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1. Introduction

Most of the material for this course can also been found in the books [2, 4, 5],
and we do not give detailed references to these in the following.

We consider models for the time evolution of systems, whose state can be
described by a finite number of parameters.

• Therefore states will always be points in Rn, n ∈ N, the state space.
• Time will be assumed to either evolve continuously or in discrete steps.
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• We shall also assume that the state at a certain time completely deter-
mines all later states, and finally
• we assume that the environment for our system does not change with

time.

Starting with the case of discrete time k ∈ Z, the assumption that the state
uk ∈ Rn at time k determines the state at time k + 1 means that there is a
map fk : Rn → Rn such that uk+1 = fk(uk). Since we also assume that the
environment does not change with time, the rule for the time step from k to
k + 1, i.e. the map fk should not depend on k. Furthermore we consider the
possibility that not all points in Rn are admissible states, and postulate for
f : M→M⊂ Rn the evolution rule

uk+1 = f(uk) , k ∈ Z .(1)

One particular forward trajectory is fixed by prescribing an initial state

u0 = u ∈M .(2)

The choice of k = 0 as initial time is not essential by the independence of f on
k. Since the forward trajectory is obviously given by

uk = fk(u) := f ◦ · · · ◦ f︸ ︷︷ ︸
k times

(u) , k ≥ 0 ,

we talk about iterated maps in this situation. If the map f is invertible, the
initial state also determines the states at negative times, and the above formula
can also be used for k < 0 with the convention f−k := (f−1)k, k > 0.

For continuous time we consider explicit first order autonomous systems of
ordinary differential equations

u̇(t) = f(u(t))(3)

with u(t) ∈ Rn for t ∈ R, f : Rn → Rn and u̇ := du/dt. The differential equations
are ordinary, since the unknown function u only depends on one variable. They
are explicit, since the derivatives of the components are given as functions of the
state. Finally, autonomous means that f does not explicitly depend on t, which
reflects the time independence of the environment.

Again we expect that prescribing the state at a certain time (w.l.o.g. chosen
as t = 0) determines the subsequent evolution. We consider (3) subject to the
initial condition

u(0) = u0 .(4)

The Picard-Lindelöf Theorem shows that from t = 0 we can actually go forward
and backward in time, at least a little:

Theorem 1. Let u0 ∈ Rn and let f(u) be Lipschitz continuous in a neighborhood
U of u0 with values in Rn. Then there exists T > 0 and a unique u ∈ C1((−T, T ))
solving (3), (4), for −T < t < T . The existence time T only depends on U , on
supU |f |, and on the Lipschitz constant of f in U .
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The Picard theorem requires Lipschitz continuity of f . In the following it will
be convenient to assume even more regularity. In order to avoid technicalities
concerning precise smoothness assumptions, we shall assume from now on

f ∈ C∞(Rn)n ,(5)

for the functions in both (1) and (3). This assumption will be used for the rest
of the course, and it will not be repeated in each theorem.

The Picard-Lindelöf theorem is a local existence theorem guaranteeing exis-
tence only in a small enough time interval. The example

u̇ = u2 , u(0) = 1 ,(6)

with the explicit solution u(t) = (1− t)−1 shows that in general no better result
can be expected. We observe that the maximal existence interval (−∞, 1) is
open, and limt→1− |u(t)| = ∞ holds. The following result shows that ’nothing
worse’ can happen.

Theorem 2. Let (5) hold and let u0 ∈ Rn. Then the maximal existence interval
I of the unique solution of (3), (4) is open, i.e. I = (a, b) with −∞ ≤ a < 0 <
b ≤ ∞. In the cases a > −∞ or b <∞ we have

lim
t→a+

|u(t)| =∞ or, respectively, lim
t→b−

|u(t)| =∞ .

Remark 1. The Euclidian norm in Rn is denoted by | · | and the scalar product
by a dot, i.e. |u|2 = u · u.

Proof: For I = R there is nothing to prove. Therefore we first assume b <∞. If
limt→b− |y(t)| =∞ does not hold, then there exists a sequence tn → b−, such that
the sequence u(tn) is bounded and therefore it contains a convergent subsequence
u(tnk)→ u (by the Bolzano-Weierstrass theorem). Theorem 1 implies that for a
neighborhood U of u there exists T > 0 such that for all ũ ∈ U the solution of the
initial value problem (3) subject to u(t̃) = ũ exists in the interval (t̃− T, t̃+ T ).
Since (tnk , u(tnk))→ (b, u), there exists nk, such that u(tnk) ∈ U and b−tnk < T .
The solution can therefore be extended up to the time tnk+T > b in contradiction
to b being the right end of the existence interval. It is an obvious consequence
that the existence interval is open at b.

The left end is treated analogously.

This result often helps in proving global existence of solutions, i.e. existence
for all times. A useful auxiliary result is the Gronwall lemma:

Lemma 1. a) Let z : [0, T ]→ [0,∞) be continuous, λ, z0 ≥ 0, and let

z(t) ≤ z0 + λ

∫ t

0
z(s)ds , 0 ≤ t ≤ T .

Then z(t) ≤ eλtz0, 0 ≤ t ≤ T .
b) Let z : [0, T ] → [0,∞) be continuously differentiable, λ ∈ R, z(0) = z0 ≥ 0,
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and let

ż(t) ≤ λz(t) , 0 ≤ t ≤ T .
Then z(t) ≤ eλtz0, 0 ≤ t ≤ T .

Proof: a) The function

v(t) := e−λt
∫ t

0
z(s)ds

satisfies

v̇(t) = e−λt
(
z(t)− λ

∫ t

0
z(s)ds

)
≤ e−λtz0 .

By integration we obtain

v(t) ≤ z0

λ

(
1− e−λt

)
.

Since z(t) ≤ z0 + λeλtv(t), the result follows. Note that λ ≥ 0 is used in this last
step.
b) The function u(t) = e−λtz(t) satisfies u̇ ≤ 0 and, thus, u(t) ≤ u(0) = z0.

The folllowing theorem is a typical global existence result.

Theorem 3. Let the assumptions of Theorem 2 be satisfied and let the right
hand side f have at most linear growth, i.e. there exist λ, µ ≥ 0 such that
|f(u)| ≤ λ|u|+ µ for all u ∈ Rn. Then for every u0 ∈ Rn the solution of (3), (4)
exists for all times.

For every t ∈ R, u(t) depends Lipschitz continuously on the initial state u0.

Proof: We prove existence for all t > 0. The proof for negative t is analogous
after t↔ −t.

The formulation of the initial value problem as integral equation

u(t) = u0 +

∫ t

0
f(u(s))ds

implies

|u(t)| ≤ |u0|+
∫ t

0
(λ|u(s)|+ µ)ds

For λ = 0 this gives |u(t)| ≤ |u0| + tµ. For λ > 0 we use the Gronwall lemma
with z(t) = |u(t)|+ µ/λ and obtain

|u(t)| ≤ eλt|u0|+
µ

λ

(
eλt − 1

)
.

In both cases |u(t)| cannot grow above all bounds in finite time. Thus the solution
is global by Theorem 2.

For proving Lipschitz continuous dependence on the initial state, fix u0 ∈ Rn
and t ∈ R. Then the estimates above show that for initial states in a bounded
neighborhood U of u0, the trajectories between times 0 and t lie in a bounded
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set. Denote the Lipschitz constant of f in this set by L, choose v0 ∈ U and let
u(t), v(t) be the solutions of (3) with u(0) = u0, v(0) = v0. Then we have

|u(t)− v(t)| ≤ |u0 − v0|+
∫ t

0
|f(u(s))− f(v(s))|ds

≤ |u0 − v0|+ L

∫ t

0
|u(s)− v(s)|ds ,

and, thus, by the Gronwall lemma,

|u(t)− v(t)| ≤ eLt|u0 − v0| .

Definition 1. Let M be a metric space (the state space or phase space) and
let the set of times T be either R, [0,∞), Z, or N0. A deterministic dynamical
system is a map T ×M→M, (t, u0) 7→ St(u0), satisfying

(1) ∀u0 ∈M: S0(u0) = u0,
(2) ∀u0 ∈M, s, t ∈ T : Ss+t(u0) = Ss(St(u0)),
(3) ∀t ∈ T : u0 7→ St(u0) is continuous.

In the cases T = [0,∞) and T = N0, St is called a forward dynamical system;
for T = Z or T = N0 it is called a discrete dynamical system; and for T = R
or T = [0,∞) it is called a continuous dynamical system. For fixed u0 ∈ M,
the set {St(u0) : t ∈ T } is called the trajectory through u0. The collection of all
trajectories is called the phase portrait of the dynamical system.

Remark 2. Condition (1) just means that u0 is the initial state. Condition (2) is
called the semigroup property, since it induces a semigroup structure for forward
dynamical systems. For forward-and-backward dynamical systems (T = R or
T = Z) it is actually a group structure with the inverse of St given by S−t.

Finally, condition (3) means continuous dependence on the initial state. For
continuous dynamical systems one typically also expects continuity with respect
to time.

Remark 3. Under the assumptions of Theorem 3, (3) defines a continuous dy-
namical system on Rn. Even if these assumptions are violated, a dynamical
system might result from a reduction of the state space, e.g. the ODE in (6)
defines a forward dynamical system on M = (−∞, 0], but not on M = R.

The iteration (1) defines a discrete dynamical system on Rn, whenever f is
continuous. Discrete dynamical systems also result from the explicit Euler dis-
cretization

uk+1 = uk + ∆t f(uk)

of (3) with time step ∆t.
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In this course we deal with both discrete and continuous dynamical systems
on finite dimensional state spaces. The solution operators of partial differen-
tial equations and delay differential equations are typical examples for dynamical
systems on infinite dimensional state spaces.

Remark 4. For continuous dynamical systems defined by ODEs, trajectories are
either smooth curves or individual (stationary) points. By uniqueness of the so-
lutions of initial value problems there is exactly one trajectory through each point.
Thus, the phase portrait provides a simple covering of the phase space. Know-
ing this, the possible qualitative behaviors of trajectories are restricted, mainly
by the dimension of the phase space. An application of these observations is the
Poincaré-Bendixson theorem (Section 8.5).

Dynamical systems theory (and therefore also this course) is mostly concerned
with the investigation of the long-time behavior of trajectories and how it changes
with varying initial state and in dependence of parameters. In this context, a
basic object of study are steady states and their stability.

Definition 2. Let St, t ∈ T , be a dynamical system on (M, d). Every u ∈ M
satisfying St(u) = u for all t ∈ T is called a stationary point or steady state. A
steady state is called stable, if

∀ε > 0 ∃δ > 0 : d(u0, u) < δ =⇒ d(St(u0), u) < ε ∀t > 0 .

In words: Trajectories stay arbitrarily close to u, if they start close enough to it.
If u is not stable, it is called unstable.

A stable steady state u is called (locally) asymptotically stable, if

∃δ > 0 : d(u0, u) < δ =⇒ lim
t→∞

St(u0) = u .

In words: Trajectories converge to u, if they start close enough to it.
An asymptotically stable steady state u is called globally asymptotically stable,

if

∀u0 ∈M : lim
t→∞

St(u0) = u .

In words: All trajectories converge to u.

Remark 5. The steady states u of recursions uk+1 = f(uk) are the fixed points
of f , i.e. u = f(u). The steady states u of ODEs u̇ = f(u) are the zeroes of f ,
i.e. f(u) = 0. Their stability properties are not seen quite as easily.

