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Motivation: Nonleaves

Definition

M is a nonleaf

←→ M is not homeomorphic/diffeomorphic to any leaf of
any codimension one foliation on a compact manifold.

Few examples (in C 0 or C 1 regularities) (Ghys 1985, Attie-Hurder
1996, Schweitzer-Souza 2012, M.-Schweitzer 2021)

All the known examples: (highly) nonperiodic ends, existence of a
rigid block (K ⊂ M is rigid if any K ′ ⊂ M homeomorphic with K
meets K ).

Question

What about higher codimension nonleaves? There exist manifolds which
are leaves in codimension two but nonleaves in codimension one?
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Leaf topology: some chosen results

Every open surface can be realized as a (nonproper) leaf of some
foliation of (every) closed 3-manifold [Cantwell-Conlon 86].

F is C 2 + Exceptional minimal set  semiproper leaves have
infinitely many ends [Duminy 70’s].

Corollary [Cantwell-Conlon2000]: If F is C 2, L is proper and lim L
contains noncompact leaves then L has infinitely many ends.

F is C 2 + lim L consists only of compact leaves  L is end periodic,
its ends look like cyclic covering spaces over a compact manifold.

 Find C 2 nonleaves is easier than C 0 or C 1 nonleaves

Question

There exists a codimension one foliation on a compact manifold with a
nonperiodic proper leaf with finitely many ends? A necessary condition
is regularity C r with r < 2.
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Ghys Blocks

Definition

A Ghys block is a compact manifold V , dim V = n ≥ 4, such that

π1(V ) is free abelian with rank > 2.

∂V consists of two connected components T− and T +, both
homeomorphic to Sn−2 × S1.

The meridian of T− is homotopic to one generator of π1(V )

the meridian of T + is homotopic to twice another generator.
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Ghys Manifolds

Definition

Let Ω = {1, 0}Z and let ω ∈ Ω.

Let V0 and V1 be Ghys blocks of the same
dimension but different rank. Let Mω be the manifold obtained by gluing
Mω(i) with Mω(i+1) via identification T +

ω(i) with T−ω(i+1).

Proposition

[Ghys1995] Mω is homeomorphic to Mω′ ⇔ ∃k ∈ Z σk(ω) = ω′

Proposition

[Ghys1995] ∃C∞ codimension two foliation on some 6-manifold that
admits a exceptional minimal set whose leaves are (pairwise different)
nonperiodic Ghys manifolds.

Quoting E. Ghys: “Il est probablement possible de construire un exemple
sur une varieté de dimension 4, en codimension 1, en se fondant sur la
même idée”
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sur une varieté de dimension 4, en codimension 1, en se fondant sur la
même idée”

Carlos Meniño Cotón (Univ. Vigo) 36th Summer Topology Conference, Wien 21/07/2022 6 / 24



Ghys Manifolds

Definition

Let Ω = {1, 0}Z and let ω ∈ Ω. Let V0 and V1 be Ghys blocks of the same
dimension but different rank. Let Mω be the manifold obtained by gluing
Mω(i) with Mω(i+1) via identification T +

ω(i) with T−ω(i+1).

Proposition

[Ghys1995] Mω is homeomorphic to Mω′ ⇔ ∃k ∈ Z σk(ω) = ω′

Proposition

[Ghys1995] ∃C∞ codimension two foliation on some 6-manifold that
admits a exceptional minimal set whose leaves are (pairwise different)
nonperiodic Ghys manifolds.

Quoting E. Ghys: “Il est probablement possible de construire un exemple
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Ghys Manifolds
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Step 1: The basic foliation

Consider first the foliation F1 in (S2 × S1)× [−1, 1] so that

The foliation is a product for t ∈ [−1, 0] ⊂ [−1, 1].

The foliation, for t ∈ (0, 1) consists of leaves homeomorphic to
S2 ×R, these leaves accumulate to the compact leaves S2 × S1 ×{0}
and S2 × S1 × {1} as in a Reeb component.
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Step 2: Turbulizing

Let γ−, γ+ and ω−, ω+ be transverse loops to F1 and homotopic to
{∗} × S1 × {∗}.

D3
± are transverse disks to γ±.

P± are transverse sections to ω± homeomorphic to S1 × D2.

Remove the interiors of D3
± × γ± and P± × ω±

Turbulize along the transverse boundary components to obtain the
foliation F2 (with respect to suitable orientations of γ± and ω±).

Two pairs of compact boundary leaves L0
± and L1

±:
L0
± homeomorphic to S2 × S1 and L1

± homeomorphic to T 3.
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Step 3: The bulk foliation

Let F3 = T 2 ×F2

and set 〈a, b〉 = π1(T2).
Take 8 paths δi±,j and δi±,j , i = 0, 1, j = −1, 1, transverse to F3 so that:

δi±,j connects the compact leaf T 2 × S2 × S1 × {±1} with Li
±,

i = 0, 1, j = −1, 1.

they meet T 2 × S2 × S1 × {t} at most in one point.

