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We deal with Cantor dynamical systems (X, T, G), i.e, :

m X is a Cantor set.

m G is a countable infinite group (Ex: Z9, Q, ).

m T is a continuous action of G on X, where T8 : X — X is
the homeomorphism induced by the action of g € G on X.

m T =id
m T80 Th=T& for every g, h € G.
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Example: Full G-shift.

G is an infinite countable group and X is a finite alphabet (with
x| = 2).

Consider ¢, the space of all functions x : G — X.

For every x € ¥¢ and g € G we define
o€x such that 0€x(h) = x(g~1h) for all h,g € G.

(£¢,0,G) is known as the full G-shift on the alphabet ¥.

Remark: The elements of ¥ can be seen as tilings of G. If
G = Z9 we can also see them as tilings of R
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Minimal and aperiodic subshifts.

A subshift X C Y€ is:
m aperiodic if 08(x) = x implies g = 1, for every x € X.

m minimal if every x € X is repetitive, that is, for every finite
set P C G, there exists a finite set F C G such that
F - Tp(x) = G, where

Tep(x)={g € G:x(g71P)=x(P)}.

Remark: if G # Z9, the existence of repetitive and aperiodic
elements of ¥¢ is not obvious.
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Theorem (Aubrun, Barbieri, Thomassé 2018; Gao, Jackson,

Seward 2009.)

For every countable group G, there exists a minimal aperiodic
subshift X C {0,1}C.

Remark: For every countable group G, there exists an aperiodic
repetitive element in {0,1}C.
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Example: Toeplitz G-subshifts.

An element x € ¢ is Toeplitz* if for every g € G there exists a
finite index subgroup ' of G such that

x(g) = x(vg) = JTlx(g) for every y € T.

Remark: The set Tp(x) defined before is a finite index subgroup
of G.

The subshift X C ¢ is Toeplitz if X = O,(x), for some Toeplitz
element x € ¥¢.

Remark: Toeplitz subshifts are always minimal.

What about the aperiodicity?
The intersection of finite index subgroups of G has to be triviall!

*For G = Z, they were introduced by Jacob and Keane at the end of the
60's. See the work of Susan Williams and Tomasz Downarowicz.
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Residually finite groups.

Def: G is residually finite if the intersection of all its subgroups
of finite index is trivial.

Proposition (C., Petite 2008; Krieger 2007): There exists an
aperiodic Toeplitz subshift X € {0,1}€ if and only if G is
residually finite.

Remark: There are aperiodic Toeplitz subshifts in {0, 1}Zd,
{0,1}" but not in {0,1}<.



Example

where ¥ is an alphabet with

An aperiodic Toeplitz element in ¥2°

8 letters (colors).
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Remark: G is residually finite if and only if there exists a
decreasing sequence (I';)n>0 of finite index subgroups of G with
trivial intersection.

A G-odometer is the dynamical system given by the natural action
of G on the inverse limit given by the maps G/I', + G/T p41.

Ex: The Z-odometer associated to (2"Z),>¢ is conjugate to the
classical adding machine on {0, 1}

Remark: The odometers are exactly the minimal aperiodic
equicontinuous systems on the Cantor set (C., Medynets 2016).
Then G admits an equicontinuous aperiodic action on the Cantor
set if and only if G is residually finite.

Proposition (C. Petite 2008; Krieger 2007): The Toeplitz
G-subshifts are exactly the symbolic minimal almost 1-1 extensions
of the G-odometers.
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Question:

Given a reasidually finite group G, which are the properties of the
Toeplitz G-subshifts?

If G is amenable and residually finite:
m Theo (Krieger 2007): It is possible to construct a Toeplitz
G-subshift having any possible topological entropy.!
m Theo (C., Petite 2014): for every Choquet simplex K there

exists an aperiodic Toeplitz G-subshift whose set of invariant
probability measures if affine homeomorphic to K*

Remark: Realization of Choquet simplices is related to topological
orbit equivalence classification problems.

TFor G = Z, Williams 1984.
*For G = Z, Downarowicz 1991).
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Topological orbit equivalence

m The systems (X, T, G) and (Y, S,I") are topological orbit
equivalent if there exists an homeomorphism h: X — Y such
that h(ot1(x)) = os(h(x)), for every x € X.

m The reduced dimension group of a Cantor system is an
invariant for topological orbit equivalence (complete invariant
if G =29 and I = Z™: Giordano, Matui, Putnam, Skau
2010).

m The spaces of traces of the reduced dimension group is affine
homeomorphic to the space of invariant probability measures.

m Realization of dimension group = Realization of simplex.
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Topological orbit equivalence

Given the dimension group associated to a Toeplitz Z-subshift we
realize a Toeplitz Z9-subshift.

Prop (C., Petite 2014): Let d > 1. The topological orbit
equivalence classes of Toeplitz Z9-subshifts and Toeplitz
Z-subshifts coincide.

Remark: For an arbitrary amenable residually finite group G we
also realize dimension groups. Nevertheless the dimension groups
that we can get depend on the indices of the finite index subgroup
of G (some restrictions could appear).
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Final comments:

m If G is congruent monotilable’ (ex: any abelian group) it is
possible to construct systems which are like Toeplitz, in order
to realize any Choquet simplex as the set of invariant
measures (C., Cecchi-Bernales, 2019)

m For amenable groups, it is enough to realize the Poulsen
simplex to realize any Choquet simplex (Frej, Huczek 2018)

m For every countable group G (not necessarily amenable), it is
possible to construct systems with more than one ergodic
measure (Elek 2020).

m Work in progress (Jaime Gémez, PhD student): properties
of Toeplitz G-subshifts for G a non amenable residually finite

group.

$Family of amenable groups introduced by Weiss (2011). Is every amenable
group monotileable?