Definition 3. Let St, t ∈ T , be a dynamical system on (M, d). A set A ⊂ M
is called positively invariant, if

{St(u0) : u0 ∈ A, t ∈ T ∩ (0,∞)} ⊂ A

Definition 4. Let St, t ∈ T , be a forward dynamical system on (M, d) and let
u0 ∈ M. The omega limit ω(u0) of u0 is the set of all u ∈ M such that there
exists a sequence {tn}n∈N ⊂ T with limn→∞ tn =∞, such that Stn(u0) = u.
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Theorem 4. a) Omega limits are closed and positively invariant.
b) Let M = Rn and let {St(u0) : t ∈ T ∩ (0,∞)} be bounded. Then ω(u0) is
nonempty and connected.

Proof: Proseminar.

2. Linear systems

A special case of (1) is a linear homogeneous recursion

uk+1 = Auk(7)

with a quadratic matrix A ∈ Rn×n. In this case the solution of the initial value
problem is given by uk = Aku0, k ≥ 0. With the help of a little linear algebra,
this can be made more explicit. Particularly simple is the case of a diagonalizable
matrix A, i.e. when there exists an invertible matrix R and a diagonal matrix
Λ = diag(λ1, . . . , λn), such that

A = RΛR−1 .(8)

In this case λ1, . . . , λn are the eigenvalues of A and the columns of R are corre-
sponding eigenvectors. It is easily shown that

Ak = RΛkR−1 = R diag
(
λk1, . . . , λ

k
n

)
R−1(9)

holds. This implies that the solution can be written as a linear combination
of eigenvectors of A with coefficients λk1, . . . , λ

k
n. If for example |λj | < 1, j =

1, . . . , n, then the solution converges to zero as k → ∞ for arbitrary u0. An
alternative way to obtain the result is by diagonalizing the recursion. With the
transformation uk = Rvk, i.e. representing uk in terms of the basis given by the
eigenvectors, we obtain the equivalent formulation

vk+1 = Λvk , i.e. vk+1,j = λjvk,j , j = 1, . . . , n ,

a decoupled system of scalar recursions with the obvious solution

vk,j = λkj v0,j , k ≥ 0 , j = 1, . . . , n .

The diagonalized form also shows that for |λj | < 1, j = 1, . . . , n, u = 0 is the
only steady state, which is globally asymptotically stable.

A decomposition of the form (8) always exists, but in general the matrix Λ is
not diagonal, but contains Jordan blocks. The eigenvalues of A are still important
for the long-time behavior of solutions. We state the corresponding result without
proof.

Theorem 5. Let |λ| < 1 for all eigenvalues λ of A. Then for every initial state
u0 the solution uk = Aku0 of (7) converges to zero as k → ∞. If |λ| > 1 for
at least one eigenvalue λ of A, then there exists u0 ∈ Rn such that uk = Aku0

satisfies limk→∞ |uk| =∞.
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Remark 6. The theorem does not cover the case, where the spectral radius of
A is equal to 1. In this case no general statement is possible. The behavior is
determined by the Jordan block structure of possible multiple eigenvalues with
modulus 1.

Now we turn to the continuous case and consider a linear homogeneous version
of (3):

u̇ = Au(10)

again with a quadratic matrix A ∈ Rn×n. In this case the solution of the initial
value problem is given by u(t) = eAtu0, where the matrix exponential is defined
by the power series

eAt :=

∞∑
j=0

(At)j

j!
,

whose convergence can be proven analogously to the convergence of the power
series for the scalar exponential function. Also the proof of the semigroup prop-
erty

eA(t+s) = eAteAs , ∀ s, t ∈ R ,

is analogous to the case n = 1. The validity of the differential equation can be
shown by term-by-term differentiation of the power series. For a diagonizable
matrix A, the matrix exponential can be computed explicitly with the help of
(9):

eAt = ReΛtR−1 = R diag
(
eλ1t, . . . , eλnt

)
R−1 .

Again the ODE system can be decoupled by the transformation u(t) = Rv(t).
We state a result on the long time behavior of trajectories also for possibly non-
diagonizable matrices:

Lemma 2. Let Re(λ) < 0 for all eigenvalues λ of A. Then there exists λ < 0,
such that for every initial state u0 the solution u(t) = eAtu0 of (10) satisfies

|u(t)| ≤ eλt|u0|, t ≥ 0. If Re(λ) > 0 for at least one eigenvalue λ of A, then there
exists u0 ∈ Rn such that u(t) = eAtu0 satisfies limt→∞ |u(t)| =∞.

Remark 7. As in the previous theorem not all cases are covered. If A has eigen-
values with non-positive real parts, then the Jordan block structure of multiple
imaginary eigenvalues will be important for the stability properties of the steady
state zero.

From our computations above it is easily seen that for diagonalizable matrices
A, λ can be chosen as the maximum of the real parts of the eigenvalues of A. In
the general case any value strictly bigger can be used.

Finally, let us consider the case n = 2, i.e.,

v̇1 = λ1v1 , v̇2 = λ2v2 ,(11)
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with the assumption λ1 < 0 < λ2 on the eigenvalues. The positive and negative
parts of the coordinate axes are trajectories, where the v1-axis is called the stable
manifold, since it contains all initial values such that the solution converges to
zero as t → ∞. Similarly, the v2-axis is called the unstable manifold, since it
contains all initial values such that the solution converges to zero as t → −∞.
All other trajectories lie on curves with the equation

|v1|λ2 |v2|−λ1 = c , c > 0 .

This can be seen by either differentiating this equation or by using the explicit
solutions of (11). The trajectories have the qualitative behavior of hyperbolas
filling the (v1, v2)-plane. As t→∞ they approach the unstable manifold, and as
t→ −∞ the stable manifold. This picture is qualitatively the same in the original
(u1, u2)-plane. However, the stable und unstable manifolds are now spanned by
the eigenvectors of A.

2.1. Inhomogeneous linear ODE systems. For later reference we provide
some results for inhomogeneous linear systems. Note that we permit time de-
pendent inhomogeneities, i.e. non-autonomous equations. For a system of the
form

u̇ = Au+ h(t) ,(12)

with a constant matrix A ∈ Rn×n and a given inhomogeneity h(t) ∈ Rn, partic-
ular solutions are given by the variation of constants formula

u(t) =

∫ t

t0

eA(t−s)h(s)ds ,

where t0 can be chosen arbitrarily. In particular, by the superposition principle,
the solution of the initial value problem with u(0) = u0 is given by

u(t) = eAtu0 +

∫ t

0
eA(t−s)h(s)ds .(13)

We now consider the situation, where h(t) is bounded in [0,∞), and look for
bounded solutions of (12) in two different cases.

Lemma 3. Let h : [0,∞)→ Rn be continuous and bounded.
a) Let all eigenvalues of A have negative real parts. Then all solutions of (12)
can be written in the form (13) and are bounded on [0,∞).
b) Let all eigenvalues of A have positive real parts. Then there is exactly one
bounded solution of (12), given by

u(t) = −
∫ ∞
t

eA(t−s)h(s)ds(14)

Proof: a) Clearly the set of all solutions can be parametrized by its state at
t = 0 and, thus, all solutions are of the form (13). With λ < 0 from Lemma 2 we
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have

|u(t)| ≤ eλt|u0|+
∫ t

0
eλ(t−s)|h(s)|ds ≤ |u0|+ sup

[0,∞)
|h|
∫ t

0
eλ(t−s)ds

≤ |u0|+
1

|λ|
sup
[0,∞)

|h| .

b) Since now the eigenvalues of −A have negative real parts, Lemma 2 can
be applied to this matrix with a corresponding λ < 0. This implies that for
every u0 6= 0, the solution uh(t) = eAtu0 of the initial value problem for the
homogeneous equation cannot be bounded, since otherwise the estimate

|u0| = |e−Atuh(t)| ≤ eλt sup
[0,∞)

|uh|

would lead to a contradiction. Therefore it suffices to show that the solution given
by (14) is bounded, since any other solution is obtained by adding an unbounded
term of the form eAtu0.

|u(t)| ≤
∫ ∞
t

eλ(s−t)|h(s)|ds ≤ 1

|λ|
sup
[0,∞)

|h| .

3. Scalar ODEs – stability

An ODE of the form u̇ = f(u) with f : R→ R can in principle be solved: The
solution subject to the initial condition u(0) = u0 is implicitly given by∫ u(t)

u0

dη

f(η)
= t .

Typically, the qualitative behavior of solutions is not obvious from this formula.
On the other hand, it can easily be seen directly from f . Because of its continuity
the state space (i.e. the u-axis) is the union of the zeroes of f on the one hand,
and open intervals where f is either positive or negative, on the other hand.
Zeroes u0 of f are steady states, since the solution of the initial value problem
with u(0) = u0 is the constant u(t) = u0, t ∈ R.

Suppose on the other hand that f is positive between two zeroes u1, u2 and
u1 < u0 < u2. Then the solution starting at u0 exists for all time and satisfies

lim
t→−∞

u(t) = u1 , lim
t→∞

u(t) = u2 .

As a third case let f be positive everywhere to the right of the zero u1, then for
u0 > u1,

lim
t→−∞

u(t) = u1 , lim
t→T

u(t) =∞ ,
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where T ≤ ∞ is the right end of the existence interval. For all other possible cases
similar statements hold. In particular, trajectories either converge as t → ±∞
or they tend to ∞ or −∞. The proofs are easy and left to the reader.

The stability of steady states is easily seen. If a steady state u is isolated, and
the sign of f changes at u from positive to negative, then u is asymptotically
stable. Isolated steady states with any other behavior of f in the neighborhood
are unstable. If a steady state lies in the interior of an interval, where f vanishes,
then the steady state is stable, but not asymptotically stable.

Simple examples:

• u̇ = 0 : Every u ∈ R is a stable, but not asymptotically stable, steady
state.
• u̇ = −u : u = 0 is a globally asymptotically stable steady state.
• u̇ = u, u̇ = ±u2 : u = 0 is an unstable steady state.
• u̇ = u3−u : u = 0 is a locally asymptotically stable steady state. u = ±1

are unstable steady states.

4. Hyperbolic stationary points – linearization

Although usually not really necessary for scalar equations, it is a reasonable
idea to study local stability properties by using local approximations of f , i.e.
Taylor polynomials. If in the ODE the function f is approximated by its first
order Taylor polynomial around a steady state u,

f(u) ≈ f(u) + f ′(u)(u− u) = f ′(u)(u− u) ,

the resulting linear ODE for v ≈ u− u,

v̇ = f ′(u)v ,(15)

is called the linearization of (3) at u. Obviously, the steady state v = 0 of (15)
is asymptotically stable for f ′(u) < 0, stable for f ′(u) = 0, and unstable for
f ′(u) > 0. Consequences for the underlying nonlinear ODE are easily seen:

Theorem 6. Let n = 1 and let u be a steady state of (3). If f ′(u) < 0, then u
is locally asymptotically stable. If f ′(u) > 0, then u is unstable.

The simple proof is left to the reader. There is no conclusion for f ′(u) = 0,
because in this case the local behavior of f around u, and therefore also its
stability properties, depend on higher order terms in the Taylor expansion. The
examples u̇ = 0, u̇ = ±u3 share the linearization at u = 0 with f ′(u) = 0, but
not the stability properties.

The linearization approach can also be used for systems. Then the linearized
equation reads v̇ = Df(u)v (the generalization of (15)) with the Jacobian matrix
Df(u). We generalize the assumptions of Theorem 6 to higher dimensions.

Definition 5. Let n ≥ 1 and let u be a steady state of (3). Then u is called
hyperbolic, if Re(λ) 6= 0 for all eigenvalues λ of the Jacobian Df(u).
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The term hyperbolic can be motivated by the two-dimensional linear example
in Section 2. We shall use the fact that for hyperbolic steady states the Jacobian
can be block diagonalized, i.e.

