
Dynamical Systems and Nonlinear ODEs – PS 25100.1

Exercises Summer Semester 2021

Exercise 1 Given are the one-parameter quadratic families fc : z 7→ z2 + c and Qa : x →
ax(1− x).
a) Show that for c ∈ [−2, 1

4
] there is an a ∈ [1, 4] such that fc is conjugate to Qa.

b) Find the parameter regions in R where fc has a stable fixed point resp. stable period 2 point.
c) Name the bifurcations that take place at parameters c = 1

4
, c = −3

4
, c = −5

4
.

Exercise 2 Consider the initial value problem

ẋ = f(x) := x3 − 4x+ c, x(0) = x0,

for some parameter c ∈ R.
a) First take c = 0. Draw the phase portrait and determine whether the stationary points are
stable/unstable.
b) Still for c = 0, solve the ODE (separation of variables, partial fractions).
c) As c varies over R, at what values of c do which types of bifurcation occur?

Exercise 3 Let f : R → R be a C2 map with fixed point x0 such that f ′(x0) = 1. Show (by
example) that x0 can be stable or unstable, but also prove that it cannot be exponentially stable.

Exercise 4 The map T : [0, 1] → [0, 1], T (x) = min{2x, 2(1 − x)} is called the tent-map (or
full tent-map, because it is onto [0, 1]).
a) Compute the multiplier of each periodic point. Compute the Lyapunov exponents of arbitrary
points. Which points x ∈ [0, 1] do not have a Lyapunov exponent?
b) Let Q : [0, 1]→ [0, 1] and ψ : [0, 1]→ [0, 1] be defined by Q(x) = 4x(1− x) and ψ : [0, 1]→
[0, 1] and ψ(x) = 1

2
(1− cos πx). Show that Q ◦ ψ = ψ ◦ T .

c) Conclude that every n-periodic point p 6= 0 of Q has multiplier |(Qn)′(p)| = 2n. Why doesn’t
this argument apply also to p = 0?
d) What is the Lyapunov exponent of points x ∈ [0, 1] w.r.t. Q? Is this Lyapunov exponent
defined for all x?

Exercise 5 Consider the two ODEs on R:

ẋ = −x and ẏ = −2y.

a) Show that the corresponding flows, say ϕt(x) and ψt(y) are conjugate, i.e., find a homeomo-
prhism such that ϕt(h(x)) = h(ψt(x)). Is your solution h a diffeomorphism? Is it unique
b) A function h : R → R is called Hölder continuous with exponent α ∈ (0, 1] if there is a
constant K such that

sup
x 6=y

|h(x)− h(y)|
|x− y|α

≤ K.

(So Hölder continuous with exponent α = 1 is the same as Lipschitz continuous.) Show that
h(x) = |x|α is indeed Hölder continuous with exponent α ∈ (0, 1]. Check that your solution in
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a) is a Hölder conjugacy, i.e., both h and h−1 are Hölder continuous ina neighbourhood of 0.
c) Consider two ODEs

ẋ = f(x) and ẏ = g(y).

with f(0) = g(0) = 0 and f ′(0) < g′(0) < 0. Prove that their flows can be Hölder conjugate,
but not with an exponent > g′(0)/f ′(0).

Exercise 6 Consider the circle map fc : S1 → S1, x 7→ 2x+ c (mod 1).
a) Show that this map is chaotic in the sense of Devaney.
b) A pair of points (x, y) is called Li-Yorke if

lim sup
n→∞

d(fn(x), fn(y)) > 0 and lim inf
n→∞

d(fn(x), fn(y)) = 0.

Show that fc : S1 → S1 has a Li-Yorke pair. Find a set {x, y, z} such that every two of them
form a Li-Yorke pair. (Such set is called a scrambeled set. A map if Li-Yorke chaotic if
there exists an uncountable scrambeled set.)

Exercise 7 Consider the map f : R → R, x 7→ x/2. Show that this map is C1 structurally
stable, but not C0 structurally stable.

Exercise 8 Consider the map

f : [0, 1]→ [0, 1], x 7→


x

1−x if x ∈ [0, 1
2
];

2x−1
x

if x ∈ (1
2
, 1].

a) Show that every x ∈ Q ∩ (0, 1] is eventually mapped to 1.
b) Show that x and f(x) have the same Lyapunov exponent. Find the Lyapunov exponent λ(x)
of the fixed points and the period 2 points of f .
c) For which Λ ∈ R do you think there are points x ∈ [0, 1] such that its Lyapunov exponent
λ(x) = Λ? Does every point x have a well-defined Lyapunov exponent?

