Homomorphisms between multidimensional substitutive subshifts

Christopher Cabezas
LAMFA UMR CNRS
Université de Picardie Jules Verne, France

Sumtopo 2022: Tiling spaces

July 20, 2022

Let $\left(X, S, \mathbb{Z}^{d}\right)$ and $\left(Y, S, \mathbb{Z}^{d}\right)$ be two subshifts.
Let $M \in G L(d, \mathbb{Z})$. Homomorphism associated with M : Surjective continuous map $\phi: X \rightarrow Y$ s.t. $\forall \mathbf{n} \in \mathbb{Z}^{d}, \phi \circ S^{\mathbf{n}}=S^{M \mathbf{n}} \circ \phi$.

Let $\left(X, S, \mathbb{Z}^{d}\right)$ and $\left(Y, S, \mathbb{Z}^{d}\right)$ be two subshifts.
Let $M \in G L(d, \mathbb{Z})$. Homomorphism associated with M : Surjective continuous map $\phi: X \rightarrow Y$ s.t. $\forall \mathbf{n} \in \mathbb{Z}^{d}, \phi \circ S^{\mathbf{n}}=S^{M \mathbf{n}} \circ \phi$.

Question

How to characterize the homomorphisms between two subshifts?

Examples: If $M=\operatorname{id}_{\mathbb{R}^{d}}$.

- Factor: Surjective continuous map $\phi: X \rightarrow Y$ commuting with the action, i.e., $\forall \mathbf{n} \in \mathbb{Z}^{d}, S^{\mathbf{n}} \circ \phi=\phi \circ S^{\mathbf{n}}$.

Examples: If $M=\operatorname{id}_{\mathbb{R}^{d}}$.

- Factor: Surjective continuous map $\phi: X \rightarrow Y$ commuting with the action, i.e., $\forall \mathbf{n} \in \mathbb{Z}^{d}, S^{\mathbf{n}} \circ \phi=\phi \circ S^{\mathbf{n}}$.
- Conjugacy: An invertible factor.

Examples: If $M=\operatorname{id}_{\mathbb{R}^{d}}$.

- Factor: Surjective continuous map $\phi: X \rightarrow Y$ commuting with the action, i.e., $\forall \mathbf{n} \in \mathbb{Z}^{d}, S^{\mathbf{n}} \circ \phi=\phi \circ S^{\mathbf{n}}$.
- Conjugacy: An invertible factor.
- Automorphism: A conjugacy from a space to itself.

Examples: If $M=\operatorname{id}_{\mathbb{R}^{d}}$.

- Factor: Surjective continuous map $\phi: X \rightarrow Y$ commuting with the action, i.e., $\forall \mathbf{n} \in \mathbb{Z}^{d}, S^{\mathbf{n}} \circ \phi=\phi \circ S^{\mathbf{n}}$.
- Conjugacy: An invertible factor.
- Automorphism: A conjugacy from a space to itself.

The notion of homomorphisms generalizes the notion of factors via $G L(d, \mathbb{Z})$-conjugacies.

- Normalizer semigroup: Collection of all homomorphisms between X and itself. Denoted by $N\left(X, S, \mathbb{Z}^{d}\right)$.
- Normalizer semigroup: Collection of all homomorphisms between X and itself. Denoted by $N\left(X, S, \mathbb{Z}^{d}\right)$.
- Symmetry semigroup: Collection of matrices M in $G L(d, \mathbb{Z})$ defining a homomorphism. Denoted by $\vec{N}\left(X, S, \mathbb{Z}^{d}\right)$.
- Normalizer semigroup: Collection of all homomorphisms between X and itself. Denoted by $N\left(X, S, \mathbb{Z}^{d}\right)$.
- Symmetry semigroup: Collection of matrices M in $G L(d, \mathbb{Z})$ defining a homomorphism. Denoted by $\vec{N}\left(X, S, \mathbb{Z}^{d}\right)$.

