
Toeplitz subshifts and invariant measures.
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Group actions on the Cantor set

We deal with Cantor dynamical systems (X ,T ,G ), i.e, :

X is a Cantor set.

G is a countable infinite group (Ex: Zd , Q, F2).

T is a continuous action of G on X , where T g : X → X is
the homeomorphism induced by the action of g ∈ G on X .

T 1G = id .

T g ◦ T h = T gh for every g , h ∈ G .
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Example: Full G -shift.

G is an infinite countable group and Σ is a finite alphabet (with
|Σ| ≥ 2).

Consider ΣG , the space of all functions x : G → Σ.

For every x ∈ ΣG and g ∈ G we define

σgx such that σgx(h) = x(g−1h) for all h, g ∈ G .

(ΣG , σ,G ) is known as the full G -shift on the alphabet Σ.

Remark: The elements of ΣG can be seen as tilings of G . If
G = Zd we can also see them as tilings of Rd
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Minimal and aperiodic subshifts.

A subshift X ⊆ ΣG is:

aperiodic if σg (x) = x implies g = 1G , for every x ∈ X .

minimal if every x ∈ X is repetitive, that is, for every finite
set P ⊆ G , there exists a finite set F ⊆ G such that
F · TP(x) = G , where

TP(x) = {g ∈ G : x(g−1P) = x(P)}.

Remark: if G 6= Zd , the existence of repetitive and aperiodic
elements of ΣG is not obvious.
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Theorem (Aubrun, Barbieri, Thomassé 2018; Gao, Jackson,
Seward 2009.)

For every countable group G, there exists a minimal aperiodic
subshift X ⊆ {0, 1}G .

Remark: For every countable group G , there exists an aperiodic
repetitive element in {0, 1}G .
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Example: Toeplitz G -subshifts.

An element x ∈ ΣG is Toeplitz∗ if for every g ∈ G there exists a
finite index subgroup Γ of G such that

x(g) = x(γg) = σγ
−1
x(g) for every γ ∈ Γ.

Remark: The set TP(x) defined before is a finite index subgroup
of G .

The subshift X ⊆ ΣG is Toeplitz if X = Oσ(x), for some Toeplitz
element x ∈ ΣG .

Remark: Toeplitz subshifts are always minimal.

What about the aperiodicity?
The intersection of finite index subgroups of G has to be trivial!!

∗For G = Z, they were introduced by Jacob and Keane at the end of the
60’s. See the work of Susan Williams and Tomasz Downarowicz.
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Residually finite groups.

Def: G is residually finite if the intersection of all its subgroups
of finite index is trivial.

Proposition (C., Petite 2008; Krieger 2007): There exists an
aperiodic Toeplitz subshift X ∈ {0, 1}G if and only if G is
residually finite.

Remark: There are aperiodic Toeplitz subshifts in {0, 1}Zd
,

{0, 1}F2 but not in {0, 1}Q.
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Example

An aperiodic Toeplitz element in ΣZ2
, where Σ is an alphabet with

8 letters (colors).



Maximal equicontinuous factor of Toeplitz G -subshifts.

Remark: G is residually finite if and only if there exists a
decreasing sequence (Γn)n≥0 of finite index subgroups of G with
trivial intersection.

A G -odometer is the dynamical system given by the natural action
of G on the inverse limit given by the maps G/Γn ← G/Γn+1.

Ex: The Z-odometer associated to (2nZ)n≥0 is conjugate to the
classical adding machine on {0, 1}N.

Remark: The odometers are exactly the minimal aperiodic
equicontinuous systems on the Cantor set (C., Medynets 2016).
Then G admits an equicontinuous aperiodic action on the Cantor
set if and only if G is residually finite.

Proposition (C. Petite 2008; Krieger 2007): The Toeplitz
G -subshifts are exactly the symbolic minimal almost 1-1 extensions
of the G -odometers.
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Question:

Given a reasidually finite group G , which are the properties of the
Toeplitz G -subshifts?

If G is amenable and residually finite:

Theo (Krieger 2007): It is possible to construct a Toeplitz
G -subshift having any possible topological entropy.†

Theo (C., Petite 2014): for every Choquet simplex K there
exists an aperiodic Toeplitz G -subshift whose set of invariant
probability measures if affine homeomorphic to K ‡

Remark: Realization of Choquet simplices is related to topological
orbit equivalence classification problems.

†For G = Z, Williams 1984.
‡For G = Z, Downarowicz 1991).
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Topological orbit equivalence

The systems (X ,T ,G ) and (Y , S , Γ) are topological orbit
equivalent if there exists an homeomorphism h : X → Y such
that h(oT (x)) = oS(h(x)), for every x ∈ X .

The reduced dimension group of a Cantor system is an
invariant for topological orbit equivalence (complete invariant
if G = Zd and Γ = Zm: Giordano, Matui, Putnam, Skau
2010).

The spaces of traces of the reduced dimension group is affine
homeomorphic to the space of invariant probability measures.

Realization of dimension group ⇒ Realization of simplex.
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Topological orbit equivalence

Given the dimension group associated to a Toeplitz Z-subshift we
realize a Toeplitz Zd -subshift.

Prop (C., Petite 2014): Let d > 1. The topological orbit
equivalence classes of Toeplitz Zd -subshifts and Toeplitz
Z-subshifts coincide.

Remark: For an arbitrary amenable residually finite group G we
also realize dimension groups. Nevertheless the dimension groups
that we can get depend on the indices of the finite index subgroup
of G (some restrictions could appear).
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Final comments:

If G is congruent monotilable§ (ex: any abelian group) it is
possible to construct systems which are like Toeplitz, in order
to realize any Choquet simplex as the set of invariant
measures (C., Cecchi-Bernales, 2019)

For amenable groups, it is enough to realize the Poulsen
simplex to realize any Choquet simplex (Frej, Huczek 2018)

For every countable group G (not necessarily amenable), it is
possible to construct systems with more than one ergodic
measure (Elek 2020).

Work in progress (Jaime Gómez, PhD student): properties
of Toeplitz G -subshifts for G a non amenable residually finite
group.

§Family of amenable groups introduced by Weiss (2011). Is every amenable
group monotileable?
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