On dynamics of Lorenz maps - Renormalizations and primary $n(k)$-cycles

Łukasz Cholewa
AGH University of Science and Technology

$$
21 \text { July } 2022
$$

AGH

36th Summer Topology Conference, Vienna, 18-22 July 2022

The talk is based on joint works with Piotr Oprocha

园
Ł. Cholewa, P. Oprocha, On α-limit sets in Lorenz maps, Entropy, 23(9) (2021), article id: 1153.
(\ddagger. Cholewa, P. Oprocha, Renormalization in Lorenz maps completely invariant sets and periodic orbits, preprint, arXiv:2104.00110.

Presentation plan

Plan

Presentation plan

Plan

- Introduction

Presentation plan

Plan

- Introduction
- Theory of Yiming Ding: Renormalizations and invariant sets

Presentation plan

Plan

- Introduction
- Theory of Yiming Ding: Renormalizations and invariant sets
- Primary $n(k)$-cycles

Presentation plan

Plan

- Introduction
- Theory of Yiming Ding: Renormalizations and invariant sets
- Primary $n(k)$-cycles
- Locally eventually onto Lorenz maps and the matching property

Expanding Lorenz maps

Expanding Lorenz maps are maps $f:[0,1] \rightarrow[0,1]$ satisfying the following three conditions:

Expanding Lorenz maps

Expanding Lorenz maps are maps $f:[0,1] \rightarrow[0,1]$ satisfying the following three conditions:

- there is a critical point $c \in(0,1)$
s.t. f is continuous and strictly increasing on $[0, c)$ and $(c, 1]$;

Expanding Lorenz maps

Expanding Lorenz maps are maps $f:[0,1] \rightarrow[0,1]$ satisfying the following three conditions:

- there is a critical point $c \in(0,1)$
s.t. f is continuous and strictly increasing on $[0, c)$ and $(c, 1]$;
- $\lim _{x \rightarrow c^{-}} f(x)=1$ and $\lim _{x \rightarrow c^{+}} f(x)=0$;

Expanding Lorenz maps

Expanding Lorenz maps are maps $f:[0,1] \rightarrow[0,1]$ satisfying the following three conditions:

- there is a critical point $c \in(0,1)$
s.t. f is continuous and strictly increasing on $[0, c)$ and ($c, 1]$;
- $\lim _{x \rightarrow c^{-}} f(x)=1$ and $\lim _{x \rightarrow c^{+}} f(x)=0$;
- f is differentiable for all points not belonging to a finite set $F \subseteq[0,1]$ and $\inf _{x \notin F} f^{\prime}(x)>1$.

Expanding Lorenz maps

Expanding Lorenz maps are maps $f:[0,1] \rightarrow[0,1]$ satisfying the following three conditions:

- there is a critical point $c \in(0,1)$
s.t. f is continuous and strictly increasing on $[0, c)$ and $(c, 1]$;
- $\lim _{x \rightarrow c^{-}} f(x)=1$ and $\lim _{x \rightarrow c^{+}} f(x)=0 ;$
- f is differentiable for all points not belonging to a finite set $F \subseteq[0,1]$ and $\inf _{x \notin F} f^{\prime}(x)>1$.

Remark

The last condition implies that the set $\bigcup_{n \in \mathbb{N}_{0}} f^{-n}(c)$ is dense in $[0,1]$.

Motivation: Geometric models of Lorenz attractor

Motivation: Geometric models of Lorenz attractor

- Poincaré maps in geometric models of Lorenz attractor.

围 V. S.Afraǐmovich, V. V. Bykov, L. P. Shil'nikov, On attracting structurally unstable limit sets of Lorenz attractor type. (in Russian) Trudy Moskov. Mat. Obshch. 44 (1982), 150-212.
目 J. Guckenheimer, A strange, strange attractor, in: J. E. Marsden and M. McCracken (eds.), The Hopf Bifurcation Theorem and its Applications, Springer, 1976, pp. 368-381.
E- R. F. Williams, The structure of Lorenz attractors. Inst. Hautes Ètudes Sci. Publ. Math. No. 50, (1979), 73-99.

Motivation: Number theory

Motivation: Number theory

- Expansions of real numbers in non-integer bases.
(1) W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.

囯 A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493.

Motivation: Fractal geometry

Motivation: Fractal geometry

- Applications in fractal geometry.

國 M. F. Barnsley, Transformations between self-referential sets. Amer. Math. Monthly 116 (2009), no.4, 291-304.

E- M. F. Barnsley, B. Harding, A. Vince, The entropy of a special overlapping dynamical system. Ergodic Theory Dynam. Systems 34 (2014), no.2, 469-486.

