Toeplitz subshifts and invariant measures.

María Isabel Cortez

Facultad de Matemáticas Pontificia Universidad Católica de Chile.

36th Summer Topology Conference, Vienna, 2022

イロト イヨト イヨト イヨト

Group actions on the Cantor set

We deal with **Cantor dynamical systems** (X, T, G), i.e, :

- X is a Cantor set.
- G is a countable infinite group (Ex: \mathbb{Z}^d , \mathbb{Q} , \mathbb{F}_2).
- T is a continuous action of G on X, where $T^g : X \to X$ is the homeomorphism induced by the action of $g \in G$ on X.

・ 回 ト ・ ヨ ト ・ ヨ ト

• $T^{1_G} = id$.

• $T^{g} \circ T^{h} = T^{gh}$ for every $g, h \in G$.

Group actions on the Cantor set

We deal with **Cantor dynamical systems** (X, T, G), i.e, :

- X is a Cantor set.
- G is a countable infinite group (Ex: \mathbb{Z}^d , \mathbb{Q} , \mathbb{F}_2).
- T is a continuous action of G on X, where $T^g : X \to X$ is the homeomorphism induced by the action of $g \in G$ on X.

(4回) (4回) (日)

• $T^{1_G} = id$.

• $T^g \circ T^h = T^{gh}$ for every $g, h \in G$.

Group actions on the Cantor set

We deal with **Cantor dynamical systems** (X, T, G), i.e, :

- X is a Cantor set.
- G is a countable infinite group (Ex: \mathbb{Z}^d , \mathbb{Q} , \mathbb{F}_2).
- T is a continuous action of G on X, where $T^g : X \to X$ is the homeomorphism induced by the action of $g \in G$ on X.

イロン イヨン イヨン イヨン

• $T^{1_G} = id$.

• $T^{g} \circ T^{h} = T^{gh}$ for every $g, h \in G$.

We deal with **Cantor dynamical systems** (X, T, G), i.e, :

- X is a Cantor set.
- G is a countable infinite group (Ex: \mathbb{Z}^d , \mathbb{Q} , \mathbb{F}_2).
- T is a continuous action of G on X, where $T^g : X \to X$ is the homeomorphism induced by the action of $g \in G$ on X.

(日) (四) (三) (三) (三)

T^{1_G} = *id*.
T^g ∘ *T*^h = *T*^{gh} for every *g*, *h* ∈ *G*.

We deal with **Cantor dynamical systems** (X, T, G), i.e, :

- X is a Cantor set.
- *G* is a countable infinite group (Ex: \mathbb{Z}^d , \mathbb{Q} , \mathbb{F}_2).
- T is a continuous action of G on X, where $T^g : X \to X$ is the homeomorphism induced by the action of $g \in G$ on X.

(日本) (日本) (日本)

$$\bullet T^{1_G} = id.$$

• $T^g \circ T^h = T^{gh}$ for every $g, h \in G$.

We deal with **Cantor dynamical systems** (X, T, G), i.e, :

- X is a Cantor set.
- G is a countable infinite group (Ex: \mathbb{Z}^d , \mathbb{Q} , \mathbb{F}_2).
- T is a continuous action of G on X, where $T^g : X \to X$ is the homeomorphism induced by the action of $g \in G$ on X.

・ 同 ト ・ ヨ ト ・ ヨ ト

•
$$T^{1_G} = id$$
.

•
$$T^g \circ T^h = T^{gh}$$
 for every $g, h \in G$.

G is an infinite countable group and Σ is a finite alphabet (with $|\Sigma|\geq 2).$

・日・・ モ・・ ・ モ・

G is an infinite countable group and Σ is a finite alphabet (with $|\Sigma|\geq 2).$

(1日) (1日) (日)

Consider Σ^{G} , the space of all functions $x : G \to \Sigma$.

G is an infinite countable group and Σ is a finite alphabet (with $|\Sigma| \ge 2$).

Consider Σ^{G} , the space of all functions $x : G \to \Sigma$.