We have $\langle S\rangle \unlhd \operatorname{Aut}\left(X, S, \mathbb{Z}^{d}\right) \unlhd N^{*}\left(X, S, \mathbb{Z}^{d}\right)$, and
$N^{*}\left(X, S, \mathbb{Z}^{d}\right) / \operatorname{Aut}\left(X, S, \mathbb{Z}^{d}\right) \cong \overrightarrow{N^{*}}\left(X, S, \mathbb{Z}^{d}\right) \leq G L(d, \mathbb{Z})$.

- Normalizer semigroup: Collection of all homomorphisms between X and itself. Denoted by $N\left(X, S, \mathbb{Z}^{d}\right)$.
- Symmetry semigroup: Collection of matrices M in $G L(d, \mathbb{Z})$ defining a homomorphism. Denoted by $\vec{N}\left(X, S, \mathbb{Z}^{d}\right)$.

We have $\langle S\rangle \unlhd \operatorname{Aut}\left(X, S, \mathbb{Z}^{d}\right) \unlhd N^{*}\left(X, S, \mathbb{Z}^{d}\right)$, and
$N^{*}\left(X, S, \mathbb{Z}^{d}\right) / \operatorname{Aut}\left(X, S, \mathbb{Z}^{d}\right) \cong \overrightarrow{N^{*}}\left(X, S, \mathbb{Z}^{d}\right) \leq G L(d, \mathbb{Z})$.

Question

How to characterize the symmetry semigroup of a subshift?

Theorem (M. Curtis, G. Hedlund, R. Lyndon (1969))
If $\phi:\left(X, S, \mathbb{Z}^{d}\right) \rightarrow\left(Y, S, \mathbb{Z}^{d}\right)$ is a factor, there exists $r>0$ and a map $\Phi: \mathcal{L}_{B(\mathbf{0}, r)}(X) \rightarrow \mathcal{A}_{Y}$ such that for all $\mathbf{n} \in \mathbb{Z}^{d}, \phi(x)_{\mathbf{n}}=\Phi\left(\left.x\right|_{\mathbf{n}+B(\mathbf{0}, r) \cap \mathbb{Z}^{d}}\right)$.

Theorem (M. Curtis, G. Hedlund, R. Lyndon (1969))
If $\phi:\left(X, S, \mathbb{Z}^{d}\right) \rightarrow\left(Y, S, \mathbb{Z}^{d}\right)$ is a factor, there exists $r>0$ and a map $\Phi: \mathcal{L}_{B(\mathbf{0}, r)}(X) \rightarrow \mathcal{A}_{Y}$ such that for all $\mathbf{n} \in \mathbb{Z}^{d}, \phi(x)_{\mathbf{n}}=\Phi\left(\left.x\right|_{\mathbf{n}+B(\mathbf{0}, r) \cap \mathbb{Z}^{d}}\right)$.

For homomorphisms we have a similar result: If $\phi: X \rightarrow Y$ is a homomorphism associated with a matrix $M \in G L(d, \mathbb{Z})$, then there exists $r>0$ and a map $\Phi: \mathcal{L}_{B(\mathbf{0}, r)}(X) \rightarrow \mathcal{A}_{Y}$ such that $\phi(x)_{\mathbf{n}}=\Phi\left(\left.x\right|_{M^{-1} \mathbf{n}+B(\mathbf{0}, r) \cap \mathbb{Z}^{d}}\right)$.

Theorem (M. Curtis, G. Hedlund, R. Lyndon (1969))

If $\phi:\left(X, S, \mathbb{Z}^{d}\right) \rightarrow\left(Y, S, \mathbb{Z}^{d}\right)$ is a factor, there exists $r>0$ and a map $\Phi: \mathcal{L}_{B(\mathbf{0}, r)}(X) \rightarrow \mathcal{A}_{Y}$ such that for all $\mathbf{n} \in \mathbb{Z}^{d}, \phi(x)_{\mathbf{n}}=\Phi\left(\left.x\right|_{\mathbf{n}+B(\mathbf{0}, r) \cap \mathbb{Z}^{d}}\right)$.