Renormalizations of Lorenz maps

Renormalizations of Lorenz maps

Definition

Let f be an expanding Lorenz map.

Renormalizations of Lorenz maps

Definition

Let f be an expanding Lorenz map. If there is a proper subinterval $(u, v) \ni c$ of $(0,1)$ and integers $I, r>1$ such that the map $g:[u, v] \rightarrow[u, v]$ defined by

Renormalizations of Lorenz maps

Definition

Let f be an expanding Lorenz map. If there is a proper subinterval $(u, v) \ni c$ of $(0,1)$ and integers $I, r>1$ such that the map $g:[u, v] \rightarrow[u, v]$ defined by

$$
g(x)= \begin{cases}f^{\prime}(x), & \text { if } x \in[u, c) \\ f^{\prime}(x), & \text { if } x \in(c, v]\end{cases}
$$

is itself a Lorenz map (after linear change of domain from $[u, v]$ to $[0,1]$), then we say that f is renormalizable or that g is a renormalization of f

Renormalizations of Lorenz maps

Definition

Let f be an expanding Lorenz map. If there is a proper subinterval $(u, v) \ni c$ of $(0,1)$ and integers $I, r>1$ such that the map $g:[u, v] \rightarrow[u, v]$ defined by

$$
g(x)= \begin{cases}f^{\prime}(x), & \text { if } x \in[u, c) \\ f^{\prime}(x), & \text { if } x \in(c, v]\end{cases}
$$

is itself a Lorenz map (after linear change of domain from $[u, v]$ to $[0,1]$), then we say that f is renormalizable or that g is a renormalization of f and write shortly $g=\left(f^{\prime}, f^{r}\right)$.

Renormalizations of Lorenz maps

Definition

Let f be an expanding Lorenz map. If there is a proper subinterval $(u, v) \ni c$ of $(0,1)$ and integers $I, r>1$ such that the map $g:[u, v] \rightarrow[u, v]$ defined by

$$
g(x)= \begin{cases}f^{\prime}(x), & \text { if } x \in[u, c) \\ f^{\prime}(x), & \text { if } x \in(c, v]\end{cases}
$$

is itself a Lorenz map (after linear change of domain from $[u, v]$ to $[0,1]$), then we say that f is renormalizable or that g is a renormalization of f and write shortly $g=\left(f^{\prime}, f^{r}\right)$. The interval $[u, v]$ is called the renormalization interval.

Example: Expanding Lorenz map T

Example: Expanding Lorenz map T

- Consider an expanding Lorenz map $T:[0,1] \rightarrow[0,1]$ defined by $T(x)=\beta x+\alpha(\bmod 1)$, where

$$
\beta:=\frac{9 \sqrt[5]{2}}{10} \approx 1.03383, \quad \alpha:=\frac{\sqrt[5]{2}}{3} \approx 0.38289
$$

Example: Expanding Lorenz map T

- Consider an expanding Lorenz map $T:[0,1] \rightarrow[0,1]$ defined by $T(x)=\beta x+\alpha(\bmod 1)$, where

$$
\beta:=\frac{9 \sqrt[5]{2}}{10} \approx 1.03383, \quad \alpha:=\frac{\sqrt[5]{2}}{3} \approx 0.38289
$$

- Then

$$
c=\frac{1-\alpha}{\beta} \approx 0.59690
$$

Example: Expanding Lorenz map T

- Consider an expanding Lorenz map $T:[0,1] \rightarrow[0,1]$ defined by $T(x)=\beta x+\alpha(\bmod 1)$, where

$$
\beta:=\frac{9 \sqrt[5]{2}}{10} \approx 1.03383, \quad \alpha:=\frac{\sqrt[5]{2}}{3} \approx 0.38289
$$

- Then

$$
c=\frac{1-\alpha}{\beta} \approx 0.59690
$$

- Denote $p_{i}:=T^{i}(0)$ and $q_{i}:=T^{i}(1)$.

Example: Graph of the map T

Example: Graph of the renormalization $G=\left(T^{3}, T^{2}\right)$

Example: Graph of the renormalization $G=\left(T^{3}, T^{2}\right)$

Example: Graph of the map G after rescaling

Theory of Yiming Ding

Theory of Yiming Ding

围 Y. Ding, Renormalization and α-limit set for expanding Lorenz maps. Discrete Contin. Dyn. Syst. 29 (2011), 979-999.

Theory of Yiming Ding

围 Y. Ding, Renormalization and α-limit set for expanding Lorenz maps. Discrete Contin. Dyn. Syst. 29 (2011), 979-999.

