Nonperiodic leaves of codimension one foliations

Carlos Meniño Cotón

Universidade de Vigo

21/07/2022

Carlos Meniño Cotón (Univ. Vigo) 36th Summer Topology Conference, Wien

21/07/2022 1/24

Motivation: Nonleaves

Definition

M is a **nonleaf**

< ∃ > <

M is a **nonleaf** \longleftrightarrow M is not homeomorphic/diffeomorphic to any leaf of any codimension one foliation on a compact manifold.

• Few examples (in C^0 or C^1 regularities)

M is a **nonleaf** \longleftrightarrow M is not homeomorphic/diffeomorphic to any leaf of any codimension one foliation on a compact manifold.

• Few examples (in C⁰ or C¹ regularities) (Ghys 1985, Attie-Hurder 1996, Schweitzer-Souza 2012, M.-Schweitzer 2021)

- Few examples (in C⁰ or C¹ regularities) (Ghys 1985, Attie-Hurder 1996, Schweitzer-Souza 2012, M.-Schweitzer 2021)
- All the known examples:

- Few examples (in C⁰ or C¹ regularities) (Ghys 1985, Attie-Hurder 1996, Schweitzer-Souza 2012, M.-Schweitzer 2021)
- All the known examples: (highly) nonperiodic ends,

- Few examples (in C⁰ or C¹ regularities) (Ghys 1985, Attie-Hurder 1996, Schweitzer-Souza 2012, M.-Schweitzer 2021)
- All the known examples: (highly) nonperiodic ends, existence of a rigid block (K ⊂ M is rigid if any K' ⊂ M homeomorphic with K meets K).

M is a **nonleaf** \longleftrightarrow M is not homeomorphic/diffeomorphic to any leaf of any codimension one foliation on a compact manifold.

- Few examples (in C⁰ or C¹ regularities) (Ghys 1985, Attie-Hurder 1996, Schweitzer-Souza 2012, M.-Schweitzer 2021)
- All the known examples: (highly) nonperiodic ends, existence of a rigid block (K ⊂ M is rigid if any K' ⊂ M homeomorphic with K meets K).

Question

What about higher codimension nonleaves?

< /⊒ ► < Ξ ► <

M is a **nonleaf** \longleftrightarrow M is not homeomorphic/diffeomorphic to any leaf of any codimension one foliation on a compact manifold.

- Few examples (in C⁰ or C¹ regularities) (Ghys 1985, Attie-Hurder 1996, Schweitzer-Souza 2012, M.-Schweitzer 2021)
- All the known examples: (highly) nonperiodic ends, existence of a rigid block (K ⊂ M is rigid if any K' ⊂ M homeomorphic with K meets K).

Question

What about higher codimension nonleaves? There exist manifolds which are leaves in codimension two but nonleaves in codimension one?

• Every open surface can be realized as a (nonproper) leaf of some foliation of (every) closed 3-manifold [Cantwell-Conlon 86].

- Every open surface can be realized as a (nonproper) leaf of some foliation of (every) closed 3-manifold [Cantwell-Conlon 86].
- \mathcal{F} is C^2 + Exceptional minimal set \rightsquigarrow

- Every open surface can be realized as a (nonproper) leaf of some foliation of (every) closed 3-manifold [Cantwell-Conlon 86].
- *F* is C² + Exceptional minimal set → semiproper leaves have infinitely many ends [Duminy 70's].
- Corollary [Cantwell-Conlon2000]: If \mathcal{F} is C^2 , L is proper and lim L contains noncompact leaves then L has infinitely many ends.

- Every open surface can be realized as a (nonproper) leaf of some foliation of (every) closed 3-manifold [Cantwell-Conlon 86].
- *F* is C² + Exceptional minimal set → semiproper leaves have infinitely many ends [Duminy 70's].
- Corollary [Cantwell-Conlon2000]: If \mathcal{F} is C^2 , L is proper and lim L contains noncompact leaves then L has infinitely many ends.
- \mathcal{F} is $C^2 + \lim L$ consists only of compact leaves

- Every open surface can be realized as a (nonproper) leaf of some foliation of (every) closed 3-manifold [Cantwell-Conlon 86].
- *F* is C² + Exceptional minimal set → semiproper leaves have infinitely many ends [Duminy 70's].
- Corollary [Cantwell-Conlon2000]: If \mathcal{F} is C^2 , L is proper and lim L contains noncompact leaves then L has infinitely many ends.
- \mathcal{F} is $C^2 + \lim L$ consists only of compact leaves $\rightsquigarrow L$ is **end periodic**,

- Every open surface can be realized as a (nonproper) leaf of some foliation of (every) closed 3-manifold [Cantwell-Conlon 86].
- *F* is C² + Exceptional minimal set → semiproper leaves have infinitely many ends [Duminy 70's].
- Corollary [Cantwell-Conlon2000]: If \mathcal{F} is C^2 , L is proper and lim L contains noncompact leaves then L has infinitely many ends.
- *F* is C² + lim L consists only of compact leaves → L is end periodic, its ends look like cyclic covering spaces over a compact manifold.

- Every open surface can be realized as a (nonproper) leaf of some foliation of (every) closed 3-manifold [Cantwell-Conlon 86].
- *F* is C² + Exceptional minimal set → semiproper leaves have infinitely many ends [Duminy 70's].
- Corollary [Cantwell-Conlon2000]: If \mathcal{F} is C^2 , L is proper and lim L contains noncompact leaves then L has infinitely many ends.
- *F* is C² + lim L consists only of compact leaves → L is end periodic, its ends look like cyclic covering spaces over a compact manifold.
- \rightsquigarrow Find C^2 nonleaves is easier than C^0 or C^1 nonleaves

- Every open surface can be realized as a (nonproper) leaf of some foliation of (every) closed 3-manifold [Cantwell-Conlon 86].
- *F* is C² + Exceptional minimal set → semiproper leaves have infinitely many ends [Duminy 70's].
- Corollary [Cantwell-Conlon2000]: If \mathcal{F} is C^2 , L is proper and lim L contains noncompact leaves then L has infinitely many ends.
- *F* is C² + lim L consists only of compact leaves → L is end periodic, its ends look like cyclic covering spaces over a compact manifold.
- \rightsquigarrow Find C^2 nonleaves is easier than C^0 or C^1 nonleaves

Question

There exists a codimension one foliation on a compact manifold with a **nonperiodic proper leaf with finitely many ends**?