Df(u) = RΛR−1 , with Λ =

(
Λ− 0
0 Λ+

)
, R = (R−, R+) ,(16)

where Λ− ∈ Rk×k, 0 ≤ k ≤ n, has only eigenvalues with negative real parts, and
Λ+ ∈ R(n−k)×(n−k) has only eigenvalues with positive real parts. The columns
of R− ∈ Rn×k are generalized eigenvectors corresponding to the eigenvalues with
negative real parts, and the columns of R+ ∈ Rn×(n−k) are generalized eigenvec-
tors corresponding to the eigenvalues with positive real parts.

Theorem 7. (Stable manifold theorem) Let u ∈ Rn be an hyperbolic steady
state of the dynamical system St generated by (3). Then there is a neighborhood
U ⊂ Rn of u, such that

Ms[u] := {u0 ∈ U : St(u0) ∈ U, t ≥ 0}
is a k-dimensional (referring to the diagonalization (16)) manifold in Rn, called
the stable manifold of u. For all u0 ∈Ms[u],

|St(u0)− u0| ≤ c eλ−t , t ≥ 0 ,(17)

where c ≥ 0 and λ− < 0 is the constant λ for the matrix Λ− from Lemma 2. The
tangent space of Ms[u] at u is spanned by the columns of R− from (16), i.e. by
the eigenvectors corresponding to eigenvalues of Df(u) with negative real parts.

Analogously, the set

Mu[u] := {u0 ∈ U : St(u0) ∈ U, t ≤ 0}
is a (n− k)-dimensional manifold in Rn, called the unstable manifold of u. For
all u0 ∈Ms[u],

|St(u0)− u0| ≤ c eλ+t , t ≤ 0 ,

where c ≥ 0 and −λ+ < 0 is the constant λ for the matrix −Λ+. The tangent
space of Mu[u] at u is spanned by the columns of R+.

Remark 8. Obviously, hyperbolic steady states are either locally asymptotically
stable (k = n) or unstable. For non-hyperbolic steady states, the linearization
does not contain sufficient information for a complete characterization of the local
behaviour. In particular, if all eigenvalues have non-positive real parts with at
least one eigenvalue on the imaginary axis, then there is no conclusion concerning
the stability properties of the steady state.

Proof: The right hand side of (3) can be written as f(u) = Df(u)(u − u) +
Rr(R−1(u − u)) with the second order remainder term, which we have chosen
to write in this form with the matrix R from (16). We decouple increasing and
decreasing modes by the transformation u(t) = u+Rv(t), and obtain

v̇ = Λv + r(v) .
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With the notation v = (v−, v+), r = (r−, r+), according to the block structure of
Λ, this can be written as

v̇− = Λ−v− + r−(v) , v̇+ = Λ+v+ + r+(v) .

Let u0 be in the setMs[u]. Then St(u0), and therefore also v(t) = R−1(St(u0)−
u), and consequentially r(v(t)) are bounded for t ≥ 0. Thus we can use the
results of Lemma 3 to obtain

v−(t) = eΛ−tp+

∫ t

0
eΛ−(t−s)r−(v(s))ds ,(18)

v+(t) = −
∫ ∞
t

eΛ+(t−s)r+(v(s))ds ,(19)

for some p ∈ Rk. In the following we shall prove that for given small enough p
the integral equation problem (18), (19) has a unique solution. Therefore v+(0)
is determined as a function of p = v−(0), and the stable manifold in the v-space
is thus given as the graph of a function from Rk to Rn−k.

In order to prove the decay estimate (17) at the same time, we set v(t) =
eλ−tw(t) in (18), (19):

w−(t) = e(Λ−−λ−)tp+ e−λ−t
∫ t

0
eΛ−(t−s)r−(eλ−sw(s))ds ,(20)

w+(t) = −e−λ−t
∫ ∞
t

eΛ+(t−s)r+(eλ−sw(s))ds .(21)

We shall use the Banach fixed point theorem for w in the space CB([0,∞))n

(bounded continuous functions), noting that (20), (21) has the fixed point form
w = F (w). Actually we shall restrict to a ball

Bδ := {w ∈ CB([0,∞))n : ‖w‖∞ < δ} ,
where ‖ · ‖∞ denotes the supremum norm on [0,∞). We shall always assume
(p, 0) ∈ Bδ/2.

Our first claim is that

F : Bδ → Bδ for δ small enough.(22)

Since by Lemma 2, |eΛ−tu0| ≤ eλ−t|u0|, t ≥ 0, and |eΛ+tu0| ≤ eλ+t|u0|, t ≤ 0, we
have for w ∈ Bδ,

|F (w)−(t)| ≤ |v−(0)|+
∫ t

0
e−λ−s|r−(eλ−sw(s))|ds ≤ δ

2
+ δ2L

∫ t

0
eλ−sds

≤ δ

2
+
δ2L

|λ−|
,

|F (w)+(t)| ≤ e(λ+−λ−)t

∫ ∞
t

e−λ+s|r+(eλ−sw(s))|ds

≤ δ2Le(λ+−λ−)t

∫ ∞
t

e(2λ−−λ+)sds ≤ δ2L

λ+ − 2λ−
,
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where we have used the Lipschitz continuity estimate (52) from the Appendix.
After summing these inequalities, (22) is obvious. It remains to prove that, again
for δ small enough, F is a contraction: For w1, w2 ∈ Bδ,

|F (w1)−(t)− F (w2)−(t)| ≤
∫ t

0
e−λ−s|r−(eλ−sw1(s))− r−(eλ−sw2(s))|ds

≤ δL

∫ t

0
eλ−s|w1(s)− w2(s)|ds ≤ δL

|λ−|
‖w1 − w2‖∞ ,

|F (w1)+(t)− F (w2)+(t)| ≤ δL‖w1 − w2‖∞e(λ+−λ−)t

∫ ∞
t

e(2λ−−λ+)sds

≤ δL

|λ+ − 2λ−|
‖w1 − w2‖∞ .

Again, summing the inequalities immediately implies the contraction property
for δ small enough. This implies that for each small enough p there exists a
unique (in a small ball) solution of (18), (19) satisfying (17). Thus, u0(p) =
u+Rv(0; p) is a parametrization ofMs[u] with parameter p ∈ Rk. An extension
of the Banach fixed point theorem for problems with parameters implies that the
solution depends smoothly on p.

It remains to determine the tangent space at u0 = u, which obviously is ob-
tained with p = 0, whence (18), (19) has the solution v = 0. The function
zj(t) = ∂pjv(t) |p=0 satisfies

(zj)−(t) = eΛ−tej , (zj)+(t) = 0 ,

with the jth canonical basis vector ej ∈ Rk, since the derivative of the second
order remainder at zero vanishes. Thus, ∂pju0 |p=0= Rj , the jth column of R,
1 ≤ j ≤ k. This shows that the tangent space has maximal dimension k, and
Ms[u] is really a k-dimensional manifold.

After time reversal, the proof for the unstable manifold is the same.

The stable manifold theorem tells us that essential properties of the dynam-
ics near hyperbolic fixed points are shared by the full nonlinear system and its
linearization. An even stronger result in this direction, which we state without
proof (which can be found in e.g. [5]), is the Hartman-Grobman theorem. It
says that close to an hyperbolic fixed point the dynamics of the nonlinear system
and of the linearization are the same up to a diffeomorphism (differentiable and
one-to-one with differentiable inverse):

Theorem 8. (Hartman-Grobman) Let u ∈ Rn be an hyperbolic steady state of
(3). Then there is a diffeomorphism ϕ : U → V between a neighborhood U ⊂ Rn
of u and a neighborhood V ⊂ Rn of the origin, such that Dϕ(u)f(u) = Λϕ(u)
(with Λ from (16)), i.e. if u(t) ∈ U solves (3), then v(t) := ϕ(u(t)) solves

v̇ = Dϕ(u)u̇ = Dϕ(u)f(u) = Λv .
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We shall be interested in dynamical systems containing parameters. For ordi-
nary differential equations, this means to consider systems of the form

u̇ = f(u, r) with r ∈ Rl ,(23)

and to study the dependence of the long-time behavior on the parameters. In
the following, we shall always assume smoothness of f , not only with respect to
the state u, but also with respect to the parameters r:

f ∈ C∞(Rn × Rl)n .(24)

The parameter dependence motivates a second stability concept:
A property of (23) is called structurally stable (or generic), if it is preserved under
small parameter changes.

Theorem 9. The existence of an hyperbolic steady state is structurally stable:
Let, for r = r0 ∈ Rl, (23) have an hyperbolic steady state u0 ∈ Rn. Then there
exists a neighborhood R ⊂ Rl of r0, such that (23) has an hyperbolic steady state
u(r) for every r ∈ R with u(r0) = u0 and u ∈ C∞(R)n. The dimensions of the
stable and unstable manifolds through u(r) do not depend on r ∈ R.

Proof: (outline) Since the hyperbolicity of u0 implies that Duf(u0, r0) is invert-
ible, the existence and smoothness of u are a consequence of the implicit function
theorem. Since zeroes of polynomials depend continuously on parameters [1], the
signs of the real parts of the eigenvalues of Duf(u(r), r) do not change close to
r = r0.

5. Scalar ODEs – bifurcations

As we have seen in Section 3 one dimensional dynamics seems rather boring.
Trajectories either converge to steady states or they take off towards ±∞. In this
section we investigate how the long-time behavior might change with a varying
parameter. Therefore we consider (23) with n = l = 1. Since hyperbolic steady
states are structurally stable, qualitative changes in the dynamic behavior (called
bifurcations) require the occurrence of a non-hyperbolic steady state. In the
following we assume that for the critical parameter values r = 0 the origin u = 0
is a non-hyperbolic steady state, i.e.

f(0, 0) = ∂uf(0, 0) = 0 .(25)

5.1. The fold. With the assumption (25), the Taylor expansion of f around
u = r = 0 has the form

f(u, r) = a01r + a20u
2 + a11ru+ a02r

2 +O(u3 + r3) .(26)

A simple example is

u̇ = r + u2 .(27)

The bifurcation occurring at r = 0 can be described as follows: For r < 0
there are two hyperbolic steady states, the unstable point u =

√
−r and the
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asymptotically stable point u = −
√
−r. They merge at r = 0, and for positive r

there is no stationary point.
In the literature this bifurcation is called the fold or the saddle-node bifurac-

tion. It is not as special as it seems. Consider the general case (26) in the generic
situation, where the first two coefficients a01 and a20 are different from zero. We
claim that there is a transformation taking (23) with (26) to (27). Note the
similarity to the Hartman-Grobman Theorem 8.

We shall not provide a full proof, but some formal arguments for this result.
As a first step, we replace u by u

a20
and r by r

a01a20
. This transforms (26) to

u̇ = r + u2 + a11ru+ a02r
2 +O(u3 + r3) ,

after renaming coefficients. A heuristic argument is that the terms a11ru, a02r
2,

and O(r3) are small compared to r and that O(u3) is small compared to u2,
and that all these terms can therefore be neglected. We shall show how the two
quadratic terms can be eliminated by the close-to-identity transformation

r = R+ bR2 , u = U + cU2 .(28)

It requires some computation to obtain the transformed equation

U̇ = R+ U2 + (a11 − 2c)RU + (a02 + b)R2 +O(U3 +R3) .