Definition

A nonempty set $E \subset[0,1]$ is said to be completely invariant under f, if $f(E)=E=f^{-1}(E)$.

Theory of Yiming Ding

國 Y. Ding, Renormalization and α-limit set for expanding Lorenz maps. Discrete Contin. Dyn. Syst. 29 (2011), 979-999.

Definition

A nonempty set $E \subset[0,1]$ is said to be completely invariant under f, if $f(E)=E=f^{-1}(E)$.

Let $U \subset[0,1]$ be an open set. By $N(U)$ we denote the smallest integer $n \geqslant 0$ such that $c \in f^{n}(U)$.

Theory of Yiming Ding

Theory of Yiming Ding

Theorem (Ding, 2011)

1° Suppose E is a proper completely invariant closed set of f,

Theory of Yiming Ding

Theorem (Ding, 2011)

1° Suppose E is a proper completely invariant closed set of f, put

$$
e_{-}=\sup \{x \in E, x<c\}, \quad e_{+}=\inf \{x \in E, x>c\}
$$

and

$$
I=N\left(\left(e_{-}, c\right)\right), \quad r=N\left(\left(c, e_{+}\right)\right) .
$$

Theory of Yiming Ding

Theorem (Ding, 2011)

1° Suppose E is a proper completely invariant closed set of f, put

$$
e_{-}=\sup \{x \in E, x<c\}, \quad e_{+}=\inf \{x \in E, x>c\}
$$

and

$$
I=N\left(\left(e_{-}, c\right)\right), \quad r=N\left(\left(c, e_{+}\right)\right) .
$$

Then $f^{\prime}\left(e_{-}\right)=e_{-}, f^{r}\left(e_{+}\right)=e_{+}$

Theory of Yiming Ding

Theorem (Ding, 2011)

1° Suppose E is a proper completely invariant closed set of f, put

$$
e_{-}=\sup \{x \in E, x<c\}, \quad e_{+}=\inf \{x \in E, x>c\}
$$

and

$$
I=N\left(\left(e_{-}, c\right)\right), \quad r=N\left(\left(c, e_{+}\right)\right) .
$$

Then $f^{\prime}\left(e_{-}\right)=e_{-}, f^{r}\left(e_{+}\right)=e_{+}$and the following map

$$
R_{E} f(x)= \begin{cases}f^{\prime}(x), & x \in\left[f^{r-1}(0), c\right) \\ f^{r}(x), & x \in\left(c, f^{\prime-1}(1)\right]\end{cases}
$$

is a renormalization of f.

Theory of Yiming Ding

Theory of Yiming Ding

Theorem (Ding, 2011)

2° On the other hand, if g is a renormalization of f, then there exists a unique proper completely invariant closed set J_{g} such that $R_{J_{g}} f=g$.

Theory of Yiming Ding

Theorem (Ding, 2011)

2° On the other hand, if g is a renormalization of f, then there exists a unique proper completely invariant closed set J_{g} such that $R J_{g} f=g$.

Idea of the Ding's proof:

Theory of Yiming Ding

Theorem (Ding, 2011)

2° On the other hand, if g is a renormalization of f, then there exists a unique proper completely invariant closed set J_{g} such that $R_{J_{g}} f=g$.

Idea of the Ding's proof:

- Consider the set $F_{g}=\{x \in[0,1]: \operatorname{Orb}(x) \cap(u, v) \neq \emptyset\}$.

Theory of Yiming Ding

Theorem (Ding, 2011)

2° On the other hand, if g is a renormalization of f, then there exists a unique proper completely invariant closed set J_{g} such that $R_{J_{g}} f=g$.

Idea of the Ding's proof:

- Consider the set $F_{g}=\{x \in[0,1]: \operatorname{Orb}(x) \cap(u, v) \neq \emptyset\}$.
- Prove that F_{g} is a proper completely invariant open set.

Theory of Yiming Ding

Theorem (Ding, 2011)

2° On the other hand, if g is a renormalization of f, then there exists a unique proper completely invariant closed set J_{g} such that $R_{J_{g}} f=g$.

Idea of the Ding's proof:

- Consider the set $F_{g}=\{x \in[0,1]: \operatorname{Orb}(x) \cap(u, v) \neq \emptyset\}$.
- Prove that F_{g} is a proper completely invariant open set.
- Put $J_{g}=[0,1] \backslash F_{g}=\{x \in[0,1]: \operatorname{Orb}(x) \cap(u, v)=\emptyset\}$.

