
Dynamical Systems and Nonlinear ODEs SS2024

Exercise Sheet

Exercise 1 Let f : X → X and g : Y → Y be two continuous mappings that are conjugate via
the homeomorphism ψ: ψ ◦ f = g ◦ ψ. Show that
a) ψ maps (pre)periodic points of f to (pre)periodic points of g;
b) ψ maps omega-limit sets of f to omega-limit sets of g;
c) ψ maps attracting fixed points of f to attracting fixed points of g.

Exercise 2 Let Qa(x) = ax(1− x), a ∈ [0, 4] be the quadratic family.
Which are the fixed points and for which values of a are they stable?
b) Find the period two points. For which values of a do they exist?
c) For which values of a is the period 2 orbit stable?

Exercise 3 Given are the one-parameter quadratic families fc : z 7→ z2 + c and Qa : x →
ax(1− x).
a) Show that for c ∈ [−2, 1

4
] there is an a ∈ [1, 4] such that fc is conjugate to Qa.

b) Find the parameter regions in R where fc has a stable fixed point resp. stable period 2 point.
c) Name the bifurcations that take place at parameters c = 1

4
, c = −3

4
, c = −5

4
.

Exercise 4 Find the phase portraits and exact solutions of initial value problems

ẋ = x2 with x(0) = 0, and ẋ = −x3 with x(0) = 0,

for x ∈ R. Discuss the (exponential?) stability of the equilibria.

Exercise 5 a) Consider the initial value problem

ẋ = cosx+ 1 with x(0) = 0

for x ∈ R. Find the equilibria and indicate if they are hyperbolic. Hence compute the ω-limit
and α-limit of the given initial point.
b) Give the definition of an ω-limit set and calculate the ω-limit set for the initial value problem

ẋ = x2 + x3, x(0) = −1

2
.

Exercise 6 Consider the initial value problem

ẋ = f(x) := x3 − 4x+ c, x(0) = x0,

for some parameter c ∈ R.
a) First take c = 0. Draw the phase portrait and determine whether the stationary points are
stable/unstable.
b) Still for c = 0, solve the ODE (separation of variables, partial fractions).
c) As c varies over R, at what values of c do which types of bifurcation occur?

Exercise 7 Let f : R → R be a C2 map with fixed point x0 such that f ′(x0) = 1. Show (by
example) that x0 can be stable or unstable, but also prove that it cannot be exponentially stable.
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Exercise 8 Prove or give a counter-example among circle maps f : S1 → S1:

1. Exponentially stable ⇒ asymptotically stable.

2. Asymptotically stable ⇒ exponentially stable.

3. Exponentially stable ⇒ Lyapunov stable.

4. Asymptotically stable ⇒ Lyapunov stable.

Exercise 9 Find the complete solution to the differential equation

ẋ = ax(1− x), x(0) = x0.

Assuming a > 0, which are the stationary points and are they (asymptotically) stable? Are they
exponentially (un)stable? What happens with the forward orbit of a initial poistion x0 < 0, and
with the backward orbit for x0 > 1?

Exercise 10 Let ẋ = f(x) have an equilibrium at x = 0 and f ′(0) = 0. Show that 0 cannot be
exponentially stable.

Exercise 11 The map T : [0, 1] → [0, 1], T (x) = min{2x, 2(1− x)} is called the tent-map (or
full tent-map, because it is onto [0, 1]).
a) Compute the multiplier of each periodic point. Compute the Lyapunov exponents of arbitrary
points. Which points x ∈ [0, 1] do not have a Lyapunov exponent?
b) Let Q : [0, 1]→ [0, 1] and ψ : [0, 1]→ [0, 1] be defined by Q(x) = 4x(1− x) and ψ : [0, 1]→
[0, 1] and ψ(x) = 1

2
(1− cos πx). Show that Q ◦ ψ = ψ ◦ T .

c) Conclude that every n-periodic point p 6= 0 of Q has multiplier |(Qn)′(p)| = 2n. Why doesn’t
this argument apply also to p = 0?
d) What is the Lyapunov exponent of points x ∈ [0, 1] w.r.t. Q? Is this Lyapunov exponent
defined for all x?