The choice b = −a02, c = a11/2 produces (27) up to a third order remainder. By
replacing the quadratic polynomials on the right hand sides of (28) by complete
Taylor expansions, the form (27) can be produced exactly (see, e.g., [2]).

This means that a fold occurs, whenever we have the form (26) with a01, a20 6=
0. Equation (27) is called the normal form of the fold. In the following we shall
present the normal forms of other bifurcations without discussing the transfor-
mation to the normal form each time.

5.2. The transcritical bifurcation. The fold is the generic bifurcation in one-
dimensional dynamical systems. Other types of bifurcations occur in systems
with special properties, which do not change with parameter variations. A typical
property of this kind is an always existing special steady state, w.l.o.g. u = 0. In
this case, the coefficients a01 and a02 in (26) vanish. Assuming apart from that
a generic situation, means a20, a11 6= 0. A corresponding normal form is

u̇ = ru− u2 .

This defines the transcritical bifurcation with the following properties: For all
values of r we have the steady states u = 0 and u = r. For r < 0, u = 0 is
asymptotically stable and u = r is unstable, and vice versa for r > 0. At the
bifurcation an exchange of stability takes place.

5.3. The pitchfork bifurcation. Sometimes symmetries are present in dynam-
ical systems and invariant under parameter changes. A simple example is a re-
flection symmetry, where the system does not change, when replacing u by −u.
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This leads to the assumption that f is an odd function of u. The consequential
normal form is

u̇ = ru− u3 ,

exhibiting the pitchfork bifurcation: For r < 0 there is one steady state u = 0,
which is asymptotically stable. For positive r the stability of u = 0 is lost and
transferred to the two new steady states u = ±

√
r. It is a consequence of the

symmetry that for each steady state its reflection also is a steady state with the
same stability properties.

5.4. The spruce budworm – the cusp bifurcation. The spruce budworm is
a north American tree pest, posing a recurrent threat for forests of conifer trees.
Sometimes sudden dramatic increases in the budworm population are observed
without big changes in the environment.

We shall describe a budworm population by a continuous dynamical system.
Let N(τ) be a measure for the size of the population at time τ . The equation

dN

dτ
= RN

(
1− N

K

)
− BN2

A2 +N2

is a typical model of population dynamics. The factor R(1 − N/K) is the dif-
ference between the birth rate and the death rate. This is a standard model for
competition. The second term on the right hand side describes the loss caused
by natural enimies: birds in the case of the budworm, eating the budworm with
a maximal rate B. The dependence on the population size N has the following
interpretation: If the population is significantly smaller than the threshold A, it
does not pay for the birds to look for the budworms, and they mainly look for
other kinds of food. Above the critical size A the budworms become attractive
as food and are eaten at a rate close to B.

We start by introducing the nondimensional variables

t :=
τ

A/B
, u(t) :=

N(tA/B)

A
.

The equation for u reads

u̇ = ru
(

1− u

k

)
− u2

1 + u2

with the dimensionless parameters r = RA/B und k = K/A. Note that we have
reduced the number of parameters from four to two. This greatly simplifies the
analysis of the qualitative properties of the model.

Apart from the trivial steady state u = 0 (always unstable, i.e. the budworms
do not die out), there are other steady states satisfying

r
(

1− u

k

)
=

u

1 + u2
.

Depending on the values of r and k, this equation has 1–3 positive solutions. The
regions with different numbers of steady states are separated by folds, occurring
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when the derivatives of the left and right hand sides coincide. This requirement
leads to the relations

r =
2u3

(1 + u2)2
, k =

2u3

u2 − 1
with u > 1 ,

which can be seen as parametrization (with parameter u) of a curve in the (r, k)-
plane. This curve has a cusp at the point (r0, k0) = (3

√
3/8, 3

√
3) (for u0 =

√
3).

Three positive steady states exist between the two branches of the curve, and one
in the rest of the (r, k)-plane. In the latter case, the steady state is asymptotically
stable, whereas in the former two of the steady states are asymptotically stable
with an unstable steady state in between.

Now the following scenario is possible for the budworm population: Let r be
fixed with a value between 1/2 and 3

√
3/8, and let k increase slowly (e.g. by

the growth of the trees). This gives a straight line in the r(, k)-plane, which
twice intersects the bifurcation curve. Before the first intersection there exists a
unique stable equilibrium with small values of the budworm population. At the
first crossing of the bifurcation curve, a large stable and a middle sized unstable
equilibrium are created, but the small equilibrium remains stable and the pop-
ulation remains at this low level. A dramatic change happens, however, at the
second crossing of the bifurcation curve. Now the small stable and the medium
sized unstable equilibrium disappear, and only the large stable equilibrium is left.
A fast growth of the population has to be expected.

This qualitative behavior is already present in small neighborhoods of the cusp
point (r0, k0). A normal form of this so called cusp bifurcation is given by

u̇ = r + ku+ u3 ,

where (r, k, u) now has to be interpreted as the deviation from (r0, k0, u0). The
cusp bifurcation needs two parameters, whence it is called a codimension 2 bifur-
cation, in contrast to the bifurcations dealt with above, which are of codimension
1.

6. Scalar iterated maps – bifurcations and chaos

Instead of a general discussion, we only treat one (actually the most famous)
example, the logistic map:

uk+1 = ruk(1− uk) ,(29)

with the parameter r > 0. This can be interpreted as a model for population
dynamics, if we restrict to values of uk between 0 and 1, such that uk+1 is
nonnegative. In order to remain in the interval [0, 1], we also have to assume
r ≤ 4. Thus, for the rest of this section we assume

0 < r ≤ 4 , 0 ≤ u0 ≤ 1 ,

guaranteeing 0 ≤ uk ≤ 1 for all k ≥ 0.
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It turns out that the long-time behavior strongly depends on r. The situation
is easy for r < 1: Since obviously uk+1 ≤ ruk, uk ≤ rku0 follows by induction. All
solutions converge to zero and the population dies out. In terms of the vocabulary
of dynamical systems: Zero is the only steady state in the state spaceM = [0, 1],
and it is globally asymptotically stable.

More generally, the stability of a steady state u = f(u) of the discrete dynam-
ical system

uk+1 = f(uk)(30)

can be examined by linearization: The recursion

vk+1 = f ′(u)vk ,

the linearization of (30) at u, can be expected to approximate small values of
vk = uk − u.

Theorem 10. Let f : [a, b] → [a, b] be twice continuously differentiable. The
steady state u of (30) is asymptotically stable, if |f ′(u)| < 1. In the case |f ′(u)| >
1 it is unstable.

Proof: By the Taylor formula, the exact equation for vk can be written as

vk+1 = f(uk)− f(u) = f ′(u)vk + f ′′(ũk)v
2
k/2 ,(31)

with ũk ∈ [a, b], and therefore

|vk+1| ≤ |vk|
(
|f ′(u)|+ |vk|M/2

)
,

with |f ′′(ũk)| ≤ M . For |f ′(u)| < 1 we choose δ := (1 − |f ′(u)|)/M , r :=
(1 + |f ′(u)|)/2 < 1, and |v0| ≤ δ. Induction implies |vk| ≤ rkδ → 0, proving the
first statement of the theorem.

For |f ′(u)| > 1 we start again from (31) and deduce

|vk+1| ≥ |vk|(|f ′(u)| − |vk|M/2) .

For |vk| ≤ ε := (|f ′(u)| − 1)/M and r := (1 + |f ′(u)|)/2 > 1 we then have

|vk+1| ≥ r|vk| ,

meaning that for arbitrarily small |v0| we reach |vk| > ε in finitely many steps,
implying instability of u.

Remark 9. In the critical case |f ′(u)| = 1 every stability behavior is possible, as
can be seen from the examples uk+1 = uk(1± uk) and uk+1 = uk with u = 0.

Returning to (29), we see that for increasing values of r the steady state
u1 = 0 loses its stability at the bifurcation point r = 1. For r > 1 there is a
second steady state u2 = 1−1/r which, by f ′(u2) = 2−r is asymptotically stable
for 1 < r < 3. This is the occurrence of a transcritical bifurcation in a discrete
dynamical system.
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At the second bifurcation poinit r = 3 also u2 loses its stability. The behavior
of the dynamical system for r > 3 can be understood by analysing zk := u2k,
k ≥ 0, which solves the recursion

zk+1 = ru2k+1(1− u2k+1) = r2zk(1− zk)(1− rzk(1− zk)) .(32)

Besides u1 = 0 and u2 = 1 − 1/r this recursion has two more steady states for
r > 3:

z3,4 =
1

2r

(
1 + r ±

√
(r + 1)(r − 3)

)
.

It is easily seen that z3 = f(z4) and z4 = f(z3), i.e. the poiints z3 and z4

constitute a periodic orbit with period 2 of the original recursion (29). Note that
the periodic orbit is created at the steady state u2:

u2 = z3 = z4 =
2

3
for r = 3 .

Further results, described in the following, are not as easy to verify. It can be
shown that z3 and z4 are asymptotically stable steady states of (32) for r > 3
close to 3. This implies asymptotic stability of the periodic orbit of (29), where
the meaning of this statement should be clear without precise definition. This
stability gets lost at the further bifurcation point r = r4. The bifurcation is
similar to the one at r = 3: From each of the steady states z3 and z4 of f ◦ f
bifurcate two new steady states of the four times iterated map f ◦ f ◦ f ◦ f ,
which together form a periodic orbit of period 4 of (29). This is called a period
doubling bifurcation. For increasing values of r there is a sequence of period
doubling bifurcations at the bifurcation points r4 < r8 < r16 < . . . This sequence
converges to the value rc < 4. Typical trajectories of (29) with r > rc show
appearantly completely irregular behavior. This sensational discovery (of the
1970s) has been termed deterministic chaos. As can be seen from the bifurcation
diagram (Fig. 1), we actually have still not told the whole story.

We conclude by considering the special case r = 4, when the recursion can be
solved explicitly with the ansatz uk = sin2 ϕk, leading to ϕk+1 = 2ϕk and the
explicit solution

uk = sin2(2kϕ0) with ϕ0 = arcsin(
√
u0) .

Note that there exist periodic trajectories with arbitrary period p (e.g. for
ϕ0 = π/(2p − 1)), but for most initital values the behavior looks completely
unpredictable, e.g. whenever ϕ0/π /∈ Q.

7. Invariant regions – Lyapunov functions

Definition 6. A set M ⊂ Rn is called positively invariant for (3), if every
solution u of (3) with u(0) ∈M satisfies u(t) ∈M for all t ≥ 0.

Lemma 4. Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω, let ν(u),
u ∈ ∂Ω, denote the unit outward normal, and let ν(u) · f(u) ≤ 0, u ∈ ∂Ω. Then
the closure Ω is positively invariant for (3).



21

Figure 1. The bifurcation diagram of the logistic map

Proof: First we consider the stronger assumption ν(u) · f(u) < 0, u ∈ ∂Ω. In
this case every trajectory starting on ∂Ω enters Ω and, consequentially, cannot
leave Ω. Since Ω is bounded, this also implies existence of trajectories for all
t ≥ 0 by Theorem 2.

Now we return to the assumptions of the Theorem and define

fε(u) = f(u)− εν(u) , ε > 0 ,

which satisfies ν · fε ≤ −ε < 0. Therefore, the solution uε of the initial value
problem u̇ε = fε(uε), uε(0) = u0 ∈ Ω, remains in Ω for all times and, in particular,
for an arbitrary T > 0, uε(T ) ∈ Ω holds. Thus uε : [0, T ] → Rn is bounded
uniformly in ε as ε → 0. By the differential equation, the same is true for u̇ε.
As a consequence of the Arzela-Ascoli Theorem, there exists a sequence εn → 0
such that uεn → u uniformly on [0, T ]. Therefore we can pass to the limit ε→ 0
in the integrated version

uε(t) = u0 +

∫ t

0

(
f(uε(s))− εν(uε(s))

)
ds
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of the problem for uε with the result

u(t) = u0 +

∫ t

0
f(u(s))ds .