Theory of Yiming Ding

Theorem (Ding, 2011)

2° On the other hand, if g is a renormalization of f, then there exists a unique proper completely invariant closed set J_{g} such that $R_{J_{g}} f=g$.

Idea of the Ding's proof:

- Consider the set $F_{g}=\{x \in[0,1]: \operatorname{Orb}(x) \cap(u, v) \neq \emptyset\}$.
- Prove that F_{g} is a proper completely invariant open set.
- Put $J_{g}=[0,1] \backslash F_{g}=\{x \in[0,1]: \operatorname{Orb}(x) \cap(u, v)=\emptyset\}$.

It may happen that the set J_{g} is empty or not completely invariant!

Example: The map T again

Example: The map T again

- Recall

$$
T:[0,1] \ni x \mapsto \beta x+\alpha(\bmod 1) \in[0,1],
$$

Example: The map T again

- Recall

$$
T:[0,1] \ni x \mapsto \beta x+\alpha(\bmod 1) \in[0,1],
$$

where

$$
\beta:=\frac{9 \sqrt[5]{2}}{10} \approx 1.03383 \quad \text { and } \quad \alpha:=\frac{\sqrt[5]{2}}{3} \approx 0.38289
$$

Example: The map T again

- Recall

$$
T:[0,1] \ni x \mapsto \beta x+\alpha(\bmod 1) \in[0,1],
$$

where

$$
\beta:=\frac{9 \sqrt[5]{2}}{10} \approx 1.03383 \quad \text { and } \quad \alpha:=\frac{\sqrt[5]{2}}{3} \approx 0.38289
$$

- Consider the renormalization $G=\left(T^{3}, T^{2}\right)$ defined on $\left[p_{1}, q_{2}\right]=\left[T(0), T^{2}(1)\right]$.

Example: Graph of the map T

Example: The map T again

- Recall

$$
T:[0,1] \ni x \mapsto \beta x+\alpha(\bmod 1) \in[0,1],
$$

where

$$
\beta:=\frac{9 \sqrt[5]{2}}{10} \approx 1.03383 \quad \text { and } \quad \alpha:=\frac{\sqrt[5]{2}}{3} \approx 0.38289
$$

- Consider the renormalization $G=\left(T^{3}, T^{2}\right)$ defined on $\left[p_{1}, q_{2}\right]=\left[T(0), T^{2}(1)\right]$.

Example: The map T again

- Recall

$$
T:[0,1] \ni x \mapsto \beta x+\alpha(\bmod 1) \in[0,1],
$$

where

$$
\beta:=\frac{9 \sqrt[5]{2}}{10} \approx 1.03383 \quad \text { and } \quad \alpha:=\frac{\sqrt[5]{2}}{3} \approx 0.38289
$$

- Consider the renormalization $G=\left(T^{3}, T^{2}\right)$ defined on $\left[p_{1}, q_{2}\right]=\left[T(0), T^{2}(1)\right]$.
- $J_{G}=\left\{x \in[0,1]: \operatorname{Orb}(x) \cap\left(p_{1}, q_{2}\right)=\emptyset\right\}=\emptyset$.

Example: The map T again

- Recall

$$
T:[0,1] \ni x \mapsto \beta x+\alpha(\bmod 1) \in[0,1],
$$

where

$$
\beta:=\frac{9 \sqrt[5]{2}}{10} \approx 1.03383 \quad \text { and } \quad \alpha:=\frac{\sqrt[5]{2}}{3} \approx 0.38289
$$

- Consider the renormalization $G=\left(T^{3}, T^{2}\right)$ defined on $\left[p_{1}, q_{2}\right]=\left[T(0), T^{2}(1)\right]$.
- $J_{G}=\left\{x \in[0,1]: \operatorname{Orb}(x) \cap\left(p_{1}, q_{2}\right)=\emptyset\right\}=\emptyset$.
- There is no proper, closed and completely invariant set that defines the renormalization G.

Ding's Theorem

Ding's Theorem

Theorem (Ding, 2011)

2° On the other hand, if g is a renormalization of f, then there exists a unique proper completely invariant closed set J_{g} such that $R_{g} f=g$.