Exercise 12 Consider the two ODEs on R:

ẋ = −x and ẏ = −2y.

a) Show that the corresponding flows, say ϕt(x) and ψt(y) are conjugate, i.e., find a homeo-
morphism such that ϕt(h(x)) = h(ψt(x)). Is your solution h a diffeomorphism? Is it unique
b) A function h : R → R is called Hölder continuous with exponent α ∈ (0, 1] if there is a
constant K such that

sup
x 6=y

|h(x)− h(y)|
|x− y|α

≤ K.

(So Hölder continuous with exponent α = 1 is the same as Lipschitz continuous.) Show that
h(x) = |x|α is indeed Hölder continuous with exponent α ∈ (0, 1]. Check that your solution in
a) is a Hölder conjugacy, i.e., both h and h−1 are Hölder continuous in a neighbourhood of 0.
c) Consider two ODEs

ẋ = f(x) and ẏ = g(y).

with f(0) = g(0) = 0 and f ′(0) < g′(0) < 0. Prove that their flows can be Hölder conjugate,
but not with an exponent > g′(0)/f ′(0).
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Exercise 13 Consider the two ODEs on R:

ẋ = −x and ẏ = −2y.

a) Show that the corresponding flows, say ϕt(x) and ψt(y) are conjugate, i.e., find a homeo-
morphism such that ϕt(h(x)) = h(ψt(x)). Is your solution h a diffeomorphism? Is it unique
b) A function h : R → R is called Hölder continuous with exponent α ∈ (0, 1] if there is a
constant K such that

sup
x6=y

|h(x)− h(y)|
|x− y|α

≤ K.

(So Hölder continuous with exponent α = 1 is the same as Lipschitz continuous.) Show that
h(x) = |x|α is indeed Hölder continuous with exponent α ∈ (0, 1]. Check that your solution in
a) is a Hölder conjugacy, i.e., both h and h−1 are Hölder continuous ina neighbourhood of 0.
c) Consider two ODEs

ẋ = f(x) and ẏ = g(y).

with f(0) = g(0) = 0 and f ′(0) < g′(0) < 0. Prove that their flows can be Hölder conjugate,
but not with an exponent > g′(0)/f ′(0).

Exercise 14 a) Find the solutions and draw the phase portraits for the following systems of
ODEs ẋ = Ax:

(i) A =

(
3 1
0 2

)
(i) A =

−2 0 0
0 1 −1
0 1 1

 .

b) Construct explicit conjugacies h : R2 → R2 between the two-dimensional system ẋ = −x (so
x = (x1, x2)T ) and

(i) ẏ = −2y, y = (y1, y2)T (ii) ż =

(
−2 1
1 −2

)
z, z = (z1, z2).

Exercise 15 a) Given is the ODE (
ẋ
ẏ

)
=

(
y − x
x(y − 2)

)
.

Indicate the equilibria and their type (saddle, sink, source, center). Hence show that there is
exactly one invariant horizontal line {y = L}. Compute the solutions on this line.
b) Consider the ODE

ẋ = 3x+ xy

ẏ = y + x(y − x)

and find a near identity transformation u = x + axy v = y + bx2 + cxy, that removes the
quadratic terms.
c) Consider the ODE

ẋ = 4x+ y2 − 3xy

ẏ = −y + y(x− y2)

and find a near identity transformation u = x + ay2 + bxy, v = y + cxy that removes the
quadratic terms. Is the equilibrium at zero structurally stable? (Justify your answer!)
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Exercise 16 Consider the circle map fc : S1 → S1, x 7→ 2x+ c (mod 1).
a) Show that this map is chaotic in the sense of Devaney.
b) A pair of points (x, y) is called Li-Yorke if

lim sup
n→∞

d(fn(x), fn(y)) > 0 and lim inf
n→∞

d(fn(x), fn(y)) = 0.