Since this is equivalent to the problem u̇ = f(u), u(0) = u0, and the uniform
convergence uε → u implies u(T ) ∈ Ω, the proof is complete.

In the following we use the notation Br(u0) = {u ∈ Rn : |u−u0| < r} for open
balls in Rn.

Definition 7. a) Let u0 ∈ Rn be a steady state of (3) and let V : Rn → R
satisfy V (u0) = 0, V locally positive definite, i.e. ∃r > 0 such that V (u) > 0 for
u ∈ Br(u0) \ {u0}, and ∇V (u) · f(u) ≤ 0 locally, i.e. for u ∈ Br(u0). Then V is
called a Lyapunov function for (f, u0).
b) For a Lyapunov function V we define for δ > 0 the sublevel set Sδ as the
connected component of {u : V (u) ≤ δ} containing u0.

Lemma 5. Let V be a Lyapunov function for (f, u0).
a) For every small enough r > 0 exists δ > 0, such that Sδ ⊂ Br(u0).
b) For every δ > 0 exists r > 0, such that Br(u0) ⊂ Sδ.

Proof: a) For given r > 0 choose δ > 0 such that

δ < min
∂Br(u0)

V ,

where the right hand side is positive for small enough r because of the local
definiteness of V . This implies Sδ ∩ ∂Br(u0) = {}. Since also u0 ∈ Sδ, the
connectedness of Sδ implies that it cannot contain any points outside of Br(u0).
b) For given δ > 0 we define the closed level set Σδ := {u ∈ Rn : V (u) = δ}. If
it is empty, the result holds with arbitrary r > 0. Otherwise let

r := min
Σδ
|u− u0| > 0 .

For u ∈ Br(u0), V (u) > δ cannot hold since then, by the continuity of V and
by V (u0) = 0, V would have to take the value δ somewhere on the straight line
segment between u0 and u, in contradiction to the definition of r.

Lemma 6. Let V be a Lyapunov function for (f, u0). Then for small enough δ,
sublevel sets Sδ are positively invariant for (3).

Proof: By Lemma 5 a), Sδ is bounded for δ small enough. For solutions u of
(3), the Lyapunov function is non-increasing along the solution:

d

dt
V (u(t)) = ∇V (u(t) · f(u(t)) ≤ 0 ,

which implies the result.
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Theorem 11. Let V be a Lyapunov function for (f, u0).
a) Then u0 is stable.
b) If furthermore −∇V · f is locally positive definite, then u0 is asymptotically
stable.
c) If V and −∇V ·f are globally positive definite, and all sublevel sets are bounded,
then u0 is globally asymptotically stable.

Proof: a) Let ε > 0 and let δ be as in Lemma 5 a) with r = ε. For this δ let r
be as in Lemma 5 b). Then for u(0) ∈ Br(u0) ⊂ Sδ we have u(t) ∈ Sδ ⊂ Bε(u0).
b) Let δ > 0 be small enough such that Sδ is bounded and positively invariant,
and let u be a solution of (3) with u(0) ∈ Sδ. Then by monotonicity there exists
δ∗ := limt→∞ V (u(t)). Assume δ∗ > 0. Then every accumulation point u∗ of
u(t) satisfies u∗ ∈ Σδ∗ and therefore u(t) /∈ Br(u0) for some r > 0, t ≥ T . This
however implies

lim sup
t→∞

(
d

dt
V (u(t))

)
= lim sup

t→∞
∇V (u(t)) · f(u(t)) < 0 ,

a contradiction to the convergence of V (u(t)). Thus δ∗ = 0 with the consequence
that u0 is the only accumulation point of u(t).
c) Every u(0) lies in some sublevel set. The rest of the proof is as in b).

Example 1. a) ü+ sinu = 0. V (u) = 1− cosu+ u̇2/2.
b) The equation ü+ sinu+ ku̇ = 0 for a pendulum with friction is equivalent to
the first order system

u̇ = v , v̇ = − sinu− kv .

The origin is a steady state which can be shown to be asymptotically stable for
k > 0 by linearization. A Lyapunov function is given by the total energy V (u) =
1− cosu+ v2/2. However, the decay

V̇ = −kv2

is not negative definite.
c) Still for the damped pendulum, we try Vε(u) = 1−cosu+v2/2+εuv, 0 < ε� 1.
Using the second order Taylor polynomial of the cosine and Young’s inequality
(see Appendix 2) with p = q = 2, γ = 1, we obtain

Vε(u) ≈ u2 + v2

2
+ εuv ≥ 1− ε

2
(u2 + v2) ,

showing the local definiteness of Vε for ε small enough. For the decay of Vε we
have

V̇ε = −kv2 + εv2 − εu(sinu+ kv) ≈ −εu2 − (k − ε)v2 − εkuv

≤ −ε
(

1− kγ

2

)
u2 −

(
k − ε− εk

2γ

)
v2 ,
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where we have used Young’s inequality again with p = q = 2, but now with general
γ. Obviously the right hand side can be made negative definite by first choosing
γ and then ε small enough. This shows the asymptotic stability of the origin by
the Lyapunov function Vε.

Example 2. Gradient flows: f(u) = −∇V (u).

Example 3. Population dynamics, two populations:

u̇ = f(u, v)u , v̇ = g(u, v)v ,

with
a) cooperation: ∂vf, ∂ug > 0,
b) competition: ∂vf, ∂ug < 0,
c) predator-prey: ∂vf > 0, ∂ug < 0 .

8. Limit cycles

Definition 8. A limit cycle of (3) is a periodic solution u∞(t) with the additional
property that there exists at least one other solution u(t), t ≥ 0, and τ ∈ R such
that

lim
t→∞

(u(t)− u∞(τ + t)) = 0 .

This section is concerned with several ways to find limit cycles. This will be
done for a prototypical example, the van der Pol oscillator:

ü+ u = r(1− u2)u̇ , r > 0 .(33)

8.1. Multiple scales. Here we will be concerned with small positive values of
r, which we indicate by replacing the symbol r by ε:

ü+ u = ε(1− u2)u̇ .(34)

As inital conditions we choose

u(0) = u ∈ R , u̇(0) = 0 .(35)

It is a natural idea to approximate the solution by a power series in ε and make
the ansatz

u(t) =

N∑
k=0

εkuk(t) +O(εN+1) , N ∈ N .

Conditions for the coefficients uk can be found by substitution of the ansatz in
(34), (35), by expanding the resulting expressions again in powers of ε, and by
comparing coefficients. At the leading order, this leads to

ü0 + u0 = 0 , u0(0) = u , u̇0(0) = 0 ,

with the solution u0(t) = u cos t. At O(ε) we obtain

ü1 + u1 = (1− u2
0)u̇0 = u

(
u2

4
− 1

)
sin t+

u3

4
sin(3t) , u1(0) = u̇1(0) = 0 ,
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where the differential equation is an inhomogeneous version of the equation for
u0. The first term on the right hand side produces resonance. The solution is
given by

u1(t) =
u

2

(
u2

4
− 1

)
(sin t− t cos t) +

u3

32
(3 sin t− sin(3t)) .

The resonance term t cos t makes our approach questionable, if we want to use it
on long time intervals. For t = O(1/ε) the correction εu1(t) is not small compared
to u0(t) any more.

In order to understand where the problem comes from, we analyze two simpler
examples:

Example 4.

ü+ u = εu , u(0) = u , u̇(0) = 0 ,

the harmonic oscillator with perturbation of the frequency. By the modified fre-
quency, the exact solution u(t) = u cos

(
t
√

1− ε
)

is far from the approximation
u0(t) = u cos t for large t. It seems more natural to improve u0 by an expansion
of the frequency:

√
1− ε = 1− ε

2
+O(ε2) ,

and to use the approximation

u(t) ≈ u cos

(
t− εt

2

)
,

which looses its approximation quality for larger times than u0 and, most im-
portantly, reproduces the qualitative long time behavior of the exact solution in
contrast to u0(t) + εu1(t).

Example 5.

ü+ u = −2εu̇ , u(0) = u , u̇(0) = 0 ,

the harmonic oscillator with small friction. Now the exact solution is given by

u(t) = ue−εt cos
(
t
√

1− ε2
)
.

Obviously the decay to zero cannot be described by an expansion in powers of ε.
There are two effects happening at the same time at two different time scales:
oscillations at the scale t and exponential decay at the scale εt.

The method of multiple scales uses the rescaled times

Tj = εjt , j = 0, 1, . . . ,

as independent variables. This means that formally the solution of the initial
value problem (34), (35) for the van der Pol equation is written as

u(t) = U(T0, T1, . . .) .



26

For the time derivatives we obtain

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+O(ε2) ,

d2

dt2
=

∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1
+O(ε2) ,

and therefore

(36)
∂2U

∂T 2
0

+ U = ε

(
(1− U2)

∂U

∂T0
− 2

∂2U

∂T0∂T1

)
+O(ε2) .

An asymptotic expansion U = U0(T0, T1) + εU1(T0, T1) + O(ε2) of the new un-
known leads to

∂2U0

∂T 2
0

+ U0 = 0 , U0(0, 0) = u ,
∂U0

∂T0
(0, 0) = 0 ,

with the solution

U0(T0, T1) = a(T1) cos(T0 + b(T1)) ,

where a, b satisfy the inital conditions

a(0) = u , b(0) = 0 .

Otherwise, a and b are so far undetermined. The O(ε)-terms in (36) give

∂2U1

∂T 2
0

+ U1 = (1− U2
0 )
∂U0

∂T0
− 2

∂2U0

∂T0∂T1

= a

(
a2

4
− 1

)
sin(T0 + b) +

a3

4
sin(3(T0 + b))

+2
∂a

∂T1
sin(T0 + b) + 2a

∂b

∂T1
cos(T0 + b) .

As in the naive approach at the beginning of this section, the terms with sin(T0 +
b) and with cos(T0 + b) would produce resonance, i.e. an unbounded correction
U1. Now the idea is to use the remaining freedom in choosing a and b to eliminate
these terms:

∂a

∂T1
=
a

2

(
1− a2

4

)
,

∂b

∂T1
= 0 .

With the above initial conditions, a and b are determined uniquely. The equa-
tion for the amplitude a has three steady states, a = 0 (unstable) and a = ±2
(asymptotically stable). This predicts that all solutions with u 6= 0 converge to
a limit cycle with amplitude 2. The problem for a can also be solved explicitly,
and we finally arrive at the formal approximation

u(t) =
2u cos t√

4e−εt + u2(1− e−εt)
+O(ε) .

To make this result rigorous would go beyond the aims of this course.
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8.2. The Poincaré map. The Poincaré map is an alternative method for de-
riving the result of the previous section. Here we consider the ODE (34) only on
finite time intervals. Therefore the expansion

u(t) = u cos t+ ε

(
u

2

(
u2

4
− 1

)
(sin t− t cos t) +

u3

32
(3 sin t− sin(3t))

)
+O(ε2)

for the solution starting at u(0) = u > 0, u̇(0) = 0, can be used. In particular,
we are interested in the point, where the trajectory in the (u, u̇)-plane crosses
the positive u-axis for the first time t = T > 0 after t = 0. By the expansion we
expect

T = 2π + εT1 +O(ε2) .