Primary $n(k)$-cycles: Definition

Primary $n(k)$-cycles: Definition

Definition (Glendinning, 1990)

A periodic orbit $\left\{z_{j}=f^{j}\left(z_{0}\right): j \in\{0, \ldots, n-1\}\right\}$ of period n of an expanding Lorenz map f is an $n(k)$-cycle if its points satisfy

$$
z_{0}<z_{1}<\cdots<z_{n-k-1}<c<z_{n-k}<\cdots<z_{n-1} .
$$

Primary $n(k)$-cycles: Definition

Definition (Glendinning, 1990)

A periodic orbit $\left\{z_{j}=f^{j}\left(z_{0}\right): j \in\{0, \ldots, n-1\}\right\}$ of period n of an expanding Lorenz map f is an $n(k)$-cycle if its points satisfy

$$
z_{0}<z_{1}<\cdots<z_{n-k-1}<c<z_{n-k}<\cdots<z_{n-1}
$$

If additionally
(1) $f\left(z_{j}\right)=z_{j+k(\bmod n)}$ for all $j=0,1, \ldots, n-1$;

Primary $n(k)$-cycles: Definition

Definition (Glendinning, 1990)

A periodic orbit $\left\{z_{j}=f^{j}\left(z_{0}\right): j \in\{0, \ldots, n-1\}\right\}$ of period n of an expanding Lorenz map f is an $n(k)$-cycle if its points satisfy

$$
z_{0}<z_{1}<\cdots<z_{n-k-1}<c<z_{n-k}<\cdots<z_{n-1}
$$

If additionally
(1) $f\left(z_{j}\right)=z_{j+k(\bmod n)}$ for all $j=0,1, \ldots, n-1$;
(2) the integers k and n are coprime;

Primary $n(k)$-cycles: Definition

Definition (Glendinning, 1990)

A periodic orbit $\left\{z_{j}=f^{j}\left(z_{0}\right): j \in\{0, \ldots, n-1\}\right\}$ of period n of an expanding Lorenz map f is an $n(k)$-cycle if its points satisfy

$$
z_{0}<z_{1}<\cdots<z_{n-k-1}<c<z_{n-k}<\cdots<z_{n-1}
$$

If additionally
(1) $f\left(z_{j}\right)=z_{j+k(\bmod n)}$ for all $j=0,1, \ldots, n-1$;
(2) the integers k and n are coprime;
(3) $z_{k-1} \leqslant f(0)$ and $f(1) \leqslant z_{k}$

Primary $n(k)$-cycles: Definition

Definition (Glendinning, 1990)

A periodic orbit $\left\{z_{j}=f^{j}\left(z_{0}\right): j \in\{0, \ldots, n-1\}\right\}$ of period n of an expanding Lorenz map f is an $n(k)$-cycle if its points satisfy

$$
z_{0}<z_{1}<\cdots<z_{n-k-1}<c<z_{n-k}<\cdots<z_{n-1}
$$

If additionally
(1) $f\left(z_{j}\right)=z_{j+k(\bmod n)}$ for all $j=0,1, \ldots, n-1$;
(2) the integers k and n are coprime;
(3) $z_{k-1} \leqslant f(0)$ and $f(1) \leqslant z_{k}$
then the $n(k)$-cycle is said to be primary.

Example: Expanding Lorenz map with a primary 5(2)-cycle

Example: Expanding Lorenz map with a primary 5(2)-cycle

Example: Expanding Lorenz map with a primary 5(2)-cycle

Example: Expanding Lorenz map with a primary 5(2)-cycle

Example: Expanding Lorenz map with a primary 5(2)-cycle

Example: Expanding Lorenz map with a primary 5(2)-cycle

Example: Expanding Lorenz map with a primary 5(2)-cycle

Primary $n(k)$-cycles: Results

Primary $n(k)$-cycles: Results

Theorem (Ch., Oprocha, 2021)
Let f be an expanding Lorenz map with a primary $n(k)$-cycle

$$
z_{0}<z_{1}<\cdots<z_{n-k-1}<c<z_{n-k}<\cdots<z_{n-1} .
$$

Primary $n(k)$-cycles: Results

Theorem (Ch., Oprocha, 2021)

Let f be an expanding Lorenz map with a primary $n(k)$-cycle

$$
z_{0}<z_{1}<\cdots<z_{n-k-1}<c<z_{n-k}<\cdots<z_{n-1} .
$$

Then the following conditions hold:

Primary $n(k)$-cycles: Results

Theorem (Ch., Oprocha, 2021)

Let f be an expanding Lorenz map with a primary $n(k)$-cycle

$$
z_{0}<z_{1}<\cdots<z_{n-k-1}<c<z_{n-k}<\cdots<z_{n-1}
$$

Then the following conditions hold:
1° the following $g:[u, v] \rightarrow[u, v]$ provided below is a well defined expanding Lorenz map which additionally is a renormalization of f :

$$
g(x)= \begin{cases}f^{n}(x) ; & x \in[u, c) \\ f^{n}(x) ; & x \in(c, v]\end{cases}
$$