Show that fc : S1 → S1 has a Li-Yorke pair. Find a set {x, y, z} such that every two of them
form a Li-Yorke pair. (Such set is called a scrambeled set. A map if Li-Yorke chaotic if
there exists an uncountable scrambeled set.)

Exercise 17 Which of the following dynamical systems has (i) a dense set of periodic orbits,
(ii) a dense orbit, (iii) sensitive dependence on initial conditions?

1. a circle rotation;

2. the tent-map T (x) = min{2x, 2(1− x)} on [0, 1];

3. the twist map on the torus T2 defined by T (x, y) = (x, x+ y mod 1);

4. the pendulum ẍ+ sinx = 0;

5. The cat-map on the torus T2 defined as T (x, y) = (2x + y mod 1, x + y mod 1). Hint:
locally the cat-map is linear, so it helps to consider the stable and unstable directions at
each point.

Exercise 18 Suppose T is a continuous map on an X is an infinite space. If T has a dense set
of periodic orbits as well as a dense orbit, then T has sensitive dependence on initial conditions.

Exercise 19 Consider the map f : R → R, x 7→ x/2. Show that this map is C1 structurally
stable, but not C0 structurally stable.

Exercise 20 Show that the map f : R → R, x 7→ x3 + x/2 is C1 structurally stable, i.e., all
maps that are C1 close to f are conjugate to f .
Steps in the proof: 1) find a conjugacy h between the fixed points. 2) Check that this preserves
α(x) and ω(x) for non-fixed points. 3) Identify “fundamental domains” between the fixed points.
These are intervals such that every non-fixed point has a unique forward or backward iterate
inside one of these iterates. 4) Let h map fundamental domains to fundamental domains. 5)
Extend h to the rest of R.

Exercise 21 Let Ts(x) = min{sx, s(1− x)} be the tent map with s = 3. Describe the set C of
points x ∈ R such that T ns (x) ∈ [0, 1] for all n. How is the set C called? What happens with
points x ∈ R \ C?

Exercise 22 Let T : [0, 1]→ [0, 1], T (x) = min{2x, 2(1− x)} be the tent-map.
a) Argue that q is n-periodic if and only if the graph of T n intersects the diagonal {y = x} at
x = q.
b) How many n-periodic points does T have? How many where n is the smallest period?
c) Prove Fermat’s little theorem: If p is prime, then p|2p − 2 and more generally, if 2 ≤ a ∈ N
and p is prime, then p|ap − a
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Exercise 23 The quadratic map Q(x) = 4x(1 − x) is also called the Chebyshev polynomial,
and T : [0, 1] → [0, 1], T (x) min{2x, 2(1 − x)} is called the tent map. Let ψ : [0, 1] → [0, 1] be
defined by ψ(x) = 1

2
(1− cosπx).

a) Show that Q ◦ ψ = ψ ◦ T .
b) Show that if p is an n-periodic point of T , then ψ(p) is an n-periodic point of Q.
c) Conclude that every n-periodic point p 6= 0 of Q has multiplier |(Qn)′(p)| = 2n. Why doesn’t
this argument apply also to p = 0?

Exercise 24 Which of the following maps f : R→ R are conjugate? If so, can the conjugacy
be chosen to be differentiable?

(a) f(x) = x/2;

(b) f(x) = 2x;

(c) f(x) = −2x;

(d) f(x) = 3x;

(e) f(x) = x3.

Exercise 25 Suppose f, g : [0, 1] → [0, 1] are two C1 maps that are conjugate via h : [0, 1] →
[0, 1], i.e., h ◦ f = g ◦ h.
a) Show that f is chaotic in the sense of Devaney if and only if g is chaotic in the sense of
Devaney.
b) Assume in addition that h is a C1 diffeomorphism. Show that if p is periodic for f , then
q := h(p) is periodic for g, with the same period and multiplier.
c) For general (i.e., not necessarily periodic) points, do x and y = h(x) have the same Lyapunov
exponent?