• • • • • • • • • • • •

- Every open surface can be realized as a (nonproper) leaf of some foliation of (every) closed 3-manifold [Cantwell-Conlon 86].
- *F* is C² + Exceptional minimal set → semiproper leaves have infinitely many ends [Duminy 70's].
- Corollary [Cantwell-Conlon2000]: If \mathcal{F} is C^2 , L is proper and lim L contains noncompact leaves then L has infinitely many ends.
- *F* is C² + lim L consists only of compact leaves → L is end periodic, its ends look like cyclic covering spaces over a compact manifold.
- \rightsquigarrow Find C^2 nonleaves is easier than C^0 or C^1 nonleaves

Question

There exists a codimension one foliation on a compact manifold with a **nonperiodic proper leaf with finitely many ends**? A necessary condition is regularity C^r with r < 2.

• • • • • • • • • • • •

A Ghys block is a compact manifold V, dim $V = n \ge 4$, such that

∃ >

A Ghys block is a compact manifold V, dim $V = n \ge 4$, such that

• $\pi_1(V)$ is free abelian with rank > 2.

< 3 >

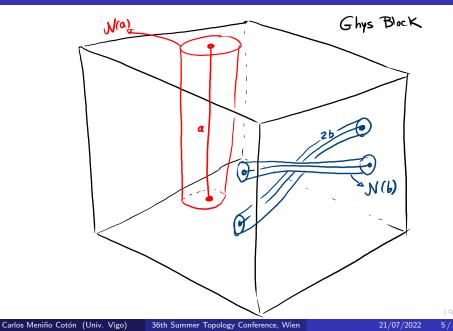
- $\pi_1(V)$ is free abelian with rank > 2.
- ∂V consists of two connected components T⁻ and T⁺, both homeomorphic to Sⁿ⁻² × S¹.

- $\pi_1(V)$ is free abelian with rank > 2.
- ∂V consists of two connected components T⁻ and T⁺, both homeomorphic to Sⁿ⁻² × S¹.
- The meridian of T^- is homotopic to one generator of $\pi_1(V)$

- $\pi_1(V)$ is free abelian with rank > 2.
- ∂V consists of two connected components T⁻ and T⁺, both homeomorphic to Sⁿ⁻² × S¹.
- The meridian of T^- is homotopic to one generator of $\pi_1(V)$
- the meridian of T^+ is homotopic to **twice** another generator.

- $\pi_1(V)$ is free abelian with rank > 2.
- ∂V consists of two connected components T⁻ and T⁺, both homeomorphic to Sⁿ⁻² × S¹.
- The meridian of T^- is homotopic to one generator of $\pi_1(V)$
- the meridian of T^+ is homotopic to **twice** another generator.

Ghys Blocks



Definition

Let $\Omega = \{1, 0\}^{\mathbb{Z}}$ and let $\omega \in \Omega$.

• = • •

< 円

Definition

Let $\Omega = \{1,0\}^{\mathbb{Z}}$ and let $\omega \in \Omega$. Let V_0 and V_1 be Ghys blocks of the same dimension but different rank.

Definition

Let $\Omega = \{1,0\}^{\mathbb{Z}}$ and let $\omega \in \Omega$. Let V_0 and V_1 be Ghys blocks of the same dimension but different rank. Let M_{ω} be the manifold obtained by gluing $M_{\omega(i)}$ with $M_{\omega(i+1)}$ via identification $T^+_{\omega(i)}$ with $T^-_{\omega(i+1)}$.

Definition

Let $\Omega = \{1,0\}^{\mathbb{Z}}$ and let $\omega \in \Omega$. Let V_0 and V_1 be Ghys blocks of the same dimension but different rank. Let M_{ω} be the manifold obtained by gluing $M_{\omega(i)}$ with $M_{\omega(i+1)}$ via identification $T^+_{\omega(i)}$ with $T^-_{\omega(i+1)}$.

Proposition

[Ghys1995] M_{ω} is homeomorphic to $M_{\omega'} \Leftrightarrow \exists k \in \mathbb{Z} \ \sigma^k(\omega) = \omega'$

Definition

Let $\Omega = \{1,0\}^{\mathbb{Z}}$ and let $\omega \in \Omega$. Let V_0 and V_1 be Ghys blocks of the same dimension but different rank. Let M_{ω} be the manifold obtained by gluing $M_{\omega(i)}$ with $M_{\omega(i+1)}$ via identification $T^+_{\omega(i)}$ with $T^-_{\omega(i+1)}$.

Proposition

[Ghys1995] M_{ω} is homeomorphic to $M_{\omega'} \Leftrightarrow \exists k \in \mathbb{Z} \ \sigma^k(\omega) = \omega'$

Proposition

[Ghys1995] $\exists C^{\infty}$ codimension **two** foliation on some 6-manifold that admits a exceptional minimal set whose leaves are (pairwise different) nonperiodic Ghys manifolds.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

Let $\Omega = \{1,0\}^{\mathbb{Z}}$ and let $\omega \in \Omega$. Let V_0 and V_1 be Ghys blocks of the same dimension but different rank. Let M_{ω} be the manifold obtained by gluing $M_{\omega(i)}$ with $M_{\omega(i+1)}$ via identification $T^+_{\omega(i)}$ with $T^-_{\omega(i+1)}$.