For every $x \in \Sigma^G$ and $g \in G$ we define

 $\sigma^{g}x$ such that $\sigma^{g}x(h) = x(g^{-1}h)$ for all $h, g \in G$.

(日本) (日本) (日本)

G is an infinite countable group and Σ is a finite alphabet (with $|\Sigma| \ge 2$).

Consider Σ^{G} , the space of all functions $x : G \to \Sigma$.

For every $x \in \Sigma^G$ and $g \in G$ we define

 $\sigma^{g}x$ such that $\sigma^{g}x(h) = x(g^{-1}h)$ for all $h, g \in G$.

 (Σ^{G}, σ, G) is known as the **full** *G*-**shift** on the alphabet Σ .

G is an infinite countable group and Σ is a finite alphabet (with $|\Sigma| \ge 2$).

Consider Σ^{G} , the space of all functions $x : G \to \Sigma$.

For every $x \in \Sigma^G$ and $g \in G$ we define

$$\sigma^{g}x$$
 such that $\sigma^{g}x(h) = x(g^{-1}h)$ for all $h, g \in G$.

 (Σ^{G}, σ, G) is known as the **full** *G*-shift on the alphabet Σ .

Remark: The elements of Σ^G can be seen as tilings of G. If $G = \mathbb{Z}^d$ we can also see them as tilings of \mathbb{R}^d

A subshift $X \subseteq \Sigma^G$ is:

aperiodic if $\sigma^g(x) = x$ implies $g = 1_G$, for every $x \in X$.

minimal if every $x \in X$ is repetitive, that is, for every finite set $P \subseteq G$, there exists a finite set $F \subseteq G$ such that $F \cdot T_P(x) = G$, where

$$T_P(x) = \{g \in G : x(g^{-1}P) = x(P)\}.$$

A subshift $X \subseteq \Sigma^G$ is:

• aperiodic if $\sigma^g(x) = x$ implies $g = 1_G$, for every $x \in X$.

minimal if every $x \in X$ is repetitive, that is, for every finite set $P \subseteq G$, there exists a finite set $F \subseteq G$ such that $F \cdot T_P(x) = G$, where

$$T_P(x) = \{g \in G : x(g^{-1}P) = x(P)\}.$$

A subshift $X \subseteq \Sigma^G$ is:

aperiodic if $\sigma^g(x) = x$ implies $g = 1_G$, for every $x \in X$.

• minimal if every $x \in X$ is repetitive, that is, for every finite set $P \subseteq G$, there exists a finite set $F \subseteq G$ such that $F \cdot T_P(x) = G$, where

$$T_P(x) = \{g \in G : x(g^{-1}P) = x(P)\}.$$

A subshift $X \subseteq \Sigma^G$ is:

- aperiodic if $\sigma^g(x) = x$ implies $g = 1_G$, for every $x \in X$.
- minimal if every $x \in X$ is repetitive, that is, for every finite set $P \subseteq G$, there exists a finite set $F \subseteq G$ such that $F \cdot T_P(x) = G$, where

$$T_P(x) = \{g \in G : x(g^{-1}P) = x(P)\}.$$

イロト 不得 トイラト イラト 二日

Remark: if $G \neq \mathbb{Z}^d$, the existence of repetitive and aperiodic elements of Σ^G is not obvious.

Theorem (Aubrun, Barbieri, Thomassé 2018; Gao, Jackson, Seward 2009.)

For every countable group G, there exists a minimal aperiodic subshift $X \subseteq \{0,1\}^G$.

Theorem (Aubrun, Barbieri, Thomassé 2018; Gao, Jackson, Seward 2009.)

For every countable group G, there exists a minimal aperiodic subshift $X \subseteq \{0,1\}^G$.

Remark: For every countable group G, there exists an aperiodic repetitive element in $\{0,1\}^G$.

An element $x \in \Sigma^G$ is **Toeplitz**^{*} if for every $g \in G$ there exists a finite index subgroup Γ of G such that

$$x(g) = x(\gamma g) = \sigma^{\gamma^{-1}}x(g)$$
 for every $\gamma \in \Gamma$.