Exercise 26 Consider the map

f : [0, 1]→ [0, 1], x 7→


x

1−x if x ∈ [0, 1
2
];

2x−1
x

if x ∈ (1
2
, 1].

a) Show that every x ∈ Q ∩ (0, 1] is eventually mapped to 1.
b) Show that x and f(x) have the same Lyapunov exponent. Find the Lyapunov exponent λ(x)
of the fixed points and the period 2 points of f .
c) For which Λ ∈ R do you think there are points x ∈ [0, 1] such that its Lyapunov exponent
λ(x) = Λ? Does every point x have a well-defined Lyapunov exponent?

Exercise 27 Consider the “normal form” of the cusp bifurcation ẋ = r + kx+ x3.
(a) Find the bifurcation curve(s) in the parameter plane.
(b) Fix k = −3. Describe the nature of the equilibria and the bifurcations that take place when
r increases (say from −3 to 3).
(c) Replace +x3 by −x3 in the normal form, so ẋ = r + kx− x3. Repeat part (b) for k = +3.
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Exercise 28 Consider the logistic family Qa(x) = ax(1 − x), where a ∈ [0, 4] is such that the
critical point c = 1

2
is periodic of period 3. We abbreviate ck = Qk

a(c); the core [c2, c1] is an
invariant set for Qa. A partition {Ii}Ni=1 of [c2, c1] is a Markov partition if Qa maps each
interval Ii homeomorphically onto a union of interval Ij. (We allow ourselves some sloppiness,
and don’t care about overlap at the boundary points of the Iis.)

(a) Show that the intervals [c2, c] and [c,c1] form a Markov partition of [c2, c1].

(b) Define a transition matrix A = (ai,j)
2
i,j=1 where ai,j = 1 if Qa(Ii) ⊃ Ij and ai,j = 0

otherwise. Write down the transition matrix for item (a).

(c) Argue that the number of n-periodic points (not necessarily prime period) of Qa|[c2,c1]

equals the trace tr(An). How many periodic points of prime period 11 does Qa have?

(d) Repeat the construction for the case that parameter a is such that c2 < c3 < c4 < · · · <
cn = c < c1. What is the exponential growth rate of the number of n-periodic points?

Exercise 29 Give a C3-function f : R→ R, define the Schwarzian derivative of f as

Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

if f ′ 6= 0.

a) Show that Möbius transformations g(x) = ax+b
cx+d

(with ad − bc = ±1) have Sg = 0, but
SQa < 0 for Qa(x) = ax(1− x).
b) Show that S(f ◦ g) = (Sf) ◦ g · (g′)2 + Sg. Conclude that S(Qn

a) < 0 for all n ≥ 1.
c) Suppose that C3-function f : R → R has Sf < 0. Then f ′ cannot have a positive local
minimum or a negative local maximum. (Draw the possible shapes of the graph of f between
critical points.) Conclude that f cannot undergo a pitchfork bifurcation making the middle fixed
point stable.
d) Suppose Sf < 0 and p is an attracting fixed point. Show that there must be a critical point
c (i.e., a point c where f ′(c) = 0) such that [p, c] contains no other fixed point of f . Therefore
fn(c)→ p.
e) Conclude that Qa can have at most one attracting periodic orbit.

Exercise 30 Let f : R → R be a continuous map with periodic orbit x0 < x1 < · · · < xn−1

with f(xi) = xi+1 mod n and n ≥ 3. Use (the method of) Sharkovskiy’s Theorem to show that f
has periodic points of all period.

Exercise 31 Recall the Sharkovskiy order

3 � 5 � 7 � 9 � 11 � . . .

2 · 3 � 2 · 5 � 2 · 7 � 2 · 9 � 2 · 11 � . . .