For homomorphisms we have a similar result: If $\phi: X \rightarrow Y$ is a homomorphism associated with a matrix $M \in G L(d, \mathbb{Z})$, then there exists $r>0$ and a map $\Phi: \mathcal{L}_{B(\mathbf{0}, r)}(X) \rightarrow \mathcal{A}_{Y}$ such that $\phi(x)_{\mathbf{n}}=\Phi\left(\left.x\right|_{M^{-1} \mathbf{n}+B(\mathbf{0}, r) \cap \mathbb{Z}^{d}}\right)$.

In particular the semigroup $N\left(X, S, \mathbb{Z}^{d}\right)$ is countable and $N^{*}\left(X, S, \mathbb{Z}^{d}\right)$ is a discrete subset in Homeo (X).

- Let $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an expansion linear map, i.e., L is invertible, $\|L\|>1$ and $\left\|L^{-1}\right\|<1$ with integer entries.
- Let $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an expansion linear map, i.e., L is invertible, $\|L\|>1$ and $\left\|L^{-1}\right\|<1$ with integer entries.
- Let $F \subseteq \mathbb{Z}^{d}$ be a fundamental domain of $L\left(\mathbb{Z}^{d}\right)$ in \mathbb{Z}^{d}, i.e., a set of representatives classes of $\mathbb{Z}^{d} / L\left(\mathbb{Z}^{d}\right)$ with $\mathbf{0} \in F$.
- Let $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an expansion linear map, i.e., L is invertible, $\|L\|>1$ and $\left\|L^{-1}\right\|<1$ with integer entries.
- Let $F \subseteq \mathbb{Z}^{d}$ be a fundamental domain of $L\left(\mathbb{Z}^{d}\right)$ in \mathbb{Z}^{d}, i.e., a set of representatives classes of $\mathbb{Z}^{d} / L\left(\mathbb{Z}^{d}\right)$ with $\mathbf{0} \in F$.
- Let \mathcal{A} be a finite alphabet.

A multidimensional constant-shape substitution ζ is a map $\mathcal{A} \rightarrow \mathcal{A}^{F} . F$ is the support of the substitution.

A multidimensional constant-shape substitution ζ is a map $\mathcal{A} \rightarrow \mathcal{A}^{F} . F$ is the support of the substitution.

Example of a multidimensional constant-shape substitution:

$$
L=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), F=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{-1}{-1}\right\}:
$$

For any $n>0$ the n-th iteration is defined as $\zeta^{n}: \mathcal{A} \rightarrow \mathcal{A}^{F_{n}^{\zeta}}$, with $F_{n+1}^{\zeta}=L_{\zeta}\left(F_{n}^{\zeta}\right)+F_{1}^{\zeta}$.

For any $n>0$ the n-th iteration is defined as $\zeta^{n}: \mathcal{A} \rightarrow \mathcal{A}^{F_{n}^{\zeta}}$, with $F_{n+1}^{\zeta}=L_{\zeta}\left(F_{n}^{\zeta}\right)+F_{1}^{\zeta}$.

Remark

We assume the sequence $\left(F_{n}^{\zeta}\right)$ is a Følnera sequence, i.e., for all $\mathbf{n} \in \mathbb{Z}^{d}$ we have

$$
\lim _{n \rightarrow \infty} \frac{\left|F_{n} \Delta\left(\mathbf{n}+F_{n}\right)\right|}{\left|F_{n}\right|}=0 .
$$

[^0]Example of iterations of a substitution:

Figure: First and second iteration of a substitution.

Example of iterations of a substitution:

Figure: First and second iteration of a substitution.

Example of iterations of a substitution:

Figure: Second and third iteration of a substitution.

A substitution is primitive if there exists a positive integer $n>0$, such that for every $a, b \in \mathcal{A}, b$ occurs in $\zeta^{n}(a)$.

A substitution is primitive if there exists a positive integer $n>0$, such that for every $a, b \in \mathcal{A}, b$ occurs in $\zeta^{n}(a)$.

A pattern is an element $\mathrm{p} \in \mathcal{A}^{P}$, for some finite subset P of \mathbb{Z}^{d}.

A substitution is primitive if there exists a positive integer $n>0$, such that for every $a, b \in \mathcal{A}, b$ occurs in $\zeta^{n}(a)$.