The O(ε)-terms in the equation u̇(T ) = 0 give T1 = 0. Therefore we have

u(T ) = u− επu
(
u2

4
− 1

)
+O(ε2) =: f(u) .

The Poincaré map f maps the positive u-axis to itself. The long time behavior
of u(t) can be understood by iterating f . The recursion

Un+1 = f(Un)

has the fixed point U = 0 and another one close to U = 2. Fixed points of f
correspond to periodic solutions of (34). Since

f ′(0) = 1 + επ +O(ε2) , f ′(2) = 1− 2επ +O(ε2) ,

U = 0 is unstable and the second steady state is asymptotically stable for small
ε. As in the preceding section, we conclude the existence of a stable limit cycle
approximated by 2 cos t. Again we do not make this formal analysis rigorous,
although it is not very difficult in this case.

8.3. Relaxation oscillations. Now we consider large values of r in (33) and
therefore set r = 1/ε. After rescaling time by t→ t/ε the equation reads

ε2ü+ u = (1− u2)u̇ ,(37)

which we rewrite as the first order system

ε2u̇ = u− u3

3
− v , v̇ = u .(38)

Both the second order equation and the first order system are singularly perturbed
in the sense that in the limit ε → 0 the differentiation order is reduced. This
means for example that in general the limiting equations cannot satisfy initial
conditions.

Example 6. A simple example with a singularly perturbed ODE is the initial
value problem

εu̇ = −u+ t , u(0) = 1 , 0 < ε� 1 ,
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with the exact solution uε(t) = t−ε+(1+ε)e−t/ε. For every fixed t > 0, we have

lim
ε→0

uε(t) =: u(t) = t ,

which can be obtained from the formal limit in the differential equation. How-
ever, the limit is not uniform with respect to t close to t = 0. In terms of the
fast time scale τ = t/ε we have

lim
ε→0

uε(ετ) = e−τ ,

and the sum of these two limits provides a uniformly valid approximation:

uε(t) = t+ e−t/ε +O(ε) .

The second part can also be obtained by performing the rescaling in the differential
equation,

du

dτ
= −u+ ετ ,

passing to the limit ε→ 0, and solving the resulting equation subject to the initial
condition u(0) = 1.

For the van der Pol system (38) the limit ε → 0 leads to the differential-
algebraic system

0 = u− u3

3
− v , v̇ = u ,(39)

defining a flow along the N-shaped curve S given by the first equation. How-
ever, S should be split into its three monotone branches separated by the points
(−1,−2/3) and (1, 2/3), along which u can be expressed as a function of v. Addi-
tionally, the middle branch is separated into two parts by the steady state at the
origin. The flow along the two right branches, i.e. u > 0, is towards (1, 2/3) and
along the left branches towards (−1,−2/3). These points are reached in finite
time. The dynamics away from S is described in terms of the fast time scale
τ = t/ε2:

du

dτ
= u− u3

3
− v , dv

dτ
= ε2u .

The limit ε→ 0 gives

dû

dτ
= û− û3

3
− v̂ , dv̂

dτ
= 0 .

This describes a flow along horizontal lines (v̂ = const), with steady states on
the curve S. For this flow, the points on the two outer branches of S are stable,
whereas the middle branch is unstable. The right branch attracts all points in
the (u, v)-plane with v < −2/3, or with −2/3 ≤ v < 2/3, if they lie to the right
of the middle branch. Let us start a trajectory in this region. Very fast, i.e. as a
function of τ , the trajectory will go horizontally to the right branch of S. There
we switch to the slow time scale t and solve (39), until we reach (1, 2/3). The
only way to continue from there is another fast horizontal move to the left branch



29

of S, which is met at the point (−2, 2/3). Another slow move along S takes us
down to (−1,−2/3), from where we go fast and horizontally back to the right
branch, which we meet at (2,−2/3), and which we follow slowly up to (1, 2/3),
closing a periodic loop, which consists of two pieces of S and two horizontal line
segments. In terms of the approximative dynamics described here, this periodic
orbit attracts all other points and therefore it is a stable limit cycle.

Of course the results are again only formal. Rigorous proofs are available, but
well beyond the scope of this course.

8.4. The Hopf bifurcation. In this section bifurcation theory is used for find-
ing limit cycles. In (33) we rescale the unknown by u→ u/

√
r :

ü+ u = ru̇− u2u̇ .(40)

The linearization
z̈ + z = rż

at the origin has a bifurcation at r = 0, where the eigenvalues

λ =
r

2
± i
√

1− r2

4

cross the imaginary axis, but without the occurrence of a zero eigenvalue as in
the bifurcations considered in Section 5. Obviously this requires a system of at
least second order.

We rewrite (40) as a first order system:

u̇ = v , v̇ = −u+ rv − u2v ,

Since the trajectories of the linearization at the bifucation point r = 0 are circles,
it seems natural to introduce polar coordinates:

u = % sinϕ , v = % cosϕ ,

which, after some computation, leads to

%̇ = r% cos2 ϕ− %3 sin2 ϕ cos2 ϕ ,

ϕ̇ = 1− r sinϕ cosϕ+ %2 sin3 ϕ cosϕ .

For small r and %, the first equation implies %̇ is small compared to %. Therefore,
on finite time intervals % can be approximated by a constant %. The right hand
side of the second equation can be approximated by 1. This leads to

d%

dϕ
≈ r% cos2 ϕ− %3 sin2 ϕ cos2 ϕ .

In order for having a periodic solution close to % = % > 0, the integral of the
right hand side with respect to ϕ over integrals of length 2π needs to vanish:

πr −A%2 = 0 ,

with

A =

∫ 2π

0
sin2 ϕ cos2 ϕdϕ =

π

4
.
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This gives % = 2
√
r in agreement with our results from Sections 8.1 and 8.2.

Note that the constant A above resulted from the nonlinearity. For systems
with the same linearization but different nonlinearities the result differs only in
the value of A. For the bifurcation to be called a Hopf bifurcation there are two
requirements:

(1) A pair of complex conjugate eigenvalues crosses the imaginary axis and
(2) the constant A is different from zero.

The Hopf bifurcation comes in two different varieties:

• For A > 0 (as for the van der Pol oscillator) the bifurcation is called
supercritical: For r < 0 there is a stable steady state, and for r > 0 an
unstable steady state and a stable limit cycle, bifurcating from the steady
state.
• For A < 0 the bifurcation is called subcritical: For r < 0 there is a stable

steady state and an unstable limit cyle, and for r > 0 only an unstable
steady state.

8.5. The Poincaré-Bendixson theorem.

Definition 9. For the ODE system (3) with n = 2 and a point u ∈ R2, which is
not a steady state, i.e. f(u) 6= 0, a line segment

T (u) := {u+ sf(u)⊥ : s ∈ (−δ, δ)} , δ > 0 ,(41)

where f(u)⊥ is orthogonal to f(u), and where

f(u) · f(u) 6= 0 ∀u ∈ T (u) ,

is called a transversal line segment at u.

By continuity of f , a transversal line segment is given by (41) for any small
enough δ. The flow defined by (3) induces an orientation of T (u): We shall say
that it goes from the minus-side of T (u) to the plus-side.

Lemma 7. Let u0, u ∈ R2, consider the forward trajectory S+(u0) := {St(u0) :
t ≥ 0} of (3) with n = 2. Then for the (empty, finite, or infinite) set

S+(u0) ∩ T (u) = {Stj (u0) = u+ sjf(u)⊥ : tj < tj+1, j ∈ J} ,
the sequence {sj}j∈J is monotone.

Proof: Only when S+(u0)∩ T (u) has at least three elements Stj (u0), Stj+1(u0),
Stj+2(u0), there is something to prove. W.l.o.g. we assume sj < sj+1 (otherwise

change the orientation of f(u)⊥) and construct a Jordan curve (closed, simple)

C := {St(u0) : tj ≤ t ≤ tj+1} ∪ {u+ sf(u)⊥ : sj ≤ s ≤ sj+1} .
By the Jordan curve theorem (see Appendix), R2 \C has two connected compo-
nents, the bounded interior of C and the unbounded exterior of C. There are
three possibilities: Either Stj (u0) = Stj+1(u0), whence the trajectory is periodic
and S+(u0) ∩ T (u) consists of only one point, or f(Stj+1(u0)) points into the
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interior of C, or it points into the exterior of C. In the first case there is nothing
to prove. In the second case the interior of C is a positively invariant region,
which means that Stj+2(u0) has to lie there, implying sj+2 > sj+1. In the third
case, an analogous argument with the exterior instead of the interior leads to the
same conclusion, completing the proof.

Theorem 12. Consider the dynamical system generated by (3) with n = 2.
Let u0 ∈ R2 have a bounded forward trajectory S+(u0), and assume that the
omega limit ω(u0) does not contain any steady states. Then ω(u0) is a periodic
trajectory.

Proof: By the boundedness of the forward trajectory, ω(u0) is nonempty, posi-
tively invariant, connected, and closed (Theorem 4). Choose u ∈ ω(u0), t̃j →∞
such that St̃j (u0)→ u, and a transversal line segment T (u). Then for j ≥ j0, the

trajectory crosses T (u) at Stj (u0) close to St̃j (u0). Note that {tj}j≥j0 is a sub-

sequence of the sequence with the same name from Lemma 7. The construction
also implies Stj (u0)→ u. Lemma 7, i.e. the monotonicity of the crossing points
along T (u), implies

ω(u0) ∩ T (u) = {u} .
By the positive invariance of ω(u0) the forward trajectory through u satisfies
S+(u) ⊂ ω(u0), implying

S+(u) ∩ T (u) = {u} .
Therefore S+(u) is periodic.

Assume now that ω(u0)\S+(u) is nonempty. The connectedness of ω(u0) then
implies that there are u1 ∈ S+(u), u2 ∈ ω(u0) \ S+(u) with |u1 − u2| arbitrarily
small. As a consequence, the trajectory through u2 crosses a transversal line
segment T (u1) in a point St2(u2), and obviously u1 ∈ S+(u) ∩ T (u1). Since,
however, ω(u0) ∩ T (u1) contains at most one point, St2(u2) = u1, implying the
contradiction u2 ∈ S+(u). We conclude that ω(u0) = S+(u).

Definition 10. A trajectory {St(u0) : t ∈ R} of a continuous dynamical system
is called a heteroclinic orbit, if the limits

u± = lim
t→±∞

St(u0)

exist and u− 6= u+. It is called a homoclinic orbit, if u− = u+.

Theorem 13. (Poincaré-Bendixson) Consider the dynamical system generated
by (3) with n = 2. Let u0 ∈ R2 have a bounded forward trajectory S+(u0), and
let ω(u0) contain finitely many fixed points. Then one of the following holds:
a) ω(u0) consists of one steady state,
b) ω(u0) is a periodic trajectory,
c) ω(u0) is a union of steady states, homoclinic orbits, and heteroclinic orbits.
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Example 7. Instead of a proof of the theorem, we discuss an example for case
c):

u̇ = v + u2 − u

4
(v − 1 + 2u2) , v̇ = −2u(1 + v) .

It has the steady states (0, 0), (1,−1), (−1,−1), (2,−1). Furthermore the curves
v = −1 and 2u2 + v = 1 are invariant. Together with the steady states (1,−1)
and (−1,−1) they form the boundary of an invariant region D containing the
unstable steady state (0, 0). The function

H(u, v) = u2(1 + v) +
v2

2

vanishes at (0, 0) and is positive elswhere in D. It takes the value 1/2 on ∂D and
satisfies

Ḣ > 0 in D , Ḣ = 0 on ∂D .