Primary $n(k)$-cycles: Results

Theorem (Ch., Oprocha, 2021)

Let f be an expanding Lorenz map with a primary $n(k)$-cycle

$$
z_{0}<z_{1}<\cdots<z_{n-k-1}<c<z_{n-k}<\cdots<z_{n-1}
$$

Then the following conditions hold:
1° the following $g:[u, v] \rightarrow[u, v]$ provided below is a well defined expanding Lorenz map which additionally is a renormalization of f :

$$
g(x)=\left\{\begin{array}{ll}
f^{n}(x) ; & x \in[u, c) \\
f^{n}(x) ; & x \in(c, v]
\end{array},\right.
$$

where $[u, v]:=\left[f^{n-1}(0), f^{n-1}(1)\right]$.

Primary $n(k)$-cycles: Results

Primary $n(k)$-cycles: Results

Theorem (Ch., Oprocha, 2021)

2° If $\tilde{g}=\left(f^{\prime}, f^{r}\right)$ is a renormalization of f and at least one of the numbers I and r is greater or equal to n, then n divides both I and r.

Primary $n(k)$-cycles: Results

Theorem (Ch., Oprocha, 2021)

2° If $\tilde{g}=\left(f^{\prime}, f^{r}\right)$ is a renormalization of f and at least one of the numbers I and r is greater or equal to n, then n divides both I and r.
3° if $z_{k-1} \neq f(0)$ and $z_{k} \neq f(1)$ then:

Primary $n(k)$-cycles: Results

Theorem (Ch., Oprocha, 2021)

2° If $\tilde{g}=\left(f^{\prime}, f^{r}\right)$ is a renormalization of f and at least one of the numbers I and r is greater or equal to n, then n divides both I and r.
3° if $z_{k-1} \neq f(0)$ and $z_{k} \neq f(1)$ then:

- J_{g} is a completely invariant proper subset of $[0,1]$.

Primary $n(k)$-cycles: Results

Theorem (Ch., Oprocha, 2021)

2° If $\tilde{g}=\left(f^{\prime}, f^{r}\right)$ is a renormalization of f and at least one of the numbers I and r is greater or equal to n, then n divides both I and r.
3° if $z_{k-1} \neq f(0)$ and $z_{k} \neq f(1)$ then:

- J_{g} is a completely invariant proper subset of $[0,1]$.
- $z_{n-k-1}=\sup \left\{x \in J_{g}, x<c\right\}$ and $z_{n-k}=\inf \left\{x \in J_{g}, x>c\right\}$.

Primary $n(k)$-cycles: Results

Theorem (Ch., Oprocha, 2021)

2° If $\tilde{g}=\left(f^{\prime}, f^{r}\right)$ is a renormalization of f and at least one of the numbers I and r is greater or equal to n, then n divides both I and r.
3° if $z_{k-1} \neq f(0)$ and $z_{k} \neq f(1)$ then:

- J_{g} is a completely invariant proper subset of $[0,1]$.
- $z_{n-k-1}=\sup \left\{x \in J_{g}, x<c\right\}$ and $z_{n-k}=\inf \left\{x \in J_{g}, x>c\right\}$.
- $R_{J_{g}} f=g$.

Locally eventually onto and matching: Definitions

Locally eventually onto and matching: Definitions

P. Glendinning, C. Sparrow, Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps, Physica D, 62 (1993), 22-50.
P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.

Locally eventually onto and matching: Definitions

P. Glendinning, C. Sparrow, Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps, Physica D, 62 (1993), 22-50.
P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.

Definition

Let f be an expanding Lorenz map.

Locally eventually onto and matching: Definitions

P. Glendinning, C. Sparrow, Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps, Physica D, 62 (1993), 22-50.
P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.

Definition

Let f be an expanding Lorenz map. Then f is locally eventually onto if

Locally eventually onto and matching: Definitions

围 P. Glendinning, C. Sparrow, Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps, Physica D, 62 (1993), 22-50.
P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.

Definition

Let f be an expanding Lorenz map. Then f is locally eventually onto if for every nonempty open subset $U \subseteq[0,1]$ there exist open intervals $J_{1}, J_{2} \subseteq U$ and $n_{1}, n_{2} \in \mathbb{N}$

Locally eventually onto and matching: Definitions

P. Glendinning, C. Sparrow, Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps, Physica D, 62 (1993), 22-50.
(P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.

