \in ND(X_{\zeta}, S, \mathbb{Z}^d)$ and $M \in \vec{N}(X_{\zeta}, S, \mathbb{Z}^d)$, we have $M^* \mathbf{v} / \|M^* \mathbf{v}\| \in ND(X_{\zeta}, S, \mathbb{Z}^d)$.

Theorem (C., 2021)

Let ζ be an aperiodic primitive polytope substitution. The non-deterministic directions $ND(X_{\zeta}, S, \mathbb{Z}^d)$ is the intersection of \mathbb{S}^{d-1} with a non-empty union of opposite normal cones of the form $\hat{N}_{\mathbf{G}}(\operatorname{conv}(T_{\zeta}))$, where **G** is a face of $\operatorname{conv}(T_{\zeta})$.

$$\hat{N}_{\mathbf{G}}(\operatorname{conv}(\mathcal{T}_{\zeta})) = \{ \mathbf{v} \in \mathbb{R}^{d} \colon \min_{\mathbf{t} \in \operatorname{conv}(\mathcal{T}_{\zeta})} \langle \mathbf{v}, \mathbf{t} \rangle = \langle \mathbf{v}, \mathbf{p} \rangle, \ \forall \ \mathbf{p} \in \mathbf{G} \}.$$

Theorem (C. (2021))

Let ζ be an aperiodic primitive polytope substitution with rank(ND($X_{\zeta}, S, \mathbb{Z}^d$)) = d. Then

- Any homomorphism in the normalizer semigroup $N(X_{\zeta}, S, \mathbb{Z}^d)$ is invertible.
- **2** The group $N(X_{\zeta}, S, \mathbb{Z}^d) / \langle S \rangle$ is finite.

Question

Does there exists an aperiodic d-dimensional constant-shape substitution with less than d linearly independent nondeterministic directions? **Partially answered**.

Question

What can be said about the normalizer group for nonpolytope constant-shape substitutions?

Question

What subgroups of $GL(d, \mathbb{Z})$ can be realized as the symmetry group of a constant-shape substitution?

Question

Is it decidable the question of whether a constant-shape substitution satisfies $ND(X_{\zeta}, S, \mathbb{Z}^d) = \mathbb{S}^{d-1}$?

and so on...

THANKS