4 · 3 � 4 · 5 � 4 · 7 � 4 · 9 � 4 · 11 � . . .
...

...

� . . . . . . � 8 � 4 � 2 � 1.

A tail S is any set of integers such that if s ∈ S, then also t ∈ S for all s � t. Therefore
the tail of 3 is N \ {0}, the tail of 6 are all even positive integers, and there is a single tail
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{1, 2, 4, 8, 16, . . . } having no Sharkovskiy maximum. Show that for every S there is a parameter
a ∈ [0, 4] such that {p ∈ N : Qa has a p-periodic point} = S.
Hint: The off-shot of Exercise 29 is that at every parameter value a ∈ [0, 4] only one bifurcation
can take place, since the orbit of c = 1

2
converges to the stable periodic orbit emerging in the

bifurcation.

Exercise 32 a) Let T : M →M be a continuous map on a compact manifold. Show that every
omega-limit set is closed and T -invariant (T (ω(x)) = ω(x)).
b) If ϕt is a flow on a compact manifold, show that ω(x) is connected.

Exercise 33 Let a one-parameter family of interval maps be given by

fµ(x) = µ− x2.

a) Find the smallest µ0 ∈ R such that fµ has a fixed point. Describe the bifurcation that takes
place at µ0.
b) There is a smallest µ1 > µ0 such that fµ undergoes a period doubling bifurcation. Let p be
the rightmost fixed point of fµ1. What is f ′µ1(p)? Compute µ1.
c) Let

µ2 = inf{µ ∈ R : fµ has a periodic point of period 6}.
Argue which bifurcation takes place at µ2.

Exercise 34 Let F : R2 → R2 be a C1 vector field, and assume that the ODE ẋ = F (x) has a
limit cycle Γ. Show that the bounded component U of R2 \ Γ contains an equilibrium point.

Exercise 35 Given is the differential equation(
ẋ
ẏ

)
=

(
β −α
α β

)(
x
y

)
−
√
x2 + y2

(
x
y

)
, (1)

for parameters α, β ∈ R, α 6= 0.
a) Rewrite (1) in polar coordinates.
b) Describe the bifurcation that takes place if β goes through zero.
c) Give the definition of ω-limit and α-limit set. Hence describe the ω-limit and α-limit sets of
the system (1) for parameters β = 1 and α = 0.3.

Exercise 36 a) Consider the ODE

d2x

dt2
+ µ

dx

dt
= f(x)

with parameter µ ∈ R and x ∈ R. Write this as a system of two first order equations. Show
that if f(x∗) = 0, µ > 0 and f ′(x∗) < −µ2/4 then there is an equilibrium that is a stable spiral.
b) Sketch a bifurcation diagram showing the location of all equilibria of the ODE

ẋ = x4 − µx

with x ∈ R, on varying the parameter µ ∈ R. Indicate the stability of equilibria and the location
and type of all bifurcation points. Which type of bifurcation takes place?
c) Consider the ODE

ẋ = (x2 − 2)2 + µx,

with parameter µ ∈ R. Name a describe in detail the bifurcations that take place when µ
increases from −1 to 1.
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Exercise 37 Consider the following ODE on the first (on-negative) quadrant of R2:{
ẋ = a1x− a2xy

ẏ = a2xy − a3y
a1, a2, a3 > 0. (2)

a) Find the equilibrium points and their types (sink, saddle, source, center) of (2).
b) Show that

L(x, y) = a2(x+ y)− a1 − a3 − a3 log
a2x

a3

− a1 log
a2y

a1

is a Lyapunov function (but never strict). Hence sketch the phase portrait of (2).
c) Using the change of coordinates u = log a2y

a1
, v = log a2x

a3
, show that (2) is in fact a Hamilto-

nian system.

Exercise 38 a) Given is a general Lotka-Voterra equation:{
ẋ = (A−By)x,

ẏ = (Cx−D)y,
A,B,C,D > 0.