Definition

Let f be an expanding Lorenz map. Then f is locally eventually onto if for every nonempty open subset $U \subseteq[0,1]$ there exist open intervals $J_{1}, J_{2} \subseteq U$ and $n_{1}, n_{2} \in \mathbb{N}$ such that $f^{n_{1}}$ maps J_{1} homeomorphically to $(0, c)$ and $f^{n_{2}}$ maps J_{2} homeomorphically to $(c, 1)$.

Locally eventually onto and matching: Definitions

Locally eventually onto and matching: Definitions

Let f be an expanding Lorenz map with the critical point c.

Locally eventually onto and matching: Definitions

Let f be an expanding Lorenz map with the critical point c. For any $k \in \mathbb{N}$ we denote

$$
f^{k}\left(c_{-}\right):=\lim _{x \rightarrow c^{-}} f^{k}(x) \quad \text { and } \quad f^{k}\left(c_{+}\right):=\lim _{x \rightarrow c^{+}} f^{k}(x)
$$

Definition

Locally eventually onto and matching: Definitions

Let f be an expanding Lorenz map with the critical point c. For any $k \in \mathbb{N}$ we denote

$$
f^{k}\left(c_{-}\right):=\lim _{x \rightarrow c^{-}} f^{k}(x) \quad \text { and } \quad f^{k}\left(c_{+}\right):=\lim _{x \rightarrow c^{+}} f^{k}(x)
$$

Definition

The property that there is some $\eta \in \mathbb{N}$ such that $f^{\eta}\left(c_{-}\right)=f^{\eta}\left(c_{+}\right)$

Locally eventually onto and matching: Definitions

Let f be an expanding Lorenz map with the critical point c. For any $k \in \mathbb{N}$ we denote

$$
f^{k}\left(c_{-}\right):=\lim _{x \rightarrow c^{-}} f^{k}(x) \quad \text { and } \quad f^{k}\left(c_{+}\right):=\lim _{x \rightarrow c^{+}} f^{k}(x)
$$

Definition

The property that there is some $\eta \in \mathbb{N}$ such that $f^{\eta}\left(c_{-}\right)=f^{\eta}\left(c_{+}\right)$ is called matching.

Locally eventually onto and matching: Definitions

Let f be an expanding Lorenz map with the critical point c. For any $k \in \mathbb{N}$ we denote

$$
f^{k}\left(c_{-}\right):=\lim _{x \rightarrow c^{-}} f^{k}(x) \quad \text { and } \quad f^{k}\left(c_{+}\right):=\lim _{x \rightarrow c^{+}} f^{k}(x)
$$

Definition

The property that there is some $\eta \in \mathbb{N}$ such that $f^{\eta}\left(c_{-}\right)=f^{\eta}\left(c_{+}\right)$ is called matching.
E. H. Bruin, C. Carminati, C. Kalle, Matching for generalised β-transformations, Indag. Math. 28 (2017), 55-73.

Locally eventually onto and matching: Results

Locally eventually onto and matching: Results

Theorem (Ch., Oprocha, 2021)
Let f be an expanding Lorenz map with renormalization g defined on a renormalization interval $[u, v]$.

Locally eventually onto and matching: Results

Theorem (Ch., Oprocha, 2021)
Let f be an expanding Lorenz map with renormalization g defined on a renormalization interval $[u, v]$. If additionally f is locally eventually onto, then

Locally eventually onto and matching: Results

Theorem (Ch., Oprocha, 2021)

Let f be an expanding Lorenz map with renormalization g defined on a renormalization interval $[u, v]$. If additionally f is locally eventually onto, then

$$
1^{\circ} J_{g}=\{x \in[0,1]: \operatorname{Orb}(x) \cap(u, v)=\emptyset\}=\emptyset
$$

Locally eventually onto and matching: Results

Theorem (Ch., Oprocha, 2021)

Let f be an expanding Lorenz map with renormalization g defined on a renormalization interval $[u, v]$. If additionally f is locally eventually onto, then
$1^{\circ} J_{g}=\{x \in[0,1]: \operatorname{Orb}(x) \cap(u, v)=\emptyset\}=\emptyset$.
$2^{\circ} f$ has matching.

Locally eventually onto and matching: Example

Locally eventually onto and matching: Example

冨 P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.

Locally eventually onto and matching: Example

目 P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.

- Consider an expanding Lorenz map $F:[0,1] \rightarrow[0,1]$ defined by $F(x)=\beta x+\alpha(\bmod 1)$, where

Locally eventually onto and matching: Example

目 P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.

- Consider an expanding Lorenz map $F:[0,1] \rightarrow[0,1]$ defined by $F(x)=\beta x+\alpha(\bmod 1)$, where
- $\beta \approx 1.22074$ is the largest zero of the polynomial $x^{4}-x-1$,

Locally eventually onto and matching: Example

目 P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.

