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Throughout R, Q, Z and ω will stand for the set of all real
numbers, the set of all rational numbers, the set of all integers
and the set of all natural numbers respectively. The first three
are equipped with their usual abelian group structure and the
circle group T is identified with the quotient group R/Z of R
endowed with its usual compact topology. For x ∈ R we
denote by {x} the difference x − [x ] (the fractional part) and
‖x‖ the distance from the integers i.e. min{{x},1− {x}}.
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The motivation to study the so called ”characterized
subgroups” can be traced back to the distribution of
sequences of multiples of a given real number mod 1.

Recall that a sequence of real numbers (xn) is said to be
uniformly distributed mod 1, if for every [a,b] ⊆ [0,1) one
has

lim
n→∞

|{j : 0 ≤ j < n, {xj} ∈ [a,b]}|
n

= b − a

where {xj} is the fractional part of xj . In his celebrated
results proved in 1916, H. Weyl had investigated the set

Wu = {x ∈ [0,1] : (unx) is uniformly distributed mod 1}

where u = (un) ∈ Zω.
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Note that for every number α ∈ [0,1] \Q, α /∈Wu for an
appropriate choice of u. Indeed, to this end one can
consider the convergents rn

un
of the continued fraction

expansion of α and as ||unα||Z → 0 (where ||.||Z is the
distance from the integers), conclude that α /∈Wu.

In a really impressive observation, [Larcher, PAMS, 1988]
proved that if the continued fraction expansion of α ∈ R \Q
is bounded then

{β ∈ R : ||unβ||Z → 0} = 〈α〉+ Z, (1)

the subgroup of R generated by α mudulo 1. Instead of
using the fractional part {xj} or working modulo 1, one can
conveniently work in the circle group R \ Z = T
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Recall that an element x of an abelian group is torsion if
there exists k ∈ ω such that kx = 0

[Braconnier, CRAMSP, 1944] An element x of an abelian
topological group G is :

(i) topologically torsion if n!x → 0;
(ii) topologically p-torsion, for a prime p, if pnx → 0.

It is obvious that any p-torsion element is topologically
p-torsion.
[Armacost, 1981] defined the subgroups

Xp = {x ∈ X : pnx → 0} and X ! = {x ∈ X : n!x → 0}

of an abelian topological group X , and started their
investigation
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Definition
Let (an) be a sequence of integers, the subgroup

t(an)(T) := {x ∈ T : anx → 0 in T}

of T is called a characterized (by (an)) subgroup of T.

Even if the notion was inspired by the various (earlier)
instances, the term characterized appeared much later,
coined in [Bı́ró, Deshouillers, Sós, SSMH, 2001].

Example

(a) Let p be a prime. For the sequence (an), defined by an = pn

for every n, obviously t(pn)(T) contains the Prüfer group Z(p∞).
Armacost proved that t(pn)(T) simply coincides with Z(p∞).
(b) Armacost posed the problem to describe the group
T! = t(n!)(T). It was resolved by [Borel, CM, 1991].
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Historically some of the most interesting cases studied
(like the two types of subgroups considered by Armacost)
are particular cases of characterized groups which are
characterized by arithmetic sequences.

Precisely a sequence of positive integers (an) is an
arithmetic sequence if

1 = a0 < a1 < a2 < · · · < an < . . . and an|an+1 for every n ∈ N.

An element x in an abelian topological group G is called
a-torsion element if anx → 0. Borel first started studies of
a-torsion elements (null sequences modulo 1) in R. The
final results on describing the a-torsion elements of T can
be found in [Di Santo, Dikranjan, CA, 2004] followed by
[Dikranjan, Impieri, CA, 2014].
It had already been observed by [Eggleston, PLMS, 1952]
that the asymptotic behavior of the sequence qn := an

an−1
of

ratios has a strong impact on the size of t(an)(T):
(E1) t(an)(T) is countable if (qn) is bounded,
(E2) |t(an)(T)| = 2ℵ0 if qn →∞.
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[Bı́ró, Deshouillers and Sós, SSMH, 2001] established the
important fact that every countable subgroup of T is
characterized.

The whole history concerning these investigations along
with relevant references can be seen from the excellent
survey article on characterized subgroups of T [Di Santo,
Dikranjan, Giordano Bruno, Ric. Mat, 2018]).
Characterized subgroups of compact abelian groups were
introduced in [Dikranjan, TP, 2001-2002] followed by
[Dikranjan, Milan, Tonolo, JPAA, 2005] and studied later by
Hart and Kunen [TA, 2005, 2006], as well as by [Dikranjan,
Kunen, JPAA, 2007], [Dikranjan, Impieri, TA, 2016]
For the application of characterized subgroups to the
problem of building group topologies with or without
convergent sequences, see [Babieri, Dikranjan, Milan,
Weber, AGT, 2005].
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Definition 2. [Buck, AJM, 1946] By |A| we denote the
cardinality of a set A. The lower and the upper natural
densities of A ⊂ ω are defined by

d(A) = lim inf
n→∞

|A ∩ [1,n]|
n

and d(A) = lim sup
n→∞

|A ∩ [1,n]|
n

.