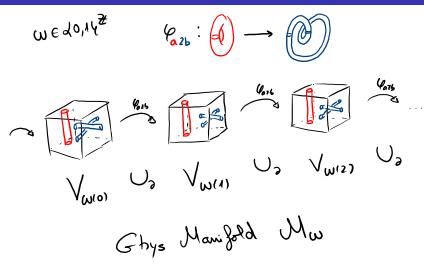
Proposition

[Ghys1995] M_{ω} is homeomorphic to $M_{\omega'} \Leftrightarrow \exists k \in \mathbb{Z} \ \sigma^k(\omega) = \omega'$

Proposition

[Ghys1995] $\exists C^{\infty}$ codimension **two** foliation on some 6-manifold that admits a exceptional minimal set whose leaves are (pairwise different) nonperiodic Ghys manifolds.

Quoting E. Ghys: "Il est probablement possible de construire un exemple sur une varieté de dimension 4, en codimension 1, en se fondant sur la même idée"



Consider first the foliation \mathcal{F}_1 in $(S^2 imes S^1) imes [-1,1]$ so that

< ∃ ►

Consider first the foliation \mathcal{F}_1 in $(S^2 \times S^1) \times [-1,1]$ so that

- The foliation is a product for $t \in [-1,0] \subset [-1,1]$.
- The foliation, for $t \in (0,1)$ consists of leaves homeomorphic to $S^2 imes \mathbb{R}$,

Consider first the foliation \mathcal{F}_1 in $(S^2 \times S^1) \times [-1,1]$ so that

- The foliation is a product for $t \in [-1,0] \subset [-1,1]$.
- The foliation, for $t \in (0, 1)$ consists of leaves homeomorphic to $S^2 \times \mathbb{R}$, these leaves accumulate to the compact leaves $S^2 \times S^1 \times \{0\}$ and $S^2 \times S^1 \times \{1\}$ as in a Reeb component.

Step 1: The basic foliation



► 4 Ξ ► 4

• Let γ_-, γ_+ and ω_-, ω_+ be transverse loops to \mathcal{F}_1 and homotopic to $\{*\} \times S^1 \times \{*\}.$

★ ∃ ► ★

- Let γ_-, γ_+ and ω_-, ω_+ be transverse loops to \mathcal{F}_1 and homotopic to $\{*\} \times S^1 \times \{*\}.$
- D_{\pm}^3 are transverse disks to γ_{\pm} .

< ∃ > <

- Let γ_-, γ_+ and ω_-, ω_+ be transverse loops to \mathcal{F}_1 and homotopic to $\{*\} \times S^1 \times \{*\}.$
- D_{\pm}^3 are transverse disks to γ_{\pm} .
- P_{\pm} are transverse sections to ω_{\pm} homeomorphic to $S^1 \times D^2$.

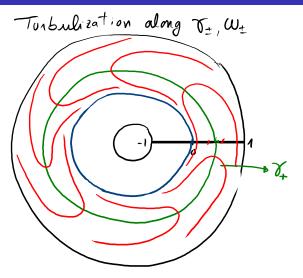
- Let γ_-, γ_+ and ω_-, ω_+ be transverse loops to \mathcal{F}_1 and homotopic to $\{*\} \times S^1 \times \{*\}.$
- D_{\pm}^3 are transverse disks to γ_{\pm} .
- P_{\pm} are transverse sections to ω_{\pm} homeomorphic to $S^1 \times D^2$.
- Remove the interiors of $D^3_\pm imes \gamma_\pm$ and $P_\pm imes \omega_\pm$
- Turbulize along the transverse boundary components to obtain the foliation \mathcal{F}_2 (with respect to suitable orientations of γ_{\pm} and ω_{\pm}).

- Let γ_-, γ_+ and ω_-, ω_+ be transverse loops to \mathcal{F}_1 and homotopic to $\{*\} \times S^1 \times \{*\}.$
- D_{\pm}^3 are transverse disks to γ_{\pm} .
- P_{\pm} are transverse sections to ω_{\pm} homeomorphic to $S^1 \times D^2$.
- Remove the interiors of $D^3_\pm imes \gamma_\pm$ and $P_\pm imes \omega_\pm$
- Turbulize along the transverse boundary components to obtain the foliation \mathcal{F}_2 (with respect to suitable orientations of γ_{\pm} and ω_{\pm}).
- Two pairs of compact boundary leaves L^0_{\pm} and L^1_{\pm} :

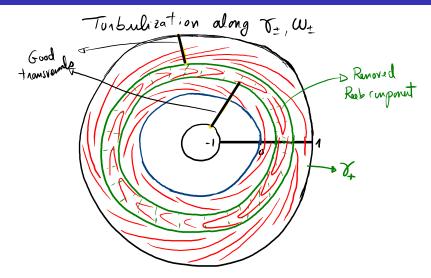
- Let γ_-, γ_+ and ω_-, ω_+ be transverse loops to \mathcal{F}_1 and homotopic to $\{*\} \times S^1 \times \{*\}.$
- D_{\pm}^3 are transverse disks to γ_{\pm} .
- P_{\pm} are transverse sections to ω_{\pm} homeomorphic to $S^1 \times D^2$.
- Remove the interiors of $D^3_\pm imes \gamma_\pm$ and $P_\pm imes \omega_\pm$
- Turbulize along the transverse boundary components to obtain the foliation \mathcal{F}_2 (with respect to suitable orientations of γ_{\pm} and ω_{\pm}).
- Two pairs of compact boundary leaves L^0_{\pm} and L^1_{\pm} : L^0_{\pm} homeomorphic to $S^2 \times S^1$

- Let γ_-, γ_+ and ω_-, ω_+ be transverse loops to \mathcal{F}_1 and homotopic to $\{*\} \times S^1 \times \{*\}.$
- D_{\pm}^3 are transverse disks to γ_{\pm} .
- P_{\pm} are transverse sections to ω_{\pm} homeomorphic to $S^1 \times D^2$.
- Remove the interiors of $D_{\pm}^3 imes \gamma_{\pm}$ and $P_{\pm} imes \omega_{\pm}$
- Turbulize along the transverse boundary components to obtain the foliation \mathcal{F}_2 (with respect to suitable orientations of γ_{\pm} and ω_{\pm}).
- Two pairs of compact boundary leaves L^0_{\pm} and L^1_{\pm} : L^0_{\pm} homeomorphic to $S^2 \times S^1$ and L^1_{\pm} homeomorphic to T^3 .