Find changes of coordinates that bring this equation into the form{
ẋ = (1− y)x,

ẏ = α(x− 1)y,
α > 0.

b) Consider the following variation of the Lotka Volterra equations:{
ẋ = (1− y − λ(x− 1))x,

ẏ = α(x− 1 + λ(1− y))y,
1 ≥ α > λ > 0.

Find the stationary points and their type. Use a Lyapunov function if linearization at the
stationary point is not sufficient to draw a conclusion.

Exercise 39 Consider the standard Van der Pol equation:

ẍ+ x = ε(1− x2)ẋ, ε > 0. (3)

a) Write this system as a first order ODE in R2, and then write the first order ODE in polar
coordinates.

b) Assume that there is a periodic solution R(φ). Argue that by “averaging over φ”, this solution
should satisfy

Ṙ =
−εR

8
(R2 − 4),with some initial condition R(0) = R0.

and show that its solution is R(t) = 2√
1+(4/R2

0−1)e−εt
.

c) Analyse what happens in (3) if ε < 0: compare this case with the case ε > 0.
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Exercise 40 Let A be a finite alphabet and Σ = AN, equipped with product topology.
a) Show that Σ is a Cantor set, i.e., it is compact, totally disconnected (∀x, y ∈ Σ ∃U, V ⊂
Σ open, x ∈ U, y ∈ V, U ∩ V = ∅, U ∪ V = Σ) and without isolated points.
b) Show that the metric

dΣ(x, y) =

{
2−max{k : xi=yi ∀ |i|<k} if x 6= y,

0 if x = y.

induces the product topology.
c) Another metric is

d′Σ(x, y) =

{
1

1+max{k : xi=yi ∀ |i|<k} if x 6= y,

0 if x = y.

Two metrics d and d′ are equivalent if

∃C > 0 ∀x, y 1

C
d(x, y) ≤ d′(x, y) ≤ Cd(x, y). (4)

Show that dΣ and d′Σ are not equivalent in the sense of (4), but that the identity map x ∈
(Σ, dΣ) 7→ x ∈ (Σ, d′Σ) is a homeomorphism. Conclude that dΣ and d′Σ induce the same topology.

Exercise 41 Let T : S1 → S1, x 7→ 2x mod 1 be the doubling map. Take a ∈ [0, 1
4
] and let

J0 = (a, a+ 1
2
) and J1 = S1 \ J0 represent a partition of the circle S1. Let us call this partition

generating if every two points x, y ∈ S1 whose orbits do not contain a or a+ 1
2
, have distinct

symbolic itineraries: i(x) 6= i(y).
a) Show that for a = 0, the partition {J0, J1} is generating.
b) Let S(x) = 1− x. Show that T ◦ S = S ◦ T . Use this to show that for a = 1

4
, the partition

is {J0, J1} not generating. In fact, i : S1 → {0, 1}N is two-to-one.
c) For which a ∈ [0, 1

4
] is the partition {J0, J1} generating?

Exercise 42 Let A be an N × N transition matrix, and (ΣA, σ) is the corresponding subshift
of finite type.
a) Prove that trace(An) gives the number of periodic sequences s ∈ ΣA of period n (although
this need not be the minimal period).
b) Assume that there is m ≥ 1 such that Am has only positive entries. Show that (ΣA, σ) is
chaotic in the sense of Devaney.
c) Show that (ΣA, σ) is chaotic in the sense of Li-Yorke.

Exercise 43 Define the annulus A = S1 × [0, 1] (where S1 = [0, 1]/0 ∼ 1 is the interval with
endpoints identified. Define the map T on A as

f(x, y) = (3x mod 1, (2x+ y)/3).

a) Show that f has a horseshoe, and that its invariant set Λ is a Cantor set. Hence show that
is Devaney chaotic on Λ.
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b) The map f has a lift F : R× [0, 1]→ R× [0, 1] satisfying F (x+ 1, y) = F (x, y) + 1, and you
can define rotation numbers just as in the case of circle homeomorphisms:

ρf (p) = lim
n→∞

‖F n(p)− p‖
n

.