Exercise 9 Suppose f, g : [0, 1] → [0, 1] are two C1 maps that are conjugate via h : [0, 1] →
[0, 1], i.e., h ◦ f = g ◦ h.
a) Show that f is chaotic in the sense of Devaney if and only if g is chaotic in the sense of
Devaney.
b) Assume in addition that h is a C1 diffeomorphism. Show that if p is periodic for f , then
q := h(p) is periodic for g, with the same period and multiplier.
c) For general (i.e., not necessarily periodic) points, do x and y = h(x) have the same Lyapunov
exponent?

Exercise 10 a) Given is a general Lotka-Voterra equation:{
ẋ = (A−By)x,

ẏ = (Cx−D)y,
A,B,C,D > 0.
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Find changes of coordinates that bring this equation into the form{
ẋ = (1− y)x,

ẏ = α(x− 1)y,
α > 0.

b) Consider the following variation of the Lotka Volterra equations:{
ẋ = (1− y − λ(x− 1))x,

ẏ = α(x− 1 + λ(1− y))y,
1 ≥ α > λ > 0.

Find the stationary points and their type. Use a Lyapunov function if linearization at the
stationary point is not sufficient to draw a conclusion.

Exercise 11 Consider the standard Van der Pol equation:

ẍ+ x = ε(1− x2)ẋ, ε > 0. (1)

a) Write this system as a first order ODE in R2, and then write the first order ODE in polar
coordinates.

b) Assume that there is a periodic solution R(φ). Argue that by “averaging over φ”, this solution
should satisfy

Ṙ =
−εR

8
(R2 − 4),with some initial condition R(0) = R0.

and show that its solution is R(t) = 2√
1+(4/R2

0−1)e−εt
.

c) Analyse what happens in (1) if ε < 0: compare this case with the case ε > 0.

Exercise 12 Let A be a finite alphabet and Σ = AN, equipped with product topology.
a) Show that Σ is a Cantor set, i.e., it is compact, totally disconnected (∀x, y ∈ Σ ∃U, V ⊂
Σ open, x ∈ U, y ∈ V, U ∩ V = ∅, U ∪ V = Σ) and without isolated points.
b) Show that the metric

dΣ(x, y) =

{
2−max{k : xi=yi ∀ |i|<k} if x 6= y,

0 if x = y.

induces the product topology.
c) Another metric is

d′Σ(x, y) =

{
1

1+max{k : xi=yi ∀ |i|<k} if x 6= y,

0 if x = y.

Two metrics d and d′ are equivalent if

∃C > 0 ∀x, y 1

C
d(x, y) ≤ d′(x, y) ≤ Cd(x, y). (2)

Show that dΣ and d′Σ are not equivalent in the sense of (2), but that the identity map x ∈
(Σ, dΣ) 7→ x ∈ (Σ, d′Σ) is a homeomorphism. Conclude that dΣ and d′Σ induce the same topology.
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Exercise 13 Let T : S1 → S1, x 7→ 2x mod 1 be the doubling map. Take a ∈ [0, 1
4
] and let

J0 = (a, a+ 1
2
) and J1 = S1 \ J0 represent a partition of the circle S1. Let us call this partition

generating if every two points x, y ∈ S1 whose orbits do not contain a or a+ 1
2
, have distinct

symbolic itineraries: i(x) 6= i(y).
a) Show that for a = 0, the partition {J0, J1} is generating.
b) Let S(x) = 1− x. Show that T ◦ S = S ◦ T . Use this to show that for a = 1

4
, the partition

is {J0, J1} not generating. In fact, i : S1 → {0, 1}N is two-to-one.
c) For which a ∈ [0, 1

4
] is the partition {J0, J1} generating?

Exercise 14 Let A be an N × N transition matrix, and (ΣA, σ) is the corresponding subshift
of finite type.
a) Prove that trace(An) gives the number of periodic sequences s ∈ ΣA of period n (although
this need not be the minimal period).
b) Assume that there is m ≥ 1 such that Am has only positive entries. Show that (ΣA, σ) is
chaotic in the sense of Devaney.
c) Show that (ΣA, σ) is chaotic in the sense of Li-Yorke.

Exercise 15 Let Rα : S1 → S1, x 7→ x+ α mod 1 be a circle rotation.
a) Show that (i) α ∈ Q if and only if every point is periodic, and α /∈ Q if and only if every
point has a dense orbit.
b) Compute the Lyapunov exponent of every point.
c) If α 6= β mod 1, show that Rα and Rβ are not conjugate.

Exercise 16 In this example, we make the Denjoy example of a circle homeomorphism without
dense orbits more concrete. Let Rα : S1 → S1 be a circle rotation with irrational α. Let Rn

α(0)
for n ∈ Z. Let In = [an, bn] be intervals of length |In| = 1

1+n2 .

a) Define

ψn : [an, bn]→ [an+1, bn+1, x 7→ an+1 +

∫ x

an

1 + 6
|In+1| − |In|
|In|

(bn − t)(t− an) dt.