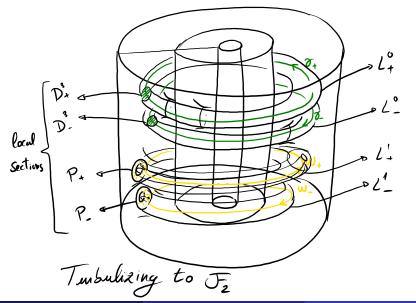
Step 2: Turbulizing



Step 2: Turbulizing



Step 2: Turbulizing



Let $\mathcal{F}_3 = T^2 \times \mathcal{F}_2$

▶ ▲ 重 ▶ 重 ∽ Q C 21/07/2022 14 / 24

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\mathcal{F}_3 = T^2 \times \mathcal{F}_2$ and set $\langle a, b \rangle = \pi_1(T_2)$.

Let $\mathcal{F}_3 = T^2 \times \mathcal{F}_2$ and set $\langle a, b \rangle = \pi_1(T_2)$. Take 8 paths $\delta^i_{\pm,j}$ and $\delta^i_{\pm,j}$, i = 0, 1, j = -1, 1, transverse to \mathcal{F}_3 so that:

Let $\mathcal{F}_3 = T^2 \times \mathcal{F}_2$ and set $\langle a, b \rangle = \pi_1(T_2)$. Take 8 paths $\delta^i_{\pm,j}$ and $\delta^i_{\pm,j}$, i = 0, 1, j = -1, 1, transverse to \mathcal{F}_3 so that: • $\delta^i_{\pm,j}$ connects the compact leaf $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ with L^i_{\pm} , i = 0, 1, j = -1, 1.

Let $\mathcal{F}_3 = \mathcal{T}^2 \times \mathcal{F}_2$ and set $\langle a, b \rangle = \pi_1(\mathcal{T}_2)$. Take 8 paths $\delta^i_{\pm,j}$ and $\delta^i_{\pm,j}$, i = 0, 1, j = -1, 1, transverse to \mathcal{F}_3 so that:

- $\delta^i_{\pm,j}$ connects the compact leaf $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ with L^i_{\pm} , i = 0, 1, j = -1, 1.
- they meet $T^2 \times S^2 \times S^1 \times \{t\}$ at most in one point.

Let $\mathcal{F}_3 = T^2 \times \mathcal{F}_2$ and set $\langle a, b \rangle = \pi_1(T_2)$. Take 8 paths $\delta^i_{\pm,j}$ and $\delta^i_{\pm,j}$, i = 0, 1, j = -1, 1, transverse to \mathcal{F}_3 so that: • $\delta^i_{\pm,j}$ connects the compact leaf $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ with L^i_{\pm} , i = 0, 1, j = -1, 1.

• they meet $T^2 \times S^2 \times S^1 \times \{t\}$ at most in one point.

Set \hat{a} and \hat{b} be loops in T^2 such that \hat{a} is in the homotopy class of a and \hat{b} is homotopic to **twice** b.

Let $\mathcal{F}_3 = T^2 \times \mathcal{F}_2$ and set $\langle a, b \rangle = \pi_1(T_2)$. Take 8 paths $\delta^i_{\pm,j}$ and $\delta^i_{\pm,j}$, i = 0, 1, j = -1, 1, transverse to \mathcal{F}_3 so that: • $\delta^i_{\pm,j}$ connects the compact leaf $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ with L^i_{\pm} , i = 0, 1, j = -1, 1.

• they meet $\mathcal{T}^2 imes \mathcal{S}^2 imes \mathcal{S}^1 imes \{t\}$ at most in one point.

Set \hat{a} and \hat{b} be loops in T^2 such that \hat{a} is in the homotopy class of a and \hat{b} is homotopic to **twice** b.

Let \mathcal{F}_4 be the foliation obtained from \mathcal{F}_3 by removing tubular neighborhoods of $\hat{a} \times \delta^i_{\pm,j}$ and $\hat{b} \times \delta^i_{\pm,j}$ for i = 0, 1, j = -1, 1.

Let $\mathcal{F}_3 = T^2 \times \mathcal{F}_2$ and set $\langle a, b \rangle = \pi_1(T_2)$. Take 8 paths $\delta^i_{\pm,j}$ and $\delta^i_{\pm,j}$, i = 0, 1, j = -1, 1, transverse to \mathcal{F}_3 so that: • $\delta^i_{\pm,j}$ connects the compact leaf $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ with L^i_{\pm} , i = 0, 1, j = -1, 1.

• they meet $T^2 \times S^2 \times S^1 \times \{t\}$ at most in one point.

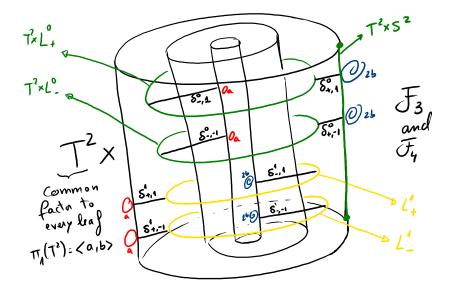
Set \hat{a} and \hat{b} be loops in T^2 such that \hat{a} is in the homotopy class of a and \hat{b} is homotopic to **twice** b.

Let \mathcal{F}_4 be the foliation obtained from \mathcal{F}_3 by removing tubular neighborhoods of $\hat{a} \times \delta^i_{\pm,j}$ and $\hat{b} \times \delta^i_{\pm,j}$ for i = 0, 1, j = -1, 1.

Remark

Let V_0^{\pm} and V_1^{\pm} be the leaves of \mathcal{F}_4 obtained from the leaves $T^2 \times L_{\pm}^i$ after removing the previous neighborhoods. These are 5-dimensional Ghys blocks of rank 3 and 5.