Set â and b̂ be loops in T 2 such that â is in the homotopy class of a and b̂
is homotopic to twice b.
Let F4 be the foliation obtained from F3 by removing tubular
neighborhoods of â× δi±,j and b̂ × δi±,j for i = 0, 1, j = −1, 1.

Remark

Let V±0 and V±1 be the leaves of F4 obtained from the leaves T 2 × Li
±

after removing the previous neighborhoods. These are 5-dimensional Ghys
blocks of rank 3 and 5.
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Set â and b̂ be loops in T 2 such that â is in the homotopy class of a and b̂
is homotopic to twice b.
Let F4 be the foliation obtained from F3 by removing tubular
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Step 4: The bridge foliations

Consider G0 = V0 × I0 and G1 = V1 × I1, I0, I1 ≡ [0, 1].

Set F5 from F4 by attaching the tangent boundary of G i to the
leaves V±i
The compact boundary leaves T 2 × S2 × S1 × {±1} have, each one,
four boundary components T a

±,j and T b
±,j coming from the removed

neighborhoods.

Identify these leaves via T a
−,j ←→ T a

+,−j and T b
−,j ←→ T b

+,−j .

F5 is a codimension one foliation on a compact 6-manifold with
boundary. ∂F5 consists of two manifolds R±:

R− is homeomorphic to T a × S1
a and R+ is homeomorphic to

T b × S1
b (Both homoemorphic to (S3 × S1)× S1)

S1
a and S1

b are transverse circles that can be decomposed as
S1
a = I−0 ∪ δa,−1 ∪ I−1 ∪ δa,+1 and S1

b = I +
0 ∪ δb,−1 ∪ I +

1 ∪ δb,+1.

Here I±i are transversals of the bridge foliations G1, G2.

The saturation of I±i in F5 is homeomorphic to G i
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Last Step: Denjoy gluing map

Take S1
a and S1

b so I−i and I +
i represents the same arcs in the circle.

Let ϕ : S1
a → S1

b be a Denjoy map with exceptional minimal set
Λ ⊂ I0 ∪ I1 and so that Λ ∩ Ii are also Cantor sets.

Set Fϕ be the foliation obtained from F5 gluing S1
a with S1

b via ϕ
and T a with T b identifying meridians.

Proposition

The leaves of Fϕ are nonperiodic Ghys manifolds.

Proof.

Periodic leaf  ∃m ∈ N and x ∈ I0 (or I1) such that ϕk·m(x) ∈ I0 ∩ Λ for
all k ∈ Z  ϕm has a minimal set different from Λ (contradiction).

Proposition

The leaves of Fϕ passing through the gaps of Λ which are sufficiently
close to Λ are nonperiodic proper leaves with two ends.
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Proposition

The leaves of Fϕ are nonperiodic Ghys manifolds.

Proof.

Periodic leaf  ∃m ∈ N and x ∈ I0 (or I1) such that ϕk·m(x) ∈ I0 ∩ Λ for
all k ∈ Z  ϕm has a minimal set different from Λ (contradiction).

Proposition

The leaves of Fϕ passing through the gaps of Λ which are sufficiently
close to Λ are nonperiodic proper leaves with two ends.
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Nonleaves

Proposition

Let W be a 5-manifold with π1(W ) = Zp, p > 2, and let ω ∈ Ω be a
nonperiodic (bi)sequence.

Then W #Mω cannot be homeomorphic to any
leaf of any codimension one C 2 foliation on a compact manifold.

Proposition

Let W be a nontrivial 5-manifold with π1(W ) = Zp, p > 2,, there exists
nonperiodic ω ∈ Ω. such that W #Mω is homeomorphic to a leaf of a
codimension one C 1 foliation on a compact manifold and to a leaf of a
C∞ codimension two foliation.
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Repetitive ends

Denjoy map ϕ

 bisequence ωϕ ∈ Ω = {0, 1}Z relative to some Ghys
manifold in the exceptional minimal set of Fϕ.

Definition

ω ∈ Ω is called end repetitive iff there exists r > 0 such that {ω(n)}n>r

and {ω(n)}n<−r are repetitive sequences.

Proposition

For any Denjoy map ϕ as above the sequence ωϕ is end repetitive.

Conjecture

[In progress] For every end repetitive ω there exists a Denjoy
diffeomorphism such that ωϕ = ω.
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Repetitiveness with an example

Let α = rot(ϕ) . 1/2.

S1 \ I0 ∪ I1 is included in the gaps through 1 and ϕ(1).

Set dn the close returns of 1 and qn the power of ϕ realizing these
close returns.

There exists a sequence of partial quotients an such that
qn+1 = qn−1 + anqn and dn+1 = dn−1 − andn (n ≥ 1). The partial
quotients define the continuous fraction expansion of α.

For this particular choice of α the sequence is “almost ever” of the
form ...01010101..., the occurence of a double 0 is impossible, and
the occurrence of double 1 depends on dn < π − rot(α), that occurs
at each close return time qn.

Thus a (large) period is broken at each close return time qn. Thus the
sequence is (forward) repetitive and nonperiodic. The same argument
is used backwards for the rotation number rot(ϕ−1).
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Thanks for your attention!
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