*For $G = \mathbb{Z}$, they were introduced by Jacob and Keane at the end of the 60's. See the work of Susan Williams and Tomasz Downarowicz.

An element $x \in \Sigma^G$ is **Toeplitz**^{*} if for every $g \in G$ there exists a finite index subgroup Γ of G such that

$$x(g) = x(\gamma g) = \sigma^{\gamma^{-1}}x(g)$$
 for every $\gamma \in \Gamma$.

Remark: The set $T_P(x)$ defined before is a finite index subgroup of *G*.

An element $x \in \Sigma^G$ is **Toeplitz**^{*} if for every $g \in G$ there exists a finite index subgroup Γ of G such that

$$x(g) = x(\gamma g) = \sigma^{\gamma^{-1}}x(g)$$
 for every $\gamma \in \Gamma$.

Remark: The set $T_P(x)$ defined before is a finite index subgroup of *G*.

The subshift $X \subseteq \Sigma^G$ is Toeplitz if $X = \overline{O_\sigma(x)}$, for some Toeplitz element $x \in \Sigma^G$.

An element $x \in \Sigma^G$ is **Toeplitz**^{*} if for every $g \in G$ there exists a finite index subgroup Γ of G such that

$$x(g) = x(\gamma g) = \sigma^{\gamma^{-1}}x(g)$$
 for every $\gamma \in \Gamma$.

Remark: The set $T_P(x)$ defined before is a finite index subgroup of *G*.

The subshift $X \subseteq \Sigma^G$ is Toeplitz if $X = \overline{O_\sigma(x)}$, for some Toeplitz element $x \in \Sigma^G$.

Remark: Toeplitz subshifts are always minimal.

^{*}For $G = \mathbb{Z}$, they were introduced by Jacob and Keane at the end of the 60's. See the work of Susan Williams and Tomasz Downarowicz. $\langle z \rangle = \langle z \rangle \langle z \rangle$

An element $x \in \Sigma^G$ is **Toeplitz**^{*} if for every $g \in G$ there exists a finite index subgroup Γ of G such that

$$x(g) = x(\gamma g) = \sigma^{\gamma^{-1}}x(g)$$
 for every $\gamma \in \Gamma$.

Remark: The set $T_P(x)$ defined before is a finite index subgroup of *G*.

The subshift $X \subseteq \Sigma^G$ is Toeplitz if $X = \overline{O_\sigma(x)}$, for some Toeplitz element $x \in \Sigma^G$.

Remark: Toeplitz subshifts are always minimal.

What about the aperiodicity?

^{*}For $G = \mathbb{Z}$, they were introduced by Jacob and Keane at the end of the 60's. See the work of Susan Williams and Tomasz Downarowicz. $(z) \in (z)$

An element $x \in \Sigma^G$ is **Toeplitz**^{*} if for every $g \in G$ there exists a finite index subgroup Γ of G such that

$$x(g) = x(\gamma g) = \sigma^{\gamma^{-1}}x(g)$$
 for every $\gamma \in \Gamma$.

Remark: The set $T_P(x)$ defined before is a finite index subgroup of *G*.

The subshift $X \subseteq \Sigma^G$ is Toeplitz if $X = \overline{O_\sigma(x)}$, for some Toeplitz element $x \in \Sigma^G$.

Remark: Toeplitz subshifts are always minimal.

What about the aperiodicity?

The intersection of finite index subgroups of G has to be trivial!!

^{*}For $G = \mathbb{Z}$, they were introduced by Jacob and Keane at the end of the 60's. See the work of Susan Williams and Tomasz Downarowicz.

Def: *G* is **residually finite** if the intersection of all its subgroups of finite index is trivial.

< 注入 < 注入 :

Def: *G* is **residually finite** if the intersection of all its subgroups of finite index is trivial.

Proposition (C., Petite 2008; Krieger 2007): There exists an aperiodic Toeplitz subshift $X \in \{0,1\}^G$ if and only if G is residually finite.

Def: *G* is **residually finite** if the intersection of all its subgroups of finite index is trivial.