< □ > < □ > < □ > < □ > < □ > < □ >



• Consider $\mathcal{G}_0 = V_0 \times I_0$ and $\mathcal{G}_1 = V_1 \times I_1$, $I_0, I_1 \equiv [0, 1]$.

- (日)

→ < ∃ →</p>

- Consider $\mathcal{G}_0 = V_0 \times I_0$ and $\mathcal{G}_1 = V_1 \times I_1$, $I_0, I_1 \equiv [0, 1]$.
- Set \mathcal{F}_5 from \mathcal{F}_4 by attaching the tangent boundary of \mathcal{G}_i to the leaves V_i^{\pm}
- The compact boundary leaves $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ have, each one, four boundary components $T^a_{\pm,j}$ and $T^b_{\pm,j}$ coming from the removed neighborhoods.

- Consider $\mathcal{G}_0 = V_0 \times I_0$ and $\mathcal{G}_1 = V_1 \times I_1$, $I_0, I_1 \equiv [0, 1]$.
- Set \mathcal{F}_5 from \mathcal{F}_4 by attaching the tangent boundary of \mathcal{G}_i to the leaves V_i^{\pm}
- The compact boundary leaves $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ have, each one, four boundary components $T^a_{\pm,j}$ and $T^b_{\pm,j}$ coming from the removed neighborhoods.
- Identify these leaves via $T^a_{-,j} \longleftrightarrow T^a_{+,-j}$ and $T^b_{-,j} \longleftrightarrow T^b_{+,-j}$.

- Consider $\mathcal{G}_0 = V_0 \times I_0$ and $\mathcal{G}_1 = V_1 \times I_1$, $I_0, I_1 \equiv [0, 1]$.
- Set \mathcal{F}_5 from \mathcal{F}_4 by attaching the tangent boundary of \mathcal{G}_i to the leaves V_i^\pm
- The compact boundary leaves $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ have, each one, four boundary components $T^a_{\pm,j}$ and $T^b_{\pm,j}$ coming from the removed neighborhoods.
- Identify these leaves via $T^a_{-,j} \longleftrightarrow T^a_{+,-j}$ and $T^b_{-,j} \longleftrightarrow T^b_{+,-j}$.
- \mathcal{F}_5 is a codimension one foliation on a compact 6-manifold with boundary.

- Consider $\mathcal{G}_0 = V_0 \times I_0$ and $\mathcal{G}_1 = V_1 \times I_1$, $I_0, I_1 \equiv [0, 1]$.
- Set \mathcal{F}_5 from \mathcal{F}_4 by attaching the tangent boundary of \mathcal{G}_i to the leaves V_i^\pm
- The compact boundary leaves $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ have, each one, four boundary components $T^a_{\pm,j}$ and $T^b_{\pm,j}$ coming from the removed neighborhoods.
- Identify these leaves via $T^a_{-,j} \longleftrightarrow T^a_{+,-j}$ and $T^b_{-,j} \longleftrightarrow T^b_{+,-j}$.
- *F*₅ is a codimension one foliation on a compact 6-manifold with boundary. ∂*F*₅ consists of two manifolds *R*_±:

- Consider $\mathcal{G}_0 = V_0 \times I_0$ and $\mathcal{G}_1 = V_1 \times I_1$, $I_0, I_1 \equiv [0, 1]$.
- Set \mathcal{F}_5 from \mathcal{F}_4 by attaching the tangent boundary of \mathcal{G}_i to the leaves V_i^\pm
- The compact boundary leaves $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ have, each one, four boundary components $T^a_{\pm,j}$ and $T^b_{\pm,j}$ coming from the removed neighborhoods.
- Identify these leaves via $T^a_{-,j} \longleftrightarrow T^a_{+,-j}$ and $T^b_{-,j} \longleftrightarrow T^b_{+,-j}$.
- *F*₅ is a codimension one foliation on a compact 6-manifold with boundary. ∂*F*₅ consists of two manifolds *R*_±:
- R_- is homeomorphic to $T^a \times S^1_a$ and R_+ is homeomorphic to $T^b \times S^1_b$

- Consider $\mathcal{G}_0 = V_0 \times I_0$ and $\mathcal{G}_1 = V_1 \times I_1$, $I_0, I_1 \equiv [0, 1]$.
- Set \mathcal{F}_5 from \mathcal{F}_4 by attaching the tangent boundary of \mathcal{G}_i to the leaves V_i^\pm
- The compact boundary leaves $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ have, each one, four boundary components $T^a_{\pm,j}$ and $T^b_{\pm,j}$ coming from the removed neighborhoods.
- Identify these leaves via $T^a_{-,j} \longleftrightarrow T^a_{+,-j}$ and $T^b_{-,j} \longleftrightarrow T^b_{+,-j}$.
- *F*₅ is a codimension one foliation on a compact 6-manifold with boundary. ∂*F*₅ consists of two manifolds *R*_±:
- R_- is homeomorphic to $T^a \times S^1_a$ and R_+ is homeomorphic to $T^b \times S^1_b$ (Both homoemorphic to $(S^3 \times S^1) \times S^1$)
- S_a^1 and S_b^1 are transverse circles that can be decomposed as $S_a^1 = I_0^- \cup \delta_{a,-1} \cup I_1^- \cup \delta_{a,+1}$ and $S_b^1 = I_0^+ \cup \delta_{b,-1} \cup I_1^+ \cup \delta_{b,+1}$.