A pattern is an element $\mathrm{p} \in \mathcal{A}^{P}$, for some finite subset P of \mathbb{Z}^{d}.
The language of a substitution is the set

$$
\mathcal{L}_{\zeta}=\left\{p: p \text { ocurrs in } \zeta^{n}(a), \text { for some } n>0, a \in \mathcal{A}\right\} .
$$

A substitution is primitive if there exists a positive integer $n>0$, such that for every $a, b \in \mathcal{A}, b$ occurs in $\zeta^{n}(a)$.

A pattern is an element $\mathrm{p} \in \mathcal{A}^{P}$, for some finite subset P of \mathbb{Z}^{d}.

The language of a substitution is the set

$$
\mathcal{L}_{\zeta}=\left\{p: p \text { ocurrs in } \zeta^{n}(a), \text { for some } n>0, a \in \mathcal{A}\right\} .
$$

With the language we define the subshift $X_{\zeta} \subseteq \mathcal{A}^{\mathbb{Z}^{d}}$ as the set of all sequences $x \in \mathcal{A}^{\mathbb{Z}^{d}}$ such that every pattern of x is in \mathcal{L}_{ζ}.

The action of \mathbb{Z}^{d} on X_{ζ} is defined by shifts:

$$
\forall \mathbf{n} \in \mathbb{Z}^{d},\left(S^{\mathbf{n}} x\right)_{\mathbf{k}}=x_{\mathbf{n}+\mathbf{k}}, \forall \mathbf{k} \in \mathbb{Z}^{d}
$$

$\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$ is a substitutive dynamical system.

The action of \mathbb{Z}^{d} on X_{ζ} is defined by shifts:

$$
\forall \mathbf{n} \in \mathbb{Z}^{d},\left(S^{\mathbf{n}} x\right)_{\mathbf{k}}=x_{\mathbf{n}+\mathbf{k}}, \forall \mathbf{k} \in \mathbb{Z}^{d}
$$

$\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$ is a substitutive dynamical system.
We say that the substitution ζ is aperiodic if there are no non-trivial periods, i.e., if $S^{\mathbf{p}_{X}}=x$ for some $x \in X_{\zeta}$, then $\mathbf{p}=0$.

Theorem (C. (2021))
Let ζ be an aperiodic primitive substitution satisfying certain geometric and dynamical properties. Then

Theorem (C. (2021))

Let ζ be an aperiodic primitive substitution satisfying certain geometric and dynamical properties. Then
(1) Any homomorphism in the normalizer semigroup $N\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$ is invertible.

Theorem (C. (2021))

Let ζ be an aperiodic primitive substitution satisfying certain geometric and dynamical properties. Then
(1) Any homomorphism in the normalizer semigroup $N\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$ is invertible.
(2) The group $N\left(X_{\zeta}, S, \mathbb{Z}^{d}\right) /\langle S\rangle$ is finite.
A. Bustos, D. Luz, N. Mañibo (2021): Point (2) for bijective block substitutions.

The table tiling:

Figure: A pattern of the table tiling

The table tiling: $L_{t}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right), F_{1}^{t}=[0,1]^{2} \cap \mathbb{Z}^{2}$

$$
\begin{array}{llllll}
0 & \begin{array}{ll}
3 & 0 \\
1
\end{array} & 0
\end{array}, \quad 1 \mapsto \begin{array}{cc}
1 & 1 \\
0 & 2
\end{array}, \quad 2 \mapsto \begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}, \quad 3 \mapsto \begin{array}{lll}
0 & 2 \\
3 & 3
\end{array} .
$$

The table tiling: $L_{t}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right), F_{1}^{t}=[0,1]^{2} \cap \mathbb{Z}^{2}$

$$
\begin{aligned}
& \begin{array}{llllll}
0 & \begin{array}{cc}
3 & 0 \\
1 & 0
\end{array},
\end{array} \quad 1 \mapsto \begin{array}{cc}
1 & 1 \\
0 & 2
\end{array}, \quad 2 \mapsto \begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}, \quad 3 \mapsto \begin{array}{ll}
0 & 2 \\
3 & 3
\end{array} . \\
& \begin{array}{|c|c|c|}
\hline 3 \\
\hline 1 \\
\hdashline 1
\end{array} \longrightarrow \begin{array}{|c|c|}
\hline 0 & 2 \\
\hline 3 & 3 \\
\hdashline 1 & 1 \\
\hline 0 & 0
\end{array} \quad \begin{array}{|l|l|l|l|l|}
\hline 0 & 2 \\
\hline 1 & 0 & 2 & 1 \\
\hline
\end{array}
\end{aligned}
$$