If d(A) = d(A), we say that the natural density of A exists
and it is denoted by d(A).

Observation: We say that a subset of ω is ”small” if it has
natural density zero. We write Id = {A ⊂ ω : d(A) = 0}.
Evidently Id forms an ideal (i.e. ω /∈ Id , it is hereditary and
closed under finite unions).
It is easy to see that the set of odd integers as well as the
set of even integers has density 1

2 whereas the set of all
squares has evidently density zero.
The set of all prime numbers has natural density zero while
for the set A = ∪∞n=0{22n, . . . ,22n+1 − 1}, d(A) does not
exist.
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• The following definition was introduced by [Fast, CM, 1951],
[Steinhaus, CM, 1951] and before [Zygmund, 1936], all
independently, with different names (for sequences of real
numbers)

Definition 3. A sequence (xn) in (X , ρ) is said to be
statistically convergent to x0 ∈ X if for arbitrary ε > 0 the
set K(ε) = {n ∈ ω : ρ(xn, x0) ≥ ε} has natural density zero.
[Salat, MS, 1980] A sequence (xn) of real numbers is
statistically convergent to ξ if and only if there exist a set
M = {m1 < m2 < ...} ⊂ ω such that d(M) = 1 and
lim

k→∞
xmk = ξ.

? This particular property of statistical convergence make it
”non-trivial” yet ”not too wild” and this is the reason why it
has been used to extend several classical results and
present new characterizations of existing concepts.
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Definition (Dikranjan, Das, Bose, FM, 2020)

For a sequence of integers (an) the subgroup

ts
(an)

(T) := {x ∈ T : anx → 0 statistically in T}

of T is called a statistically characterized (shortly, an
s-characterized) (by (an)) subgroup of T.

• One reason behind this new approach
? Even if the correspondence (an) 7→ t(an)(T) is monotone
decreasing (with respect to inclusion), in many cases (as in the
classical examples) the subgroup t(an)(T) is rather small, even if
the sequence (an) is not too dense (in the above example, it is
a geometric progression, so has exponential growth). This
suggests that asking anx → 0 is maybe somewhat too
restrictive.
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Theorem
For any sequence of integers (an), ts

(an)
(T) is a Fσδ (hence,

Borel) subgroup of T containing t(an)(T).

In general the subgroup ts
(an)

(T) may not be complete with
respect to the usual norm ‖.‖ prevalent in T
Let δ : T× T→ R be defined as follows. For any x , y ∈ T,
let

δ(x , y) = sup
n∈N
{‖x − y‖, ‖an(x − y)‖}.

The subgroup ts
(an)

(T) is closed in T with respected to this
new metric.

Corollary

There is a finer topology on the subgroup ts
(an)

(T) which is
completely metrizable.
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Let δ : T× T→ R be defined as follows. For any x , y ∈ T,
let

δ(x , y) = sup
n∈N
{‖x − y‖, ‖an(x − y)‖}.

The subgroup ts
(an)

(T) is closed in T with respected to this
new metric.

Corollary

There is a finer topology on the subgroup ts
(an)

(T) which is
completely metrizable.
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[Srivastava] Let X be a Polish space. Then for every Borel
set B in X there is a finer Polish topology τB on X such that
B is closed in X with respect to τB.

T is Polish with respect to usual topology, and ts
(an)

(T) = B
(say) is Borel in T. There is a finer Polish topology τB on T
such that B is closed in X with respect to τB and so ts

(an)
(T)

is Polishable.

Theorem
Let (an) be an arithmetic sequence. Then |ts

(an)
(T)| = c.

Theorem
For any arithmetic sequence (an), ts

(an)
(T) 6= t(an)(T).
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Lemma (see Dikranjan, Impieri, CA, 2014)

For any arithmetic sequence (an) and x ∈ T, we can build a
unique sequence of integers (cn), where 0 ≤ cn < qn, such that

x =
∞∑

n=1

cn

an
(2)

and cn < qn − 1 for infinitely many n.

• For x ∈ T with canonical representation (2), we define
supp(x) = {n ∈ N : cn 6= 0} and
suppq(x) = {n ∈ N : cn = qn − 1}. Clearly
suppq(x) ⊆ supp(x).
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A typical example for the sequence (2n): Choose x ∈ T
with

supp(2n)(x) =
∞⋃

n=1

[(2n)2, (2n + 1)2]. (3)

We can show that x ∈ ts
(2n)(T).

x /∈ t(2n)(T) = Z(2∞) because x ∈ Z(2∞) precisely when
supp(x) is finite [see Dikranjan, Impieri, CA, 2014].
the element x ∈ T above can be replaced by a more
generally defined element of T by taking the support from I
where

I={
∞⋃

n=1

Bn :Bn=[bn,dn],bn+1>dn + 1 ∀n; }

and
lim

n→∞
|dn − bn|=∞= lim

n→∞
|bn+1 − dn|.
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• The notion of natural density can be further extended as
follows [Balcerzak,Das, Filipczak, Swaczina, AMH, 2015].