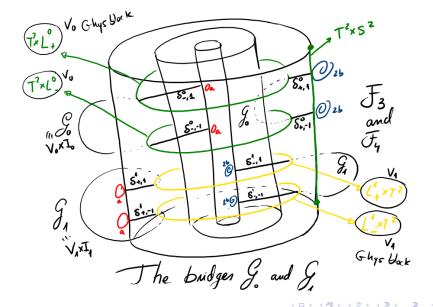
・ロト ・ 同ト ・ ヨト ・ ヨト

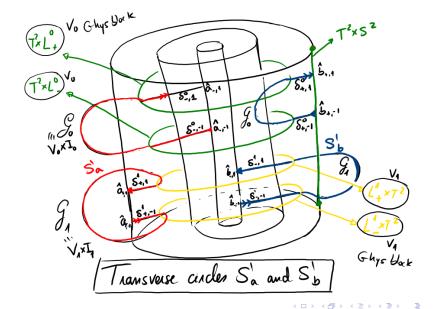
- Consider $\mathcal{G}_0 = V_0 \times I_0$ and $\mathcal{G}_1 = V_1 \times I_1$, $I_0, I_1 \equiv [0, 1]$.
- Set \mathcal{F}_5 from \mathcal{F}_4 by attaching the tangent boundary of \mathcal{G}_i to the leaves V_i^\pm
- The compact boundary leaves $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ have, each one, four boundary components $T^a_{\pm,j}$ and $T^b_{\pm,j}$ coming from the removed neighborhoods.
- Identify these leaves via $T^a_{-,j} \longleftrightarrow T^a_{+,-j}$ and $T^b_{-,j} \longleftrightarrow T^b_{+,-j}$.
- *F*₅ is a codimension one foliation on a compact 6-manifold with boundary. ∂*F*₅ consists of two manifolds *R*_±:
- R_- is homeomorphic to $T^a \times S^1_a$ and R_+ is homeomorphic to $T^b \times S^1_b$ (Both homoemorphic to $(S^3 \times S^1) \times S^1$)
- S_a^1 and S_b^1 are transverse circles that can be decomposed as $S_a^1 = I_0^- \cup \delta_{a,-1} \cup I_1^- \cup \delta_{a,+1}$ and $S_b^1 = I_0^+ \cup \delta_{b,-1} \cup I_1^+ \cup \delta_{b,+1}$.
- Here I_i^{\pm} are transversals of the bridge foliations \mathcal{G}_1 , \mathcal{G}_2 .

<日

<</p>

- Consider $\mathcal{G}_0 = V_0 \times I_0$ and $\mathcal{G}_1 = V_1 \times I_1$, $I_0, I_1 \equiv [0, 1]$.
- Set \mathcal{F}_5 from \mathcal{F}_4 by attaching the tangent boundary of \mathcal{G}_i to the leaves V_i^\pm
- The compact boundary leaves $T^2 \times S^2 \times S^1 \times \{\pm 1\}$ have, each one, four boundary components $T^a_{\pm,j}$ and $T^b_{\pm,j}$ coming from the removed neighborhoods.
- Identify these leaves via $T^a_{-,j} \longleftrightarrow T^a_{+,-j}$ and $T^b_{-,j} \longleftrightarrow T^b_{+,-j}$.
- \mathcal{F}_5 is a codimension one foliation on a compact 6-manifold with boundary. $\partial \mathcal{F}_5$ consists of two manifolds R_{\pm} :
- R_- is homeomorphic to $T^a \times S^1_a$ and R_+ is homeomorphic to $T^b \times S^1_b$ (Both homoemorphic to $(S^3 \times S^1) \times S^1$)
- S_a^1 and S_b^1 are transverse circles that can be decomposed as $S_a^1 = I_0^- \cup \delta_{a,-1} \cup I_1^- \cup \delta_{a,+1}$ and $S_b^1 = I_0^+ \cup \delta_{b,-1} \cup I_1^+ \cup \delta_{b,+1}$.
- Here I_i^{\pm} are transversals of the bridge foliations \mathcal{G}_1 , \mathcal{G}_2 .
- The saturation of I_i^{\pm} in \mathcal{F}_5 is homeomorphic to \mathcal{G}_i





• Take S_a^1 and S_b^1 so I_i^- and I_i^+ represents the same arcs in the circle.

Take S¹_a and S¹_b so I[−]_i and I⁺_i represents the same arcs in the circle.
Let φ : S¹_a → S¹_b be a Denjoy map

- Take S_a^1 and S_b^1 so I_i^- and I_i^+ represents the same arcs in the circle.
- Let $\varphi: S_a^1 \to S_b^1$ be a Denjoy map with exceptional minimal set $\Lambda \subset I_0 \cup I_1$

- Take S_a^1 and S_b^1 so I_i^- and I_i^+ represents the same arcs in the circle.
- Let $\varphi : S_a^1 \to S_b^1$ be a Denjoy map with exceptional minimal set $\Lambda \subset I_0 \cup I_1$ and so that $\Lambda \cap I_i$ are also Cantor sets.

- Take S_a^1 and S_b^1 so I_i^- and I_i^+ represents the same arcs in the circle.
- Let $\varphi : S_a^1 \to S_b^1$ be a Denjoy map with exceptional minimal set $\Lambda \subset I_0 \cup I_1$ and so that $\Lambda \cap I_i$ are also Cantor sets.
- Set *F_φ* be the foliation obtained from *F*₅ gluing *S¹_a* with *S¹_b* via *φ* and *T^a* with *T^b* identifying meridians.

- Take S_a^1 and S_b^1 so I_i^- and I_i^+ represents the same arcs in the circle.
- Let $\varphi : S_a^1 \to S_b^1$ be a Denjoy map with exceptional minimal set $\Lambda \subset I_0 \cup I_1$ and so that $\Lambda \cap I_i$ are also Cantor sets.
- Set \mathcal{F}_{φ} be the foliation obtained from \mathcal{F}_5 gluing S_a^1 with S_b^1 via φ and T^a with T^b identifying meridians.

Proposition

The leaves of \mathcal{F}_{φ} are nonperiodic Ghys manifolds.

- Take S_a^1 and S_b^1 so I_i^- and I_i^+ represents the same arcs in the circle.
- Let $\varphi : S_a^1 \to S_b^1$ be a Denjoy map with exceptional minimal set $\Lambda \subset I_0 \cup I_1$ and so that $\Lambda \cap I_i$ are also Cantor sets.
- Set \mathcal{F}_{φ} be the foliation obtained from \mathcal{F}_5 gluing S_a^1 with S_b^1 via φ and T^a with T^b identifying meridians.

Proposition

The leaves of \mathcal{F}_{φ} are nonperiodic Ghys manifolds.