- Consider an expanding Lorenz map $F:[0,1] \rightarrow[0,1]$ defined by $F(x)=\beta x+\alpha(\bmod 1)$, where
- $\beta \approx 1.22074$ is the largest zero of the polynomial $x^{4}-x-1$, - $\alpha=1-\frac{1}{\beta} \approx 0.18082$.

Locally eventually onto and matching: Example

目 P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.

- Consider an expanding Lorenz map $F:[0,1] \rightarrow[0,1]$ defined by $F(x)=\beta x+\alpha(\bmod 1)$, where
- $\beta \approx 1.22074$ is the largest zero of the polynomial $x^{4}-x-1$, - $\alpha=1-\frac{1}{\beta} \approx 0.18082$.
- Then $c=\frac{1-\alpha}{\beta} \approx 0.67104$.

Locally eventually onto and matching: Example

目 P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.

- Consider an expanding Lorenz map $F:[0,1] \rightarrow[0,1]$ defined by $F(x)=\beta x+\alpha(\bmod 1)$, where
- $\beta \approx 1.22074$ is the largest zero of the polynomial $x^{4}-x-1$, - $\alpha=1-\frac{1}{\beta} \approx 0.18082$.
- Then $c=\frac{1-\alpha}{\beta} \approx 0.67104$.
- Denote $P_{i}:=F^{i}(0)$ and $Q_{i}:=F^{i}(1)$.

Locally eventually onto and matching: Example

Locally eventually onto and matching: Example

Locally eventually onto and matching: Example

- Note that the map F is renormalizable and locally eventually onto.

Locally eventually onto and matching: Example

- Note that the map F is renormalizable and locally eventually onto.
- So, by our theorem the map F has matching $\left(F^{11}\left(c_{+}\right)=P_{2}=Q_{1}=F^{11}\left(c_{-}\right)\right)$.

Locally eventually onto and matching: Example

- Note that the map F is renormalizable and locally eventually onto.
- So, by our theorem the map F has matching

$$
\left(F^{11}\left(c_{+}\right)=P_{2}=Q_{1}=F^{11}\left(c_{-}\right)\right)
$$

Remark

Note that the polynomial $x^{4}-x-1$ has two other zeros β_{1} and β_{2} such that

$$
\left|\beta_{1}\right|=\left|\beta_{2}\right| \approx 1.06334
$$

which implies that β is algebraic but non-Pisot and non-Salem number.

Bibliography

图 V．S．AfraY̌movich，V．V．Bykov，L．P．Shil＇nikov，On attracting structurally unstable limit sets of Lorenz attractor type．（in Russian）Trudy Moskov．Mat．Obshch． 44 （1982），150－212．
䍰 M．F．Barnsley，Transformations between self－referential sets． Amer．Math．Monthly 116 （2009），no．4，291－304．
囯 M．F．Barnsley，B．Harding，A．Vince，The entropy of a special overlapping dynamical system．Ergodic Theory Dynam． Systems 34 （2014），no．2，469－486．
E－H．Bruin，C．Carminati，C．Kalle，Matching for generalised β－transformations，Indag．Math． 28 （2017），55－73．

Bibliography

图 $Ł$ ．Cholewa，P．Oprocha，On α－limit sets in Lorenz maps， Entropy，23（9）（2021），article id： 1153.
囯 Ł．Cholewa，P．Oprocha，Renormalization in Lorenz maps－ completely invariant sets and periodic orbits，preprint， arXiv：2104．00110．
圊 Y．Ding，Renormalization and α－limit set for expanding Lorenz maps．Discrete Contin．Dyn．Syst． 29 （2011），979－999．
P．Glendinning，Topological conjugation of Lorenz maps by β－transformations，Math．Proc．Cambridge Philos．Soc． 107 （1990），401－413．
R．Plendinning，C．Sparrow，Prime and renormalizable kneading invariants and the dynamics of expanding Lorenz maps，Physica D， 62 （1993），22－50．

Bibliography

围 J. Guckenheimer, A strange, strange attractor, in: J. E. Marsden and M. McCracken (eds.), The Hopf Bifurcation Theorem and its Applications, Springer, 1976, pp. 368-381.
(P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps. Adv. Math. 343 (2019), 712-755.
图 W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.
R A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493.
R. R. Williams, The structure of Lorenz attractors. Inst. Hautes Ètudes Sci. Publ. Math. No. 50, (1979), 73-99.

The end

Thank you for your attention! Vielen Dank für Ihre Aufmerksamkeit!