• Let g : ω → [0,∞) be a function with lim
n→∞

g (n) =∞. The
upper density of weight g was defined by the formula

dg(A) = lim sup
n→∞

|A ∩ [1,n]|
g (n)

for A ⊂ ω.
• The family Ig = {A ⊂ ω : dg(A) = 0} forms an ideal. It has
been observed that ω ∈ Ig iff. n

g(n) → 0. So we additionally
assume that n/g (n) 9 0 so that ω /∈ Ig and it can be proved
that Ig is a proper admissible P-ideal of ω. The collection of all
such functions g satisfying the above mentioned properties will
be denoted by G.
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• The modulus functions are defined as functions
f : [0,∞)→ [0,∞) which satisfy the following properties.
(i) f (x) = 0⇔ x = 0
(ii) f (x + y) ≤ f (x) + f (y) for all x , y ∈ (0,∞) [Triangle

inequality]
(iii) f is non-decreasing
(iv) f is right continuous at 0.

• The moduler simple density function [Bose, Das, Kwela, IM,
2018] is defined by

d f
g(A) = lim inf

n→∞

f (|A ∩ [1,n]|)
f (g(n))

and d
f
g(A) = lim sup

n→∞

f (|A ∩ [1,n]|)
f (g(n))

.

If d f
g(A) = d

f
g(A), we say that d f

g(A) exists.
Zg(f ) = {A ⊂ N : d f

g(A) = 0} denotes the corresponding ideal.
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Some basic observations [Bose, Das, Kwela, IM, 2018]:
(a) For a modulus function f and g ∈ G, the ideal Zg(f ) is a

P-ideal. In fact Zg(f ) is equal to Exh(ϕ), where ϕ is a lower
semicontinuos submeasure on ω given by

ϕ(A) = sup
n∈ω

f (|A ∩ [0,n − 1])
f (g(n))

for A ⊂ ω.
(b) Let f be an unbounded modulus function. Then Zg(f ) is a

density ideal for every g ∈ G (an ideal I on ω is a density
ideal in the sense of Farah if I = Exh(ϕ) where
ϕ := supi∈ω µi and µi are measures with pairwise disjoint
supports being finite subsets of ω).

(c) For any unbounded modulus function f and g ∈ G, the
ideal Zg(f ) is not Fσ.
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• Further observations [Das, Ghosh, IM, 2021]:
(a) For any unbounded modulus function f and for any g ∈ G,

the ideal Zg(f ) is tall or dense.
(b) Let f be an unbounded modulus function. If g1,g2 ∈ G are

such that f (n)
f (g2(n))

≥ a > 0 and f (g2(n))
f (g1(n))

→∞ then
Zg1(f ) ( Zg2(f ).

(c) For any two unbounded modulus functions f1, f2, there
exists a family G0 ⊆ G of cardinality c such that Zg1(fi),
Zg2(fj) are incomparable for i , j ∈ {1,2} and any two
distinct g1,g2 ∈ G0.
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Definition
For a sequence of integers (an) the subgroup

t f ,g
(an)

(T) := {x ∈ T : anx → 0 f g-statistically in T} (4)

of T is called an f g-statistically characterized (shortly, an
f g-characterized) (by (an)) subgroup of T.

• Let us define

If
g =

{ ∞⋃
r=1

Br : Br = [n(2r−1),n(2r)], for some A = {nr}r∈N ⊂ N with d f
g(A) = 0

}
.

(5)
• |If

g | = |Zg(f )| = c.
• Let (an) be an arithmetic sequence and let x ∈ T be such that
supp(x) ∈ If

g and cn = qn − 1 for all n ∈ supp(x). Then
x ∈ t f ,g

(an)
(T).
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• Let (an) be an arithmetic sequence and x ∈ T. If
d f

g(supp(x)) = 0, then x ∈ t f ,g
(an)

(T).

Theorem

For any arithmetic sequence (an), We have |t f ,g
(an)

(T)| = c.

Theorem

t f ,g
(an)

(T) 6= t(an)(T) for any arithmetic sequence (an).
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Theorem

For the unbounded modulus function f (x) = log(1 + x) and for
any g ∈ G, t f ,g

(an)
(T) 6= tα(an)

(T) and t f ,g
(an)

(T) 6= ts
(an)

(T).

Theorem

For any unbounded modulus function f , there exists c many
g ∈ G such that t f

(an)
(T) ( t f ,g

(an)
(T).

Theorem
For any unbounded modulus function f , if g1,g2 ∈ G are such
that f (n)

f (g2(n))
≥ a > 0 and f (g2(n))

f (g1(n))
→∞, then t f ,g1

(an)
(T) ( t f ,g2

(an)
(T).
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• An interesting observation [Das, Bose, PMH, 2021]

Theorem

Let α1, α2 ∈ (0,1] with α1 < α2. Then tα1
(2n)(T) ( tα2

(2n)(T).

Theorem

For α ∈ (0,1] , |tα(2n)(T)| = c.

Theorem

Both the set differences
⋂

α∈(0,1)
tα(2n)(T) \ t(2n)(T) and

ts
(2n)(T) \

⋃
α∈(0,1)

tα(2n)(T) are non-empty.
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