The table tiling: $L_{t}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right), F_{1}^{t}=[0,1]^{2} \cap \mathbb{Z}^{2}$

$$
\begin{aligned}
& \begin{array}{llllll}
0 & \begin{array}{ll}
3 & 0 \\
1 & 0
\end{array},
\end{array} \quad 1 \mapsto \begin{array}{cc}
1 & 1 \\
0 & 2
\end{array}, \quad 2 \mapsto \begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}, \quad 3 \mapsto \begin{array}{lll}
0 & 2 \\
3 & 3
\end{array} . \\
& \begin{array}{|c|c|c|}
\hline 3 \\
\hdashline 1 \\
\hline 1
\end{array} \longrightarrow \begin{array}{|c|c|}
\hline 0 & 2 \\
\hline 3 & 3 \\
\hdashline 1 & 1 \\
\hline 0 & 0
\end{array} \quad \begin{array}{|l|l|l|l|l|}
\hline 0 & 2 \\
\hline 1 & 0 & 2 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Proposition

For the table tiling, we have $N\left(X_{t}, S, \mathbb{Z}^{2}\right) \cong \mathbb{Z}^{2} \rtimes D_{4}$.

Geometric property: Polytope
The matrix L_{ζ}^{-1} is a contraction in \mathbb{R}^{d}. We define a contraction in the collection $\mathcal{C}\left(\mathbb{R}^{d}\right)$ of nonempty compact subsets of \mathbb{R}^{d} equipped with the Hausdorff metric h

$$
\begin{aligned}
F: \quad\left(\mathcal{C}\left(\mathbb{R}^{d}\right), h\right) & \rightarrow\left(\mathcal{C}\left(\mathbb{R}^{d}\right), h\right) \\
A & \mapsto \bigcup_{\mathbf{g} \in F_{1}^{\zeta}}\left(L_{\zeta}^{-1}(A)+\mathbf{g}\right)
\end{aligned}
$$

Geometric property: Polytope
The matrix L_{ζ}^{-1} is a contraction in \mathbb{R}^{d}. We define a contraction in the collection $\mathcal{C}\left(\mathbb{R}^{d}\right)$ of nonempty compact subsets of \mathbb{R}^{d} equipped with the Hausdorff metric h

$$
\begin{aligned}
F: \quad\left(\mathcal{C}\left(\mathbb{R}^{d}\right), h\right) & \rightarrow\left(\mathcal{C}\left(\mathbb{R}^{d}\right), h\right) \\
A & \mapsto \bigcup_{\mathbf{g} \in F_{1}^{\zeta}}\left(L_{\zeta}^{-1}(A)+\mathbf{g}\right),
\end{aligned}
$$

There exists a compact subset $T_{\zeta} \subseteq \mathbb{R}^{d}$ (called digit tile of the substitution) such that $F\left(T_{\zeta}\right)=T_{\zeta}$.

Geometric property: Polytope
The matrix L_{ζ}^{-1} is a contraction in \mathbb{R}^{d}. We define a contraction in the collection $\mathcal{C}\left(\mathbb{R}^{d}\right)$ of nonempty compact subsets of \mathbb{R}^{d} equipped with the Hausdorff metric h

$$
\begin{aligned}
F: \quad\left(\mathcal{C}\left(\mathbb{R}^{d}\right), h\right) & \rightarrow\left(\mathcal{C}\left(\mathbb{R}^{d}\right), h\right) \\
A & \mapsto \bigcup_{\mathbf{g} \in F_{1}^{\zeta}}\left(L_{\zeta}^{-1}(A)+\mathbf{g}\right),
\end{aligned}
$$

There exists a compact subset $T_{\zeta} \subseteq \mathbb{R}^{d}$ (called digit tile of the substitution) such that $F\left(T_{\zeta}\right)=T_{\zeta}$.