Proof.

Periodic leaf $\rightsquigarrow \exists m \in \mathbb{N}$ and $x \in I_0$ (or I_1) such that $\varphi^{k \cdot m}(x) \in I_0 \cap \Lambda$ for all $k \in \mathbb{Z}$

- Take S_a^1 and S_b^1 so I_i^- and I_i^+ represents the same arcs in the circle.
- Let $\varphi : S_a^1 \to S_b^1$ be a Denjoy map with exceptional minimal set $\Lambda \subset I_0 \cup I_1$ and so that $\Lambda \cap I_i$ are also Cantor sets.
- Set \mathcal{F}_{φ} be the foliation obtained from \mathcal{F}_5 gluing S_a^1 with S_b^1 via φ and T^a with T^b identifying meridians.

Proposition

The leaves of \mathcal{F}_{φ} are nonperiodic Ghys manifolds.

Proof.

Periodic leaf $\rightsquigarrow \exists m \in \mathbb{N}$ and $x \in I_0$ (or I_1) such that $\varphi^{k \cdot m}(x) \in I_0 \cap \Lambda$ for all $k \in \mathbb{Z} \rightsquigarrow \varphi^m$ has a minimal set different from Λ (contradiction).

- Take S_a^1 and S_b^1 so I_i^- and I_i^+ represents the same arcs in the circle.
- Let $\varphi : S_a^1 \to S_b^1$ be a Denjoy map with exceptional minimal set $\Lambda \subset I_0 \cup I_1$ and so that $\Lambda \cap I_i$ are also Cantor sets.
- Set \mathcal{F}_{φ} be the foliation obtained from \mathcal{F}_5 gluing S_a^1 with S_b^1 via φ and T^a with T^b identifying meridians.

Proposition

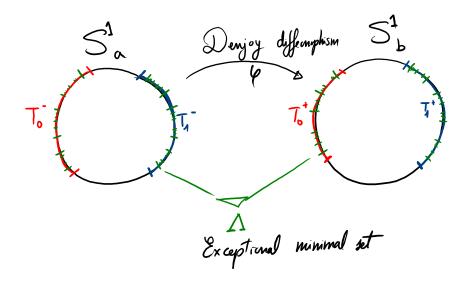
The leaves of \mathcal{F}_{φ} are nonperiodic Ghys manifolds.

Proof.

Periodic leaf $\rightsquigarrow \exists m \in \mathbb{N}$ and $x \in I_0$ (or I_1) such that $\varphi^{k \cdot m}(x) \in I_0 \cap \Lambda$ for all $k \in \mathbb{Z} \rightsquigarrow \varphi^m$ has a minimal set different from Λ (contradiction).

Proposition

The leaves of \mathcal{F}_{φ} passing through the gaps of Λ which are sufficiently close to Λ are nonperiodic proper leaves with two ends.



21/07/2022 20/24

Let W be a 5-manifold with $\pi_1(W) = \mathbb{Z}_p$, p > 2, and let $\omega \in \Omega$ be a nonperiodic (bi)sequence.

★ ∃ ►

Let W be a 5-manifold with $\pi_1(W) = \mathbb{Z}_p$, p > 2, and let $\omega \in \Omega$ be a nonperiodic (bi)sequence. Then $W \# M_\omega$ cannot be homeomorphic to any leaf of any codimension one C^2 foliation on a compact manifold.

Let W be a 5-manifold with $\pi_1(W) = \mathbb{Z}_p$, p > 2, and let $\omega \in \Omega$ be a nonperiodic (bi)sequence. Then $W \# M_\omega$ cannot be homeomorphic to any leaf of any codimension one C^2 foliation on a compact manifold.

Proposition

Let W be a nontrivial 5-manifold with $\pi_1(W) = \mathbb{Z}_p$, p > 2,, there exists nonperiodic $\omega \in \Omega$. such that

Let W be a 5-manifold with $\pi_1(W) = \mathbb{Z}_p$, p > 2, and let $\omega \in \Omega$ be a nonperiodic (bi)sequence. Then $W \# M_\omega$ cannot be homeomorphic to any leaf of any codimension one C^2 foliation on a compact manifold.

Proposition

Let W be a nontrivial 5-manifold with $\pi_1(W) = \mathbb{Z}_p$, p > 2,, there exists nonperiodic $\omega \in \Omega$. such that $W \# M_\omega$ is homeomorphic to a leaf of a codimension one C^1 foliation on a compact manifold

Let W be a 5-manifold with $\pi_1(W) = \mathbb{Z}_p$, p > 2, and let $\omega \in \Omega$ be a nonperiodic (bi)sequence. Then $W \# M_\omega$ cannot be homeomorphic to any leaf of any codimension one C^2 foliation on a compact manifold.

Proposition

Let W be a nontrivial 5-manifold with $\pi_1(W) = \mathbb{Z}_p$, p > 2,, there exists nonperiodic $\omega \in \Omega$. such that $W \# M_\omega$ is homeomorphic to a leaf of a codimension one C^1 foliation on a compact manifold and to a leaf of a C^∞ codimension two foliation. Denjoy map φ

イロト イヨト イヨト イヨ

Denjoy map $\varphi \rightsquigarrow$ bisequence $\omega_{\varphi} \in \Omega = \{0, 1\}^{\mathbb{Z}}$ relative to some Ghys manifold in the exceptional minimal set of \mathcal{F}_{φ} .

Definition

 $\omega \in \Omega$ is called *end repetitive* iff there exists r > 0 such that $\{\omega(n)\}_{n > r}$ and $\{\omega(n)\}_{n < -r}$ are repetitive sequences.

Denjoy map $\varphi \rightsquigarrow$ bisequence $\omega_{\varphi} \in \Omega = \{0, 1\}^{\mathbb{Z}}$ relative to some Ghys manifold in the exceptional minimal set of \mathcal{F}_{φ} .

Definition

 $\omega \in \Omega$ is called *end repetitive* iff there exists r > 0 such that $\{\omega(n)\}_{n > r}$ and $\{\omega(n)\}_{n < -r}$ are repetitive sequences.