Show that ψn : In → In+1 is a C2 diffeomorphism. In particular, show that ψ′ is bounded with
ψ′n(an) = ψ′n(bn) = 1. Also compute that ψ′′(an+bn

2
) = 0.

b) We construct a sequence of maps (fN)N≥0 as follows. To create f0, replace 0 with an interval
I0 and map f0(x) = Rα(0) for every x ∈ In, and f0(x) = Rα(x) for every x /∈ I0.

Once fN−1 is contructed, construct fN by replacing RN
α (0) by an interval IN and replacing

R−Nα (0) interval I−N . Also define fN on IN−1 as ψN−1 and on I−N as ψ−N and on IN as
constant RN+1

α (0). Show that fN is a C1 map.

c) Let f = limN fN . Show that it is a C1 diffeomorphism. Is it C2?

Exercise 17 The harmonic oscillator with damping is given by the ODEs

ẍ+ rẋ+ ω2x = 0. r > 0

Depending on the size of the dampint parameter r, there is moderate damping, overdamping
(when the solution is no longer oscillitory) and critical damping in between. Find the critical
damping parameter r = rc, and find the solution of ODE at critical damping.
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Exercise 18 The harmonic oscillator with parametric driving is given by the non-autonomous
ODEs

ẍ+ r(t)ẋ+ ω2(t)x = 0.

a) Show that you can eliminate the linear term using the change of coordinates q(t) = e
1
2

∫ t r(s) dsx(t).
The result should be

q̈ + Ω2(t)q = 0,

for Ω2(t) = ω2(t)− 1
2
ṙ(t)− 1

4
r2(t).

b) Assume now that r(t) and ω2(t) are functions that oscillate mildly with the same frequency
around some fixed value. That is

r(t) = ω0(b+O(ε)) ω2(t) = ω2
0(1 +O(ε))

where the O(ε) stand for oscillating functions of fixed frequency ω1 and small amplitude ≈ ε.
Show that this reduces the ODE to

q̈ + ω2
0(1− b2

4
)(1 + εf(t))q = 0,

where f is periodic with frequency 2ω2 for some ω2.
c) Assume f(t) = f0 sin 2ω2t. Use the change of coordinates q(t) = A(t) cos(ω2t)+B(t) sin(ω2t)

to come to an ODEs {
2ω2Ȧ = f0

2
ω2

0A− (ω2
2 − ω2

0)B,

2ω2Ḃ = −f0
2
ω2

0B + (ω2
2 − ω2

0)A.

d) Approximate the solutions of this latter ODE using the Ansatz A(t) = p(t) cos θ(t) and
B(t) = p(t) sin θ(t). This should lead to{

ṗ = pmax cos(2θ(t)) p(t) pmax =
f0ω2

0

4ω2

θ̇ = −pmax (sin 2θ − sin 2θeq) sin 2θeq =
2(ω2

2−ω2
0)

f0ω2
0

e) The equation for θ(t) is independent of p(t), and is close to a linear equation. Its solution
decays exponentially fast to the constant solution θ(t) ≡ θeq. Use this solution to solve the
equation for p(t).

f) What conclusion can you draw for the original variable x(t) = q(t)e−
1
2

∫ t r(s) ds? Specifi-
cally, is the equilibrium solution x(t) ≡ 0 stable?

Exercise 19 Show that if the Hamiltonian H = Ekin(p) + Epot(q) and Ekin = p2

2m
, then the

Lagrangian is L = Ekin(p)− Epot(q).

Exercise 20 Assume that XH is a Hamiltonian vector field in R2:

• Show that equilibria of XH can only be centers or saddles.

• Which bifurcations (of the ones we treated in class) can occur in a family of Hamiltonian
vector fields?

• Find a family of Hamiltonians Hε : R2 → R such that at ε = 0, a saddle becomes a center.
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Exercise 21 A Lagrangian system in R3 has the Lagrangian

L(v, q) =
v2

1 + v2
2 + v2

3

2
− q2

1 + q2
2 + q3

3

2
.

Use Noether’s Theorem to find first integrals. Is the system integrable?

Exercise 22 We have a Hamiltonian system in coordinates (x, y) ∈ R2 where the Hamiltonian
has the form

H(x, y) =
y2

2
+ V (x), V is C2-smooth,

and assume that V (x) = V (−x) has V ′′(0) > 0. This means that (0, 0) is

(a) Show that (0, 0) is a center, with periodic motion around it.

(b) Let T (a) be the period of the orbit starting at (a, 0). Show that

T (a) =

∫ a

0

4√
2(V (a)− V (x))

dx.

Hint: Integrate T (a) =
∫ t2
t1

a quarter of the periodic orbit and invert t = t(x) (instead of
x = x(t)) to rewrite the integral.

• Show that T (a) = 2π is constant for V (x) = x2

2
(harmonic oscillator).

• Show that T (a) is increasing if V (x) = − cosx (pendulum), and find lima↘0 T (a) and
lima↗0 T (a).
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