We can approximate the digit tile: $T_{\zeta}=\lim _{n \rightarrow \infty} L_{\zeta}^{-n}\left(F_{n}^{\zeta}\right)$.

(a)

(b)

Figure: Approximation of some digit tiles: (a) Gasket, (b) Twin Dragon.
(a) $\begin{aligned} L_{\zeta_{(a)}} & =\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right) \\ F_{1}^{\zeta(a)} & =\{(0,0),(1,0),(0,1),(-1,-1)\} .\end{aligned}$
(b) $\quad \begin{aligned} L_{\zeta_{(b)}} & =\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right) \\ \quad F_{1}^{\zeta(b)} & =\{(0,0),(1,0)\} .\end{aligned}$

A polytope substitution ζ is such that
(1) The convex hull $\operatorname{conv}\left(T_{\zeta}\right)$ is a polytope, i.e., has a finite number of extreme points.

A polytope substitution ζ is such that
(1) The convex hull $\operatorname{conv}\left(T_{\zeta}\right)$ is a polytope, i.e., has a finite number of extreme points.
(2) The substitution ζ is bijective, i.e., for any $\mathbf{f} \in F_{1}^{\zeta}$, we have $\left|\left\{\zeta(a)_{\mathbf{f}}: a \in \mathcal{A}\right\}\right|=|\mathcal{A}|$.

A polytope substitution ζ is such that
(1) The convex hull $\operatorname{conv}\left(T_{\zeta}\right)$ is a polytope, i.e., has a finite number of extreme points.
(2) The substitution ζ is bijective, i.e., for any $\mathbf{f} \in F_{1}^{\zeta}$, we have $\left|\left\{\zeta(a)_{\mathbf{f}}: a \in \mathcal{A}\right\}\right|=|\mathcal{A}|$.

The first condition only depend on the expansion matrix and the support.

$$
L=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \text { and } F_{1}=\left\{\binom{0}{0},\binom{0}{1},\binom{0}{2},\binom{1}{0},\binom{1}{2},\binom{1}{-2}\right\} .
$$

Figure: Example $\operatorname{conv}\left(T_{\zeta}\right)$ not a poytope.

The chair tiling:

The chair tiling:

Discrete chair tiling: $L_{t}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right), F_{1}^{t}=[0,1]^{2} \cap \mathbb{Z}^{2}$

$$
0 \mapsto \begin{array}{cc}
3 & 0 \\
0 & 1
\end{array}, \quad 1 \mapsto \begin{array}{cc}
1 & 2 \\
0 & 1
\end{array}, \quad 2 \mapsto \begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}, \quad 3 \mapsto \begin{array}{ll}
3 & 2 \\
0 & 3
\end{array} .
$$

The chair tiling:

Discrete chair tiling: $L_{t}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right), F_{1}^{t}=[0,1]^{2} \cap \mathbb{Z}^{2}$

$0 \mapsto$| 3 | 0 |
| :---: | :---: |
| 0 | 1 |,$\quad 1 \mapsto$| 1 | 2 |
| :---: | :---: |
| 0 | 1 |,\quad| $2 \mapsto$ | 3 |
| :--- | :--- |
| 2 | 2 |
| 2 | |,$\quad 3 \mapsto$| 3 | 2 |
| :--- | :--- |
| 0 | 3 |.

Example of a not bijective substitution.

Dynamical property: Non-deterministic directions for $\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$.
A vector $\mathbf{v} \in \mathbb{S}^{d-1}$ is deterministic for $\left(X_{\zeta}, T, \mathbb{Z}^{d}\right)$ if and only if

$$
\forall x, y \in X_{\zeta}: x_{H_{v} \cap \mathbb{Z}^{d}}=\left.y\right|_{H_{v} \cap \mathbb{Z}^{d}} \Longrightarrow x=y
$$

where $H_{\mathbf{v}}=\left\{\mathbf{t} \in \mathbb{R}^{d}:\langle\mathbf{v}, \mathbf{t}\rangle<0\right\}$.