Proposition

For any Denjoy map φ as above the sequence ω_{φ} is end repetitive.

Conjecture

[In progress] For every end repetitive ω there exists a Denjoy diffeomorphism such that $\omega_{\varphi} = \omega$.

(4回) * * ヨ * *

• Let
$$\alpha = \operatorname{rot}(\varphi) \lesssim 1/2$$
.

▶ < ≣ ▶ ≣ ∽ ९ ୯ 21/07/2022 23/24

• • • • • • • • • • • •

• Let
$$\alpha = \operatorname{rot}(\varphi) \lesssim 1/2$$
.
 $S^1 \setminus I_0 \cup I_1$ is included in the gaps through 1 and $\varphi(1)$.

3

• • • • • • • • • • • •

- Let $\alpha = \operatorname{rot}(\varphi) \lesssim 1/2$. $S^1 \setminus I_0 \cup I_1$ is included in the gaps through 1 and $\varphi(1)$.
- Set d_n the close returns of 1 and q_n the power of φ realizing these close returns.

- Let $\alpha = \operatorname{rot}(\varphi) \lesssim 1/2$. $S^1 \setminus I_0 \cup I_1$ is included in the gaps through 1 and $\varphi(1)$.
- Set d_n the close returns of 1 and q_n the power of φ realizing these close returns.
- There exists a sequence of partial quotients a_n such that $q_{n+1} = q_{n-1} + a_nq_n$ and $d_{n+1} = d_{n-1} a_nd_n$ $(n \ge 1)$.

- Let $\alpha = \operatorname{rot}(\varphi) \lesssim 1/2$. $S^1 \setminus I_0 \cup I_1$ is included in the gaps through 1 and $\varphi(1)$.
- Set d_n the close returns of 1 and q_n the power of φ realizing these close returns.
- There exists a sequence of partial quotients a_n such that $q_{n+1} = q_{n-1} + a_n q_n$ and $d_{n+1} = d_{n-1} a_n d_n$ $(n \ge 1)$. The partial quotients define the continuous fraction expansion of α .

- Let $\alpha = \operatorname{rot}(\varphi) \lesssim 1/2$. $S^1 \setminus I_0 \cup I_1$ is included in the gaps through 1 and $\varphi(1)$.
- Set d_n the close returns of 1 and q_n the power of φ realizing these close returns.
- There exists a sequence of partial quotients a_n such that $q_{n+1} = q_{n-1} + a_n q_n$ and $d_{n+1} = d_{n-1} a_n d_n$ $(n \ge 1)$. The partial quotients define the continuous fraction expansion of α .
- For this particular choice of α the sequence is "almost ever" of the form ...01010101...,

- Let $\alpha = \operatorname{rot}(\varphi) \lesssim 1/2$. $S^1 \setminus I_0 \cup I_1$ is included in the gaps through 1 and $\varphi(1)$.
- Set d_n the close returns of 1 and q_n the power of φ realizing these close returns.
- There exists a sequence of partial quotients a_n such that $q_{n+1} = q_{n-1} + a_n q_n$ and $d_{n+1} = d_{n-1} a_n d_n$ $(n \ge 1)$. The partial quotients define the continuous fraction expansion of α .
- For this particular choice of α the sequence is "almost ever" of the form ...01010101..., the occurence of a double 0 is impossible,

- Let $\alpha = \operatorname{rot}(\varphi) \lesssim 1/2$. $S^1 \setminus I_0 \cup I_1$ is included in the gaps through 1 and $\varphi(1)$.
- Set d_n the close returns of 1 and q_n the power of φ realizing these close returns.
- There exists a sequence of partial quotients a_n such that $q_{n+1} = q_{n-1} + a_n q_n$ and $d_{n+1} = d_{n-1} a_n d_n$ $(n \ge 1)$. The partial quotients define the continuous fraction expansion of α .
- For this particular choice of α the sequence is "almost ever" of the form ...01010101..., the occurence of a double 0 is impossible, and the occurrence of double 1 depends on $d_n < \pi \operatorname{rot}(\alpha)$, that occurs at each close return time q_n .

- Let $\alpha = \operatorname{rot}(\varphi) \lesssim 1/2$. $S^1 \setminus I_0 \cup I_1$ is included in the gaps through 1 and $\varphi(1)$.
- Set d_n the close returns of 1 and q_n the power of φ realizing these close returns.
- There exists a sequence of partial quotients a_n such that $q_{n+1} = q_{n-1} + a_n q_n$ and $d_{n+1} = d_{n-1} a_n d_n$ $(n \ge 1)$. The partial quotients define the continuous fraction expansion of α .
- For this particular choice of α the sequence is "almost ever" of the form ...01010101..., the occurence of a double 0 is impossible, and the occurrence of double 1 depends on $d_n < \pi \operatorname{rot}(\alpha)$, that occurs at each close return time q_n .
- Thus a (large) period is broken at each close return time q_n .

- Let $\alpha = \operatorname{rot}(\varphi) \lesssim 1/2$. $S^1 \setminus I_0 \cup I_1$ is included in the gaps through 1 and $\varphi(1)$.
- Set d_n the close returns of 1 and q_n the power of φ realizing these close returns.
- There exists a sequence of partial quotients a_n such that $q_{n+1} = q_{n-1} + a_n q_n$ and $d_{n+1} = d_{n-1} a_n d_n$ $(n \ge 1)$. The partial quotients define the continuous fraction expansion of α .
- For this particular choice of α the sequence is "almost ever" of the form ...01010101..., the occurence of a double 0 is impossible, and the occurrence of double 1 depends on $d_n < \pi \operatorname{rot}(\alpha)$, that occurs at each close return time q_n .
- Thus a (large) period is broken at each close return time q_n . Thus the sequence is (forward) repetitive and nonperiodic. The same argument is used backwards for the rotation number $rot(\varphi^{-1})$.

Thanks for your attention!

Image: A matrix

< ⊒ >