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General setting and notions
©000

Let (X,S,Z9) and (Y,S,Z%) be two subshifts.

Let M € GL(d,Z). Homomorphism associated with M: Surjective continuous map
p: X =>Yst.VneZd ¢poSt=SMog
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How to characterize the homomorphisms between two subshifts?

2/27



General setting and notions
0e00

Examples: If M = idga.

e Factor: Surjective continuous map ¢ : X — Y commuting with the action, i.e.,
VneZd Shop=¢oS"

3/27



General setting and notions
0e00

Examples: If M = idga.

e Factor: Surjective continuous map ¢ : X — Y commuting with the action, i.e.,
VneZd Shop=¢oS"

e Conjugacy: An invertible factor.

3/27



General setting and notions
0e00

Examples: If M = idga.
e Factor: Surjective continuous map ¢ : X — Y commuting with the action, i.e.,
VneZd Shop=¢oS"
e Conjugacy: An invertible factor.

@ Automorphism: A conjugacy from a space to itself.

3/27



General setting and notions
0e00

Examples: If M = idga.
e Factor: Surjective continuous map ¢ : X — Y commuting with the action, i.e.,
VneZd Shop=¢oS"
e Conjugacy: An invertible factor.

@ Automorphism: A conjugacy from a space to itself.

The notion of homomorphisms generalizes the notion of factors via
GL(d,7Z)-conjugacies.
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@ Normalizer semigroup: Collection of all homomorphisms between X and itself.
Denoted by N(X,S,Z9).
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@ Normalizer semigroup: Collection of all homomorphisms between X and itself.
Denoted by N(X,S,Z9).

o Symmetry semigroup: Collection of matrices M in GL(d,Z) defining a
homomorphism. Denoted by N(X, S, Z9).

We have (S) < Aut(X, S,Z9) < N*(X,S,Z9), and

N*(X,S,79)/ Aut(X, S, 29) = N*(X, S, Z9) < GL(d, Z).

How to characterize the symmetry semigroup of a subshift?
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General setting and notions
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Theorem (M. Curtis, G. Hedlund, R. Lyndon (1969))

If¢:(X,S,79) — (Y,S,Z%) is a factor, there exists r > 0 and a map
® : Lpo,r)(X) = Ay such that for all n € 79, p(x)n = ®(X|nt-B(0,nN2)-

5/27



General setting and notions
oooe

Theorem (M. Curtis, G. Hedlund, R. Lyndon (1969))

If¢:(X,S,79) — (Y,S,Z%) is a factor, there exists r > 0 and a map
® : Lpo,r)(X) = Ay such that for all n € 79, p(x)n = ®(X|nt-B(0,nN2)-

For homomorphisms we have a similar result: If ¢ : X — Y is a homomorphism
associated with a matrix M € GL(d,Z), then there exists r > 0 and a map
b ﬁB(O,r)(X) — Ay such that ¢(X)n = q)(X’M—ln-i-B(OJ)ﬂZd)-

5/27



General setting and notions
oooe

Theorem (M. Curtis, G. Hedlund, R. Lyndon (1969))

If¢:(X,S,79) — (Y,S,Z%) is a factor, there exists r > 0 and a map
® : Lpo,r)(X) = Ay such that for all n € 79, p(x)n = ®(X|nt-B(0,nN2)-

For homomorphisms we have a similar result: If ¢ : X — Y is a homomorphism
associated with a matrix M € GL(d,Z), then there exists r > 0 and a map
b ﬁB(O,r)(X) — Ay such that ¢(X)n = q)(X’M—ln-i-B(OJ)ﬂZd)-

In particular the semigroup N(X,S,Z9) is countable and N*(X, S,Z9) is a discrete
subset in Homeo(X).
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o Let L:RY — R? be an expansion linear map, i.e., L is invertible, ||L|| > 1 and
|IL71|| < 1 with integer entries.
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o Let L:RY — R? be an expansion linear map, i.e., L is invertible, ||L|| > 1 and
|IL71|| < 1 with integer entries.

e Let F C Z9 be a fundamental domain of L(Zd) in Z9 ie. asetof representatives
classes of Z9/L(Z9) with 0 € F.

@ Let A be a finite alphabet.
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A multidimensional constant-shape substitution ¢ is a map A — AF. F is the
support of the substitution.

Example of a multidimensional constant-shape substitution:

()OO0 )
e Emm .- --

m- 0 _
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General setting and notions
00®0000

For any n > 0 the n-th iteration is defined as (" : A — AF3 | with FC = LC(FC) + FC

We assume the sequence (F,?) is a Fglner® sequence, i.e., for all n € 79 we have

FaA Fn
i oA+ Fy)

n—00 |Fn|

=0.

“This is not the exact definition of Fglner sequence in group theory.
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Example of iterations of a substitution:

Figure: First and second iteration of a substitution.
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. E-_ﬂgEil:

Figure: First and second iteration of a substitution.
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Example of iterations of a substitution:

Figure: Second and third iteration of a substitution.
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A substitution is primitive if there exists a positive integer n > 0, such that for every
a,be A, boccurs in ("(a).

A pattern is an element p € AP, for some finite subset P of Z¢.

The language of a substitution is the set

L = {p:pocurrsin ("(a), for some n >0, a € A}.

With the language we define the subshift X C AZ? 35 the set of all sequences
x € AZ’ such that every pattern of x is in L.
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The action of Z9 on X¢ is defined by shifts:
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12/27



General setting and notions
[elelelolote] }

The action of Z9 on X¢ is defined by shifts:

vn e Z9, (5"x)k = Xaik, Vk € Z°.
(X¢, S,Z9) is a substitutive dynamical system.