Dynamical property: Non-deterministic directions for $\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$.
A vector $\mathbf{v} \in \mathbb{S}^{d-1}$ is deterministic for $\left(X_{\zeta}, T, \mathbb{Z}^{d}\right)$ if and only if

$$
\forall x, y \in X_{\zeta}: x_{H_{v} \cap \mathbb{Z}^{d}}=\left.y\right|_{H_{v} \cap \mathbb{Z}^{d}} \Longrightarrow x=y
$$

where $H_{\mathbf{v}}=\left\{\mathbf{t} \in \mathbb{R}^{d}:\langle\mathbf{v}, \mathbf{t}\rangle<0\right\}$.
We are interested in the set $\operatorname{ND}\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$ of non-deterministic directions.

Dynamical property: Non-deterministic directions for $\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$.
A vector $\mathbf{v} \in \mathbb{S}^{d-1}$ is deterministic for $\left(X_{\zeta}, T, \mathbb{Z}^{d}\right)$ if and only if

$$
\forall x, y \in X_{\zeta}: x_{H_{v} \cap \mathbb{Z}^{d}}=\left.y\right|_{H_{v} \cap \mathbb{Z}^{d}} \Longrightarrow x=y
$$

where $H_{\mathbf{v}}=\left\{\mathbf{t} \in \mathbb{R}^{d}:\langle\mathbf{v}, \mathbf{t}\rangle<0\right\}$.
We are interested in the set $\operatorname{ND}\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$ of non-deterministic directions.
M. Boyle, D. Lind (1997): Introduction of the notion of expansive subdynamics. V. Cyr, B. Kra (2015): Use of non-expansive directions for a weak version of the Nivat's conjecture.
P. Guillon, J. Kari, C. Zinoviadis (2015): Determinism for 2D-subshifts.

Proposition

Let ζ be an aperiodic primitive constant-shape substitution. Then for all $\mathbf{v} \in \mathrm{ND}\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$ and $M \in \vec{N}\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$, we have $M^{*} \mathbf{v} /\left\|M^{*} \mathbf{v}\right\| \in \mathrm{ND}\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$.

Theorem (C., 2021)

Let ζ be an aperiodic primitive polytope substitution. The non-deterministic directions $\mathrm{ND}\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$ is the intersection of \mathbb{S}^{d-1} with a non-empty union of opposite normal cones of the form $\hat{N}_{\mathbf{G}}\left(\operatorname{conv}\left(T_{\zeta}\right)\right)$, where \mathbf{G} is a face of $\operatorname{conv}\left(T_{\zeta}\right)$.

$$
\hat{N}_{\mathbf{G}}\left(\operatorname{conv}\left(T_{\zeta}\right)\right)=\left\{\mathbf{v} \in \mathbb{R}^{d}: \min _{\mathbf{t} \in \operatorname{conv}\left(T_{\zeta}\right)}\langle\mathbf{v}, \mathbf{t}\rangle=\langle\mathbf{v}, \mathbf{p}\rangle, \forall \mathbf{p} \in \mathbf{G}\right\} .
$$

Theorem (C. (2021))

Let ζ be an aperiodic primitive polytope substitution with $\operatorname{rank}\left(\operatorname{ND}\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)\right)=d$. Then
(1) Any homomorphism in the normalizer semigroup $N\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)$ is invertible.
(2) The group $N\left(X_{\zeta}, S, \mathbb{Z}^{d}\right) /\langle S\rangle$ is finite.

Question

Does there exists an aperiodic d-dimensional constant-shape substitution with less than d linearly independent nondeterministic directions? Partially answered.

Question

What can be said about the normalizer group for nonpolytope constant-shape substitutions?

Question

What subgroups of $G L(d, \mathbb{Z})$ can be realized as the symmetry group of a constant-shape substitution?

Question

Is it decidable the question of whether a constant-shape substitution satisfies $\mathrm{ND}\left(X_{\zeta}, S, \mathbb{Z}^{d}\right)=\mathbb{S}^{d-1}$?

THANKS

[^0]: ${ }^{a}$ This is not the exact definition of Følner sequence in group theory.