Show that the limit does depend on p: for each c ∈ [0, 2] there are points p with ρf (p) = c, and
there are also points where the limit does not exist.

Exercise 44 The Hénon map Ha,b : R2 → R2 is given by

Ha,b(x, y) = (1 + y − ax2, bx).

a) Show that the Hénon map has a horseshoe for a = 3 and b = 1
5
. Hint: draw and investigate

what happens to (the boundary of the) rectangle R = [−5
6
, 5

6
]× [−1

6
, 1

6
] if H is applied.

b) Suppose a > 2. Show that the Hénon map has a horseshoe provided |b| is sufficiently small.

Exercise 45 Let f : S1 → S1 be an orientation preserving homeomorphism. Show that the
rotation number ρ(f) ∈ Q if and only if f has a periodic orbit.

Exercise 46 Let Rα : S1 → S1, x 7→ x+ α mod 1 be a circle rotation.
a) Show that (i) α ∈ Q if and only if every point is periodic, and α /∈ Q if and only if every
point has a dense orbit.
b) Compute the Lyapunov exponent of every point.
c) If α 6= ±β mod 1, show that Rα and Rβ are not conjugate.

Exercise 47 Let F : R → R be a lift of an orientation preserving circle homeomorphism
f : S1 → S1, i.e., F is continuous and F (x+ 1) = F (x) + 1 and F (x) mod 1 = f(x mod 1) for
all x ∈ R. Recall that the rotation number of f is defined as

ρ(f) = lim
n→∞

F n(x)− x
n

mod 1.

a) Verify that ρ(f) doesn’t depend on the choice of the point x.
b) Verify that ρ(f) doesn’t depend on the choice of the lift F .
c) Let fε(x) = f(x) + ε and Fε(x) = F (x) + ε. Show that ε 7→ ρ(fε) is non-decreasing.
d) Show that ρ(f) = p

q
∈ Q (in lowest terms) if and only if f has a q-periodic point.

Exercise 48 Consider the Arnol’d family fε : S1 → S1, x 7→ x+ α + ε sin(2πx).
a) For which ε ≥ 0 is fε a homeomorphism (diffeomorphism)?
b) Compute the region of (α, ε) where fε has resonance of period 1 (i.e., fε has a fixed point).
c) Fix ε > 0 small and let Iε be the set of α ∈ S1 where the rotation number ρ(fε) /∈ Q. Given
is that there is C > 0 such that the width of any resonance tongue of period q is ≤ Cεq. Show
that Iε is a Cantor set of positive Lebesgue measure.

Exercise 49 In this example, we make the Denjoy example of a circle homeomorphism without
dense orbits more concrete. Let Rα : S1 → S1 be a circle rotation with irrational α. Let Rn

α(0)
for n ∈ Z. Let In = [an, bn] be intervals of length |In| = 1

1+n2 .
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a) Define

ψn : [an, bn]→ [an+1, bn+1, x 7→ an+1 +

∫ x

an

1 + 6
|In+1| − |In|
|In|3

(bn − t)(t− an) dt.

Show that ψn : In → In+1 is a C2 diffeomorphism. In particular, show that ψ′ is bounded with
ψ′n(an) = ψ′n(bn) = 1. Also compute that ψ′′(an+bn

2
) = 0.

b) We construct a sequence of maps (fN)N≥0 as follows. To create f0, replace 0 with an interval
I0 and map f0(x) = Rα(0) for every x ∈ In, and f0(x) = Rα(x) for every x /∈ I0.

Once fN−1 is constructed, construct fN by replacing RN
α (0) by an interval IN and replacing

R−Nα (0) interval I−N . Also define fN on IN−1 as ψN−1 and on I−N as ψ−N and on IN as
constant RN+1

α (0). Show that fN is a C1 map, except at ∂IN .

c) Let f = limN fN . Show that it is a C1 diffeomorphism. Is it C2?