We say that the substitution ( is aperiodic if there are no non-trivial periods, i.e., if
SPx = x for some x € X¢, then p = 0.
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Theorem (C. (2021))

Let ¢ be an aperiodic primitive substitution satisfying certain geometric and
dynamical properties. Then

@ Any homomorphism in the normalizer semigroup N(Xc, S, Zd) is invertible.
@ The group N(X;,S,Z9)/ (S) is finite.

A. Bustos, D. Luz, N. Mafiibo (2021): Point (2) for bijective block substitutions.
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The table tiling:

-1 ©o-
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Figure: A pattern of the table tiling
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2 0

The table tiling: L; = < 0 2

>' A =[0,17nZz?

3 3
1 1

w o
w N

0 11 2
0 0" 1— 0 2 21— 5 , 3
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The table tiling: L; = < é g > Ff=10,1?>N7Z?
30 11 2 3 0o 2
00— 1 0° 1— 0 2 21— 5 1° 3 3 3
0 2
3 313 3/0:2(3
0 2

16 /27



Main results
000®00000000000

The table tiling: L; = < é g > Ff=10,1?>Nn7Z?
0|—>‘;’8, 1»—>(1);, 2|—>§‘;’, 3»—>g§.
0 2
0 — | == — R
0 2
Proposition

For the table tiling, we have N(X;, S,7?) = 72 x Dj.
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Geometric property: Polytope

The matrix Lgl is a contraction in RY. We define a contraction in the collection
C(R?) of nonempty compact subsets of RY equipped with the Hausdorff metric h

F: (C(RY),h) — (C(RY), h)
A = U (LH(A) + ).

gGF<
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The matrix Lgl is a contraction in RY. We define a contraction in the collection
C(R?) of nonempty compact subsets of RY equipped with the Hausdorff metric h
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There exists a compact subset T, C RY (called digit tile of the substitution) such that
F(T) = Te.
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Geometric property: Polytope

The matrix Lgl is a contraction in RY. We define a contraction in the collection
C(R?) of nonempty compact subsets of RY equipped with the Hausdorff metric h
F: (C(RY),h) — (C(RY), h)
A = U (LH(A) +8),

gGF<

There exists a compact subset T, C RY (called digit tile of the substitution) such that
F(T) = Te.

We can approximate the digit tile: T¢ = lim L~ "(FS).

n—o0o
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@
Q LC(b) :(%11)
F® = {(0,0),(1,0)}
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A polytope substitution ( is such that

@ The convex hull conv(T¢) is a polytope, i.e., has a finite number of extreme
points.
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A polytope substitution ( is such that

@ The convex hull conv(T¢) is a polytope, i.e., has a finite number of extreme
points.

@ The substitution ( is bijective, i.e., for any f € Ff, we have
{¢(a)e: a€ A = | Al

The first condition only depend on the expansion matrix and the support.
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tope.
Figure: Example conv(T;) not a poytop
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The chair tiling:
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The chair tiling:

2 0

Discrete chair tiling: L; = < 0 2

>, F{f =[0,1]?n7z?

0 2 3 2
1 1 2 1

(e ROV
w N

3 1
1 2
0~ 0 , — 0 , — , 3
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The chair tiling:

2 0

Discrete chair tiling: L; = < 0 2

>, F{f =[0,1]?n7z?

0 2 3 2
1 1 2 1

(e ROV
w N

3 1
1 2
0~ 0 , — 0 , — , 3

Example of a not bijective substitution.
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Dynamical property: Non-deterministic directions for (X, S, z9).
A vector v € S971 is deterministic for (X;, T,Z9) if and only if

Vx,y € Xe i Xpgynzd = YIHoze = X =Y,
where H, = {t e R?: (v,t) < 0}.
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Dynamical property: Non-deterministic directions for (X, S, z9).
A vector v € S971 is deterministic for (X;, T,Z9) if and only if

Vx,y € Xe i Xpgynzd = YIHoze = X =Y,
where H, = {t e R?: (v,t) < 0}.

We are interested in the set ND(X;, S,Z9) of non-deterministic directions.
M. Boyle, D. Lind (1997): Introduction of the notion of expansive subdynamics.

V. Cyr, B. Kra (2015): Use of non-expansive directions for a weak version of the
Nivat's conjecture.

P. Guillon, J. Kari, C. Zinoviadis (2015): Determinism for 2D-subshifts.
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Proposition

Let ¢ be an aperiodic primitivg constant-shape substitution. Then for all
v € ND(X;,S,Z9) and M € N(X;,S,Z9), we have M*v/||M*v| € ND(X,, S,Z9).
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Theorem (C., 2021)

Let ¢ be an aperiodic primitive polytope substitution. The non-deterministic directions
ND(X¢, S, 79) is the intersection of SY~! with a non-empty union of opposite normal
cones of the form Ng(conv(T¢)), where G is a face of conv(Ty).

I\Alg(conv(TC)) ={veR? min_ (v,t)=(v,p), VpecG}
teconv(Ty)
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Theorem (C. (2021))

Let ¢ be an aperiodic primitive polytope substitution with rank(ND(X,, S, 79)) = d.
Then

@ Any homomorphism in the normalizer semigroup N(X;, S, 79) is invertible.
@ The group N(X¢,S,Z9)/ (S) is finite.
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Does there exists an aperiodic d-dimensional constant-shape substitution with less
than d linearly independent nondeterministic directions? Partially answered.

Question

What can be said about the normalizer group for nonpolytope constant-shape
substitutions?

Question

What subgroups of GL(d,Z) can be realized as the symmetry group of a
constant-shape substitution?

Question

Is it decidable the question of whether a constant-shape substitution satisfies
ND(Xc, S,z9) =s917?

and so on...
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