Since the steady states (1,−1), (−1,−1) on ∂D are saddles, it is clear that every
trajectory starting in D except at the origin has ∂D as its omega limit.

For the last time, we return to the van der Pol oscillator system

u̇ = −v + f(u) , v̇ = u , f(u) = r(u− u3/3) , r > 0 .(42)

Lemma 8. The dynamical system defined by (42) has a bounded positively in-
variant set D, and the origin (u, v) = (0, 0) lies in the interior of D.

Proof: Proseminar.

The computation

d

dt

u2 + v2

2
= uf(u) ≥ 0 for |u| ≤

√
3 ,(43)

shows that the exterior of Br(0, 0), r ≤
√

3, is also positively invariant. Since the
origin is the only steady state, we conclude from the Poincaré-Bendixson theorem
that the omega limits of all trajectories starting in D\{(0, 0)} are periodic orbits
lying in D \ B√3(0, 0). We intend to prove that there is only one such periodic
solution.

By the reflection symmetry (u, v)↔ (−u,−v) of (42), a periodic orbit crosses
the v-axis at opposite points (0, v0) and (0,−v0). We can therefore consider
a modified Poincaré map P by considering trajectories starting at u(0) = 0,
v(0) = −v0 < 0, define T > 0 as the smallest value, where u(T ) = 0, v(T ) > 0
holds, and set P (v0) = v(T ). Obviously, fixed points of P correspond to periodic
solutions of (42). Using (43), this requires to find zeroes of

W (v0) =

∫ T

0
u(t)f(u(t))dt .

The existence of such zeroes is already known form the Poincaré-Bendixson the-
orem. The uniqueness will follow from strict monotonicity of W . Since the
trajectory (u(t), v(t)), 0 < t < T , lies in the right half plane, v(t) is strictly
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increasing, and u(t) has a unique maximum at the point where the trajectory
crosses the curve v = f(u). Since f(u) > 0 for 0 < u <

√
3, W (v0) is positive as

long as this maximum is not bigger than
√

3. We therefore only consider values
of v0 large enough such that the maximal value of u(t) is larger than

√
3, i.e. the

trajectory crosses v = f(u) at a point with v < 0. The trajectory can then be
split into three parts, according to the sign of f(u), by the points 0 < t1 < t2 < T
such that

u(t1) =
√

3 , v(t1) < 0 , u(t2) =
√

3 , v(t2) > 0 .

Accordingly, W (v0) can be written as the sum of three contributions. In the first
one we change to u as integration variable:∫ t1

0
u(t)f(u(t))dt =

∫ √3

0

uf(u)du

f(u)− v1(u, v0)
.(44)

The graph of v1 is the trajectory between t = 0 and t = t1. Obviously it is strictly
decreasing as a function of v0. Since uf(u) > 0, (44) is strictly decreasing as a
function of v0. For the third contribution, we proceed analogously:∫ T

t2

u(t)f(u(t))dt =

∫ √3

0

uf(u)du

v3(u, v0)− f(u)
,(45)

where the graph of v3 is the trajectory between t = t2 and t = T . It is strictly
increasing as a function of v0, and therefore (45) is also strictly decreasing. For
the middle contribution, we use integration with respect to v:∫ t2

t1

u(t)f(u(t))dt =

∫ v(v0)

v(v0)
f(u2(v, v0))dv .(46)

As a consequence of the facts that f is negative and strictly decreasing in this
region, that v(v0) is strictly increasing, v(v0) is strictly decreasing, and u2(v, v0)
is strictly increasing as function of v0, we conclude that also (46), and therefore
W is strictly decreasing. This completes the proof of uniqueness of the periodic
solution of the van der Pol equation.

9. The Lorenz equations

The meteorologist Edward N. Lorenz published in 1963 a model for atmo-
spheric flow, together with his numerical observations of strange solution behav-
ior. This was one of the starting points of chaos theory. The Lorenz equations
are given by

u̇ = σ(v − u) ,

v̇ = ru− v − uw ,(47)

ẇ = uv − bw ,
with the positive parameters σ, r, b. The system is invariant under the reflection
(u, v, w) ↔ (−u,−v, w). For r < 1, the origin U1 = (0, 0, 0) is the only steady
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state, and it is asymptotically stable, as can be seen from the linearization. Global
asymptotic stability can be shown with the help of the Lyapunov function

L(u, v, w) =
1

2
(ru2 + σv2 + σw2) .

At r = 1, two more steady states

U2,3 = (±
√
b(r − 1),±

√
b(r − 1), r − 1)

appear in a pitchfork bifurcation. Linearization at U2,3 leads to the characteristic
equation

λ3 + λ2(σ + 1 + b) + λ(σ + r)b+ 2σb(r − 1) = 0 .

For 0 < r − 1 � 1, the critical eigenvalue, which is close to zero, can be ap-

proximated by λ ≈ 2σ(1−r)
σ+1 < 0, showing a transfer of stability from U1 to U2

and to U3 at the bifurcation. These points can only lose their stability if purely
imaginary eigenvalues occur for some value of r. Therefore we substitute λ = iω,
ω ∈ R, in the above equation, giving

ω2 = b(σ + r) =
2σb(r − 1)

σ + 1 + b
.

Under the condition σ > 1 + b, the second equation holds for

r = rc :=
σ(3 + σ + b)

σ − 1− b
> 1

At the bifurcation at r = rc, U2 and U3 also lose their stability. The strange
behavior mentioned above occurs for σ > 1 + b, r > rc.

We shall prove that all solutions are attracted to a bounded domain by con-
sidering a modification of the above Lyapunov function:

L1(u, v, w) =
1

2
(ru2 + σv2 + σ(w − 2r)2) ,

with the time derivative

L̇1 = −σ(ru2 + v2 + b(w − r)2 − br2) ,

which is negative except in the ellipsoid

Ê := {(u, v, w) : ru2 + v2 + b(w − r)2 ≤ br2} .

Now we define

M := max
Ê

L1 and E := {(u, v, w) : L1(u, v, w) < M + 1} .

Then L̇1 < 0 outside of E, since Ê ⊂ E.

Lemma 9. The set E defined above is positively invariant for (47). Every tra-
jectory reaches E in finite time.
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Figure 2. The Lorenz attractor

Theorem 14. Let

B(t) := {U(t) : U̇ = f(U), U(0) ∈ B(0)}

and V (t) := µ(B(t)) =
∫
B(t) dU . Then

V̇ (t) =

∫
B(t)
∇U · f(U) dU .
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Proof: (not quite a proof, rather a heuristic argument) We split the boundary

∂B(t) =
K⋃
k=1

Ak

into K pieces small enough, such that they can be approximated by pieces of
hyperplanes, and such that f(U) and the outward unit normal ν(U) can be
approximated by constant vectors f(Uk) and ν(Uk), Uk ∈ Ak, along Ak. Then
after a small time step from t to t+ ∆t, the boundary can be approximated by

∂B(t+ ∆t) ≈
K⋃
k=1

(
Ak + ∆tf(Uk)

)
.

The volume difference can then be approximated by the sum of the volumes of
oblique cylinders:

V (t+ ∆t)− V (t) ≈
K⋃
k=1

∆tf(Uk) · ν(Uk) ∆Ak ,

where ∆Ak denotes the (n − 1)-dimensional surface area of Ak. After division
by ∆t, the right hand side has the form of a Riemann sum for a surface integral.
Therefore with ∆t→ 0 and N →∞, we obtain

V̇ (t) =

∫
∂B(t)

f(U) · ν(U) dA =

∫
B(t)
∇U · f(U) dU ,

where the second equality follows from the divergence theorem.

Application of this result to (47) gives

V̇ = −(σ + 1 + b)V ,

and therefore V (t) = V (0)e−(σ+1+b)t. This implies that the union of the omega-
limits of all trajectories is the subset of a set with volume zero. However, numer-
ical experiments show that it has a very complicated structure. It is an example
for a strange attractor (see Fig. 2).

10. Hamiltonian mechanics

For conservative mechanical problems the Hamilton principle or the principle
of stationary action can be used to derive the equations of motion. The for-
mal procedure requires generalized coodinates q = (q1, . . . , qn) and a Lagrangian
L(v, q), (v, q) ∈ R2n. For a time evolution q(t) of the generalized coordinates, we
define the generalized velocities v(t) = q̇(t). The Hamilton principle states that
the time evolution between t = t1 and t = t2 is a stationary point of the action
integral

I(q) :=

∫ t2

t1

L(q̇(t), q(t))dt ,
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with given q(t1) and q(t2). This implies that Gateaux derivatives of I in all
directions have to vanish at q. A permissible direction for the Gateaux derivative
is a function r(t) satisfying r(t1) = r(t2) = 0. The Gateaux derivative at q in the
direction r is then given by

d

dε
I(q + εr)

∣∣∣
ε=0

=

∫ t2

t1

(∇qL(q̇, q) · r +∇vL(q̇, q) · ṙ) dt

=

∫ t2

t1

(
∇qL(q̇, q)− d

dt
∇vL(q̇, q)

)
· r dt ,

where the second equality is due to an integration by parts. The requirement
that the right hand side vanishes for all permissible directions r leads to the
Euler-Lagrange equation

∇qL(q̇, q) =
d

dt
∇vL(q̇, q) ,(48)

a system of second order ordinary differential equations.

Example 8. For the pendulum with length l and mass m swinging in the (x, y)-
plane (with the positive x-axis pointing downwards) the angle with respect to the
vertical (x-) direction can be used as generalized coordinate:

(x(t), y(t)) = l(cos q(t), sin q(t)) .

The kinetic energy is then given as

Ekin = m
ẋ2 + ẏ2

2
=
ml2q̇2

2
=
ml2v2

2
.

The potential energy due to gravity is

Epot = −max = −mal cos q ,

which is a simplified model with constant acceleration a. The standard rule for
obtaining the Lagrangian is

L = Ekin − Epot =
ml2v2

2
+mal cos q .

This gives the Euler-Lagrange equation

−mal sin q = ml2q̈ =⇒ q̈ + ω2 sin q = 0 ,

with the frequency ω =
√
a/l.

Definition 11. For a strictly convex smooth function f : Rn ⊃ D(f) → R, its
Legendre transform f∗ is defined as

f∗(p) := sup
v∈Rn

(p · v − f(v)) ,

for p ∈ D(f∗) ⊂ Rn, where the right hand side is finite. For these p:

f∗(p) = p · V (p)− f(V (p)) , with p = ∇f(V (p)) .
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Lemma 10. a) The Legendre transform of a strictly convex function is strictly
convex.
b) f∗∗ = f .

Proof: The computation

∇f∗(p) = V (p) + p · ∇V (p)−∇f(V (p)) · ∇V (p) = V (p)

shows that ∇f and ∇f∗ are inverse functions for each other, proving b). There-
fore their Jacobians, i.e. the Hessians of f and f∗, are inverse matrices for each
other. The positive definiteness of the former thus implies positive definiteness
of the latter, proving a).

Typically, the Lagrangian is a strictly convex function of v, and p = ∇vL(v, q)
for fixed q defines a diffeomorphism between v and the momentum p. In this case
the Legendre transform of L with respect to v is called the Hamiltonian

H(p, q) := L∗(p, q) = p · V (p, q)− L(V (p, q), q) , p = ∇vL(V (p, q), q) .

Lemma 11. a) The Euler-Lagrange equations (48) are equivalent to the Hamiltonian
dynamics

q̇ = ∇pH(p, q) , ṗ = −∇qH(p, q) .

b) The Hamiltonian is constant along trajectories. By this property, it is called
a first integral, a constant of motion, or a conserved quantity.