Proposition (C., Petite 2008; Krieger 2007): There exists an aperiodic Toeplitz subshift $X \in \{0,1\}^G$ if and only if G is residually finite.

Remark: There are aperiodic Toeplitz subshifts in $\{0,1\}^{\mathbb{Z}^d}$, $\{0,1\}^{\mathbb{F}_2}$ but not in $\{0,1\}^{\mathbb{Q}}$.

Example

An aperiodic Toeplitz element in $\Sigma^{\mathbb{Z}^2}$, where Σ is an alphabet with 8 letters (colors).

Remark: G is residually finite if and only if there exists a decreasing sequence $(\Gamma_n)_{n\geq 0}$ of finite index subgroups of G with trivial intersection.

Remark: G is residually finite if and only if there exists a decreasing sequence $(\Gamma_n)_{n\geq 0}$ of finite index subgroups of G with trivial intersection.

A *G*-odometer is the dynamical system given by the natural action of *G* on the inverse limit given by the maps $G/\Gamma_n \leftarrow G/\Gamma_{n+1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Remark: G is residually finite if and only if there exists a decreasing sequence $(\Gamma_n)_{n\geq 0}$ of finite index subgroups of G with trivial intersection.

A *G*-odometer is the dynamical system given by the natural action of *G* on the inverse limit given by the maps $G/\Gamma_n \leftarrow G/\Gamma_{n+1}$.

Ex: The \mathbb{Z} -odometer associated to $(2^n\mathbb{Z})_{n\geq 0}$ is conjugate to the classical adding machine on $\{0,1\}^{\mathbb{N}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Remark: G is residually finite if and only if there exists a decreasing sequence $(\Gamma_n)_{n\geq 0}$ of finite index subgroups of G with trivial intersection.

A *G*-odometer is the dynamical system given by the natural action of *G* on the inverse limit given by the maps $G/\Gamma_n \leftarrow G/\Gamma_{n+1}$.

Ex: The \mathbb{Z} -odometer associated to $(2^n\mathbb{Z})_{n\geq 0}$ is conjugate to the classical adding machine on $\{0,1\}^{\mathbb{N}}$.

Remark: The odometers are exactly the minimal aperiodic equicontinuous systems on the Cantor set (C., Medynets 2016). Then G admits an equicontinuous aperiodic action on the Cantor set if and only if G is residually finite.

Remark: G is residually finite if and only if there exists a decreasing sequence $(\Gamma_n)_{n\geq 0}$ of finite index subgroups of G with trivial intersection.

A *G*-odometer is the dynamical system given by the natural action of *G* on the inverse limit given by the maps $G/\Gamma_n \leftarrow G/\Gamma_{n+1}$.

Ex: The \mathbb{Z} -odometer associated to $(2^n\mathbb{Z})_{n\geq 0}$ is conjugate to the classical adding machine on $\{0,1\}^{\mathbb{N}}$.

Remark: The odometers are exactly the minimal aperiodic equicontinuous systems on the Cantor set (C., Medynets 2016). Then G admits an equicontinuous aperiodic action on the Cantor set if and only if G is residually finite.

Proposition (C. Petite 2008; Krieger 2007): The Toeplitz *G*-subshifts are exactly the symbolic minimal almost 1-1 extensions of the *G*-odometers.

Given a reasidually finite group G, which are the properties of the Toeplitz G-subshifts?

- Theo (Krieger 2007): It is possible to construct a Toeplitz G-subshift having any possible topological entropy.[†]
- Theo (C., Petite 2014): for every Choquet simplex K there exists an aperiodic Toeplitz G-subshift whose set of invariant probability measures if affine homeomorphic to K[‡]

[†]For $G = \mathbb{Z}$, Williams 1984. [‡]For $G = \mathbb{Z}$, Downarowicz 1991.

Given a reasidually finite group G, which are the properties of the Toeplitz G-subshifts?

If G is amenable and residually finite:

- **Theo (Krieger 2007):** It is possible to construct a Toeplitz *G*-subshift having any possible topological entropy.[†]
- Theo (C., Petite 2014): for every Choquet simplex K there exists an aperiodic Toeplitz G-subshift whose set of invariant probability measures if affine homeomorphic to K[‡]

[†]For $G = \mathbb{Z}$, Williams 1984. [‡]For $G = \mathbb{Z}$ Decomposition 1001

Given a reasidually finite group G, which are the properties of the Toeplitz G-subshifts?

If G is amenable and residually finite:

- Theo (Krieger 2007): It is possible to construct a Toeplitz G-subshift having any possible topological entropy.[†]
- Theo (C., Petite 2014): for every Choquet simplex K there exists an aperiodic Toeplitz G-subshift whose set of invariant probability measures if affine homeomorphic to K[‡]

[†]For $G = \mathbb{Z}$, Williams 1984.

[‡]For $G = \mathbb{Z}$, Downarowicz 1991).

Given a reasidually finite group G, which are the properties of the Toeplitz G-subshifts?

If G is amenable and residually finite:

- Theo (Krieger 2007): It is possible to construct a Toeplitz G-subshift having any possible topological entropy.[†]
- Theo (C., Petite 2014): for every Choquet simplex K there exists an aperiodic Toeplitz G-subshift whose set of invariant probability measures if affine homeomorphic to K[‡]

[†]For $G = \mathbb{Z}$, Williams 1984.

[‡]For $G = \mathbb{Z}$, Downarowicz 1991).

Given a reasidually finite group G, which are the properties of the Toeplitz G-subshifts?

If G is amenable and residually finite:

- Theo (Krieger 2007): It is possible to construct a Toeplitz G-subshift having any possible topological entropy.[†]
- Theo (C., Petite 2014): for every Choquet simplex K there exists an aperiodic Toeplitz G-subshift whose set of invariant probability measures if affine homeomorphic to K[‡]

Remark: Realization of Choquet simplices is related to topological orbit equivalence classification problems.

[‡]For $G = \mathbb{Z}$, Downarowicz 1991).

[†]For $G = \mathbb{Z}$, Williams 1984.

- The systems (X, T, G) and (Y, S, Γ) are topological orbit equivalent if there exists an homeomorphism h : X → Y such that h(o_T(x)) = o_S(h(x)), for every x ∈ X.
- The reduced dimension group of a Cantor system is an invariant for topological orbit equivalence (complete invariant if G = Z^d and Γ = Z^m: Giordano, Matui, Putnam, Skau 2010).
- The spaces of traces of the reduced dimension group is affine homeomorphic to the space of invariant probability measures.
- Realization of dimension group \Rightarrow Realization of simplex.

- The systems (X, T, G) and (Y, S, Γ) are topological orbit equivalent if there exists an homeomorphism h : X → Y such that h(o_T(x)) = o_S(h(x)), for every x ∈ X.
- The reduced dimension group of a Cantor system is an invariant for topological orbit equivalence (complete invariant if G = Z^d and Γ = Z^m: Giordano, Matui, Putnam, Skau 2010).
- The spaces of traces of the reduced dimension group is affine homeomorphic to the space of invariant probability measures.
- Realization of dimension group \Rightarrow Realization of simplex.

- The systems (X, T, G) and (Y, S, Γ) are topological orbit equivalent if there exists an homeomorphism h : X → Y such that h(o_T(x)) = o_S(h(x)), for every x ∈ X.
- The reduced dimension group of a Cantor system is an invariant for topological orbit equivalence (complete invariant if G = Z^d and Γ = Z^m: Giordano, Matui, Putnam, Skau 2010).
- The spaces of traces of the reduced dimension group is affine homeomorphic to the space of invariant probability measures.
- Realization of dimension group \Rightarrow Realization of simplex.

- The systems (X, T, G) and (Y, S, Γ) are topological orbit equivalent if there exists an homeomorphism h : X → Y such that h(o_T(x)) = o_S(h(x)), for every x ∈ X.
- The reduced dimension group of a Cantor system is an invariant for topological orbit equivalence (complete invariant if G = Z^d and Γ = Z^m: Giordano, Matui, Putnam, Skau 2010).
- The spaces of traces of the reduced dimension group is affine homeomorphic to the space of invariant probability measures.
- Realization of dimension group \Rightarrow Realization of simplex.