Proof: a) Since L is the Legendre transform of H, we have

q̇ = v = ∇pH .

On the other hand

∇qH = p · ∇qV −∇vL · ∇qV −∇qL = −∇qL ,

and therefore, with ∇vL = p, (48) can be written as ṗ = −∇qH.
b)

Ḣ = ∇pH · ṗ+∇qH · q̇ = 0 .

Example 9. For the pendulum we get p = ml2v and

H =
p2

2ml2
−mal cos q = Ekin + Epot ,

with the Hamiltonian dynamics

q̇ =
p

ml2
, ṗ = −mal sin q .

Example 10. The Einstein equation

Ekin = m(v)c2 , m(v) = m0

√
1 +
|v|2
c2

, v ∈ R3 ,
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gives the kinetic energy of a relativistic particle with the rest mass m0 and the
speed of light c. With a potential energy Epot(q), q ∈ R3, the equations of motion
are

d

dt

(
m0q̇√

1 + |q̇|2/c2

)
= −E′pot(q) .

The Hamiltonian is given by

H = −c2

√
m2

0 −
|p|2
c2

+ Epot(q) .

Theorem 15. (Liouville) A Hamiltonian flow preserves volume in phase space.

Proof: Application of Theorem 14.

Theorem 16. (Poincaré recurrence theorem) Let M⊂ Rn be bounded, let St be
a volume preserving dynamical system on M, and let U ⊂ M be an open set.
Then there exists a sequence tn →∞, tn ∈ T , such that

U ∩ Stn(U) 6= {} .(49)

Proof: Choose t0 > 0 and consider the sequence S2nt0(U) ⊂M. Since all these
sets have the same positive volume (the volume of U), they cannot be pairwise
disjoint, since otherwise the volume ofM would be infinite. Therefore there exist
0 ≤ m0 < n0, such that

S2m0t0(U) ∩ S2n0t0(U) 6= {} .
Going back in time by 2m0t0, we obtain

U ∩ St1(U) 6= {} , with t1 = 2(n0 −m0)t0 ≥ 2t0 .

Iterating this argument we construct a sequence tn ≥ 2nt0, satisfying (49).

Trying to solve the equations of motion, first integrals like the Hamiltonian
are useful, of course. A way of finding additional first integrals is via continuous
symmetries. Symmetries are defined via the actions of groups on the phase space.
The action of a continuous group on the generalized coordinates q is written as
Q(s, q), s ∈ R, satisfying the group properties Q(0, q) = q and Q(s + σ, q) =
Q(s,Q(σ, q)), s, σ ∈ R. It will be assumed to be generated by the vector field f ,
i.e. by solving the initial value problem

dQ

ds
= f(Q) , Q(0, q) = q .

The action V (s, v, q) of the group on the generalized velocities is then defined
consistently with the relation q̇ = v, i.e. we compute

d

dt
Q(s, q(t)) = (q̇(t) · ∇q)Q(s, q(t)) ,

and set
V (s, v, q) = (v · ∇q)Q(s, q) .
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Definition 12. The function L(v, q) has the symmetry generated by f , if

L(V (s, v, q), Q(s, q)) = L(v, q) ∀s ∈ R .(50)

The following is a famous result by one of the most important female mathe-
maticians.

Theorem 17. (Noether) If the Lagrangian L has the symmetry generated by f ,
then

I(v, q) = ∇vL(v, q) · f(q) = p · f(q)

is a first integral of the dynamics given by (48).

Proof: Differentiation of (50) with respect to s and evaluation at s = 0 gives

∇vL · ((v · ∇)f) +∇qL · f = 0 .

Using this we compute

İ = ∇vL · ((v · ∇)f) +

(
d

dt
∇vL

)
· f =

(
−∇qL+

d

dt
∇vL

)
· f = 0 ,

where the last equality is due to (48).

Example 11. The simplest example is symmetry with respect to a translation
of the generalized coodinates. With f(q) = ej, the j-th canonical basis vector in
Rn, we get Q(s, q) = q + sej, V (s, v, q) = v, which means that the Lagrangian
has the corresponding symmetry, if it is independent of qj. In this case the j-th
component of the momentum

pj = ∇vL · ej
is a conserved quantity. Here we would not have needed the Noether theorem,
since this is an obvious consequence of the equations of motion.

Example 12. Assume that L(v, q) = L̂(|v|, |q|). We consider the symmetry
action generated by f(q) = Aq with a skew symmetric matrix A, i.e. Atr = −A.
Then we have Q(s, q) = R(s)q, V (s, v, q) = R(s)v, where the matrix R(s) satisfies

d

ds
R = AR , R(0) = In ,

and it is orthogonal, i.e. Rtr = R−1, since

d

ds
RtrR = RtrAR+ (AR)trR = RtrAR+RtrAtrR = 0 and R(0)trR(0) = In .

As a consequence

|Q(s, q)|2 = (Rq) · (Rq) = qtrRtrRq = |q|2 , |V (s, v, q)|2 = |v|2 ,

showing the L has the corresponding symmetry, i.e. it is rotationally symmetric.

As a consequence, ptrAq is conserved for any skew symmetric matrix A. This
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gives the n(n−1)
2 (the dimension of the space of skew symmetric matrices, or the

number of pairs (i, j) with i < j) independent conserved quantities

Iij := piqj − pjqi , 1 ≤ i < j ≤ n .

For n = 3 this can be written as conservation of the angular momentum p × q,
where × denotes the vector product.

Example 13. Point particles with binary interactions: Consider K particles with

masses m1, . . . ,mK in three-dimensional space with positions q1, . . . , qK ∈ R3 and
velocities v1, . . . , vK ∈ R3. We collect them in the vectors q = (q1, . . . , qK), v =
(v1, . . . , vK) ∈ Rn, n = 3K. The Lagrangian is given by

L(v, q) =
K∑
k=1

mk|vk|2

2
−

∑
1≤k<l≤K

Ekl(|qk − ql|) ,

with the potential energy Ekl(|qk − ql|) of a binary interaction assumed to only
depend on the distance between the particles. The Lagrangian has translation
symmetries generated by

fa(q) = (a, . . . , a) , a ∈ R3

with the group action Qa(s, q) = (q1 + sa, . . . , qK + sa), Va(s, v, q) = v, and
rotation symmetries generated by

fA(q) = (Aq1, . . . , AqK) , A ∈ R3×3 , Atr = −A ,

with the group action QA(s, q) = (R(s)q1, . . . , R(s)qK), VA(s, v, q) = (R(s)v1, . . . , R(s)vK),
where R is as in the previous example. By the Noether theorem these lead to con-
servation of total momentum and of total angular momentum, i.e. of

p0 =

K∑
k=1

pk =

K∑
k=1

mkvk and of l0 =

K∑
k=1

pk × qk .

Of course we also have conservation of the total energy

E = H(p, q) =
K∑
k=1

|pk|2

2mk
+

∑
1≤k<l≤K

Ekl(|qk − ql|) .

Example 14. A special case of the previous example is (Newton’s) gravitational
interaction with

Ekl(|qk − ql|) = −m
kmlG

|qk − ql|
,

where G > 0 denotes the gravitational constant. The equations of motion are
given by

q̇k = vk , v̇k =
∑
l 6=q

mlG(ql − qk)
|ql − qk|3

, k = 1, . . . ,K .
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These are invariant under Galilei transformations of the form vk → vk − v0,

qk → qk − tv0, i.e. change to a new frame of reference moving with constant
velocity v0. The choice

v0 =

∑K
k=1m

kvk∑K
k=1m

k
,

i.e the time independent average velocity, makes the total momentum vanish after
the transformation: p0 = 0. This can be seen as making the center of mass

q0 =

∑K
k=1m

kqk∑K
k=1m

k
,

motionless, and it will be assumed at the origin in the following: q0 = 0.
We shall consider the Kepler problem or two-body problem with K = 2. With

a frame of reference as described above, where the center of mass is fixed at the
origin, we have

m1q1 +m2q2 = 0 , m1v1 +m2v2 = 0 .(51)

We also have the conservation of energy and of angular momentum,

E = m1 |v1|2

2
+m2 |v2|2

2
− m1m2G

|q1 − q2|
, l0 = m1v1 × q1 +m2v2 × q2 ,

and the equations of motion

q̇1 = v1 , q̇2 = v2 , m1v̇1 = −m2v̇2 =
m1m2G(q2 − q1)

|q2 − q1|3
.

These imply that q1 and q2 are orthogonal to l0. We introduce an orthonormal
basis {b1, b2} of the orthogonal complement of l0 such that b1 × b2 = l0/|l0|, and
we introduce polar coordinates by

q1 − q2 = r cosϕ b1 + r sinϕ b2 .

With (51), q1, q2, v1, v2 can be computed in terms of r and ϕ. The conservation
of angular momentum can then be written as

r2ϕ̇ = −|l0|
m∗

, with m∗ =
m1m2

m1 +m2
,

and the conservation of energy as

E =
m∗

2
(ṙ2 + r2ϕ̇2)− m1m2G

r
.

The former can be used to eliminate ϕ̇ from the latter, producing a first order
differential equation for r(t). Its solution is facilitated by writing r as a function
of ϕ via

ṙ = − dr
dϕ

|l0|
m∗r2

,
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giving

E =
|l0|2

2m∗

(
1

r4

(
dr

dϕ

)2

+
1

r2

)
− m1m2G

r
.

This will be simplified by a series of transformations. First, % = 1/r, leading to(
d%

dϕ

)2

+ (%−A)2 = B2 , with A =
m∗m1m2G

|l0|2
, B2 = A2 +

2m∗E

|l0|2
.

This suggests % = A+B cosψ, with the result(
dψ

dϕ

)2

= 1 .

With the solution ψ = ϕ− ϕ0, we finally obtain

r =
A−1

1 + ε cos(ϕ− ϕ0)
, with ε =

√
1 +

2E|l0|2
m∗(m1m2)2G2

.

Introducing the cartesian coordinates (x, y) = r(cos(ϕ − ϕ0), sin(ϕ − ϕ0)), this
can be written as

(1− ε2)x2 + y2 =
1

A2
+

2εx

A
,

showing that the trajectories of q1− q2, and therefore also of q1 and q2 are conic
sections. In particular, for negative energy E, i.e. ε < 1, they are ellipses, and
for positive energies they are hyperbolas, with parabolas in the intermediate case
E = 0.

Appendix 1 – second order Taylor remainders

Let g : Rn → Rn be smooth in a neighborhood of 0. Then the second order
remainder

r(v) = g(v)− g(0)−Dg(0)v

satisfies

r(v1)− r(v2) = [Dg(v̂)−Dg(0)](v1 − v2) ,

with v̂ between v1 and v2. Assume v1, v2 ∈ Br and let L denote the Lipschitz
constant of Dg in Br. Then also v̂ ∈ Br, and we have

|r(v1)− r(v2)| ≤ rL|v1 − v2| ,(52)

i.e. the Lipschitz constant of the second order remainder is locally small.
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Appendix 2 – Young’s inequality

Lemma 12. Let a, b, γ > 0, p ≥ 1, 1/p+ 1/q = 1. Then

ab ≤ γap

p
+

bq

γq−1q
.

Proof: With α = γ1/pa, β = γ−1/pb, it suffices to prove the inequality with
γ = 1. With t = 1/p, 1− t = 1/q, the right hand side is a convex combination of
αp and βq. Therefore the concavity of the logarithm implies

log (tαp + (1− t)βq) ≥ t log(αp) + (1− t) log(βq) = logα+ log β = log(αβ) .

By the monotonicity of the logarithm the proof is complete.
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