Given the dimension group associated to a Toeplitz $\mathbb{Z}\text{-subshift}$ we realize a Toeplitz $\mathbb{Z}^d\text{-subshift}.$

A B K A B K

Given the dimension group associated to a Toeplitz $\mathbb{Z}\text{-subshift}$ we realize a Toeplitz $\mathbb{Z}^d\text{-subshift}.$

• • = • • = • •

Prop (C., Petite 2014): Let d > 1. The topological orbit equivalence classes of Toeplitz \mathbb{Z}^d -subshifts and Toeplitz \mathbb{Z} -subshifts coincide.

Given the dimension group associated to a Toeplitz \mathbb{Z} -subshift we realize a Toeplitz \mathbb{Z}^d -subshift.

Prop (C., Petite 2014): Let d > 1. The topological orbit equivalence classes of Toeplitz \mathbb{Z}^d -subshifts and Toeplitz \mathbb{Z} -subshifts coincide.

Remark: For an arbitrary amenable residually finite group G we also realize dimension groups. Nevertheless the dimension groups that we can get depend on the indices of the finite index subgroup of G (some restrictions could appear).

- If G is congruent monotilable[§] (ex: any abelian group) it is possible to construct systems which are *like* Toeplitz, in order to realize any Choquet simplex as the set of invariant measures (C., Cecchi-Bernales, 2019)
- For amenable groups, it is enough to realize the Poulsen simplex to realize any Choquet simplex (Frej, Huczek 2018)
- For every countable group G (not necessarily amenable), it is possible to construct systems with more than one ergodic measure (Elek 2020).
- Work in progress (Jaime Gómez, PhD student): properties of Toeplitz G-subshifts for G a non amenable residually finite group.

[§]Family of amenable groups introduced by Weiss (2011). Is every amenable group monotileable?

- If G is congruent monotilable[§] (ex: any abelian group) it is possible to construct systems which are *like* Toeplitz, in order to realize any Choquet simplex as the set of invariant measures (C., Cecchi-Bernales, 2019)
- For amenable groups, it is enough to realize the Poulsen simplex to realize any Choquet simplex (Frej, Huczek 2018)
- For every countable group G (not necessarily amenable), it is possible to construct systems with more than one ergodic measure (Elek 2020).
- Work in progress (Jaime Gómez, PhD student): properties of Toeplitz G-subshifts for G a non amenable residually finite group.

[§]Family of amenable groups introduced by Weiss (2011). Is every amenable group monotileable?

- If G is congruent monotilable[§] (ex: any abelian group) it is possible to construct systems which are *like* Toeplitz, in order to realize any Choquet simplex as the set of invariant measures (C., Cecchi-Bernales, 2019)
- For amenable groups, it is enough to realize the Poulsen simplex to realize any Choquet simplex (Frej, Huczek 2018)
- For every countable group G (not necessarily amenable), it is possible to construct systems with more than one ergodic measure (Elek 2020).
- Work in progress (Jaime Gómez, PhD student): properties of Toeplitz G-subshifts for G a non amenable residually finite group.

[§]Family of amenable groups introduced by Weiss (2011). Is every amenable group monotileable?

- If G is congruent monotilable[§] (ex: any abelian group) it is possible to construct systems which are *like* Toeplitz, in order to realize any Choquet simplex as the set of invariant measures (C., Cecchi-Bernales, 2019)
- For amenable groups, it is enough to realize the Poulsen simplex to realize any Choquet simplex (Frej, Huczek 2018)
- For every countable group G (not necessarily amenable), it is possible to construct systems with more than one ergodic measure (Elek 2020).
- Work in progress (Jaime Gómez, PhD student): properties of Toeplitz G-subshifts for G a non amenable residually finite group.

[§]Family of amenable groups introduced by Weiss (2011). Is every amenable group monotileable?