Exercise 50 An approximation of the Poincaré map on the section {z = 0} is given by the
map P : Σ→ Σ for Σ = [−1, 1]× [0, 1]:

P (x, y) =

{
(2x+ 1, 2−xy

3
) x < 0

(2x− 1, xy
3

) x < 0
.

a) Describe the set Λ =
⋃
n≥0 P

n(Σ) topologically. Is it a Cantor set of arcs?
b) Show that P is chaotic in the sense of Devaney on the attracting set

Exercise 51 Solve the Lorenz equations

ẋ = −σ(x− y)

ẏ = rx− y − xz
ż = xy − bz

for parameters σ = 0, b = 1 and r > 0.

Exercise 52 a) Consider the 3 : 1 subharmonically forced Duffing equation

ẍ+ x+ εx3 = cos Ωt,

where 0 < ε� 1 and Ω ≈ 3. By setting Ω2 = 9(1 + εδ), choosing a slow time T = εt,

x(t, T ) = x0(t, T ) + εx1(t, T ) + ε2x2(t, T ) + · · ·

and writing ẍ+ x = ẍ+ (Ω2/9− εδ)x, show that the 0-th order equation can be written

∂2
t x0 +

Ω2

9
x0 = cos Ωt

while the first order equation can be written

∂2
t x1 +

Ω2

9
x1 = −2∂t∂Tx0 + δx0 − x3

0,
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where ∂t and ∂T represent the derivatives with respect to the fast and slow times.
b) Show that the zeroth order equation has solution

x0(t, T ) = C(T )ei(Ωt/3) + γeiΩt + c.c.

where c.c. denotes the complex conjugate, γ is a constant that depends on Ω and that you should
find and C(T ) is a function of slow time that is discussed in part c).
c) It is possible to show [NB You are not asked to do this!] that the first order equation
has a solution if

2iΩ

3
∂TC = C(δ − 6γ2 − 3|C|2) + 3γC∗2.

where γ is as in b) and C∗ is the complex conjugate of C. Use this, and write C = reiθ, to show
that for small ε and some values of δ there is more that one periodic response to the forcing.

Exercise 53 Consider the second order ODE

ẍ+ 2εẍx+ x = 0.

for ε ≥ 0 with initial conditions x(0) = A, ẋ(0) = 0.
a) Write the differential equation as a system of equations and find all equilibria. Calculate the
linearization at the equilibria. How do the eigenvalues depend on the parameter ε. For ε = 0
solve the differential equation explicitly.
b) Expand the solution of the ODE in terms of the parameter ε, i.e., write

x = x0 + εx1 + ε2x2 +O(ε3).

Write down the zeroth and first order equation and show that the solution is given by

x(t) = εA2 +

(
A− 2A2

3
ε

)
cos(t)− A2

3
ε cos(2t) +O(ε2).

Hint: cos(2φ) = 2 cos2(φ)− 1.
c) Show that for 0 < ε � 1 the approximation does not approximate the true solutions well
A < 0 and |A| � 0. Hint: Look for discontinuities of the vector field.

Exercise 54 Given is the differential equation

ẋ = C, x ∈ T2 = R2/Z2, C =

(
c1

c2

)
∈ R2.

Show that:

• the return map F : S1 → S1 of the flow ϕt to the circle S1 = {x ∈ T2 : x1 = 0} is a
rotation over c1/c2.

• hence all orbits of F are dense if and only if c1/c2 /∈ Q.

• hence all orbit of ϕt are dense if and only if c1/c2 /∈ Q.

What does this say about the Poincaré-Bendixson theorem on the torus T2?
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Exercise 55 The harmonic oscillator with damping is given by the ODEs

ẍ+ rẋ+ ω2x = 0. r > 0

Depending on the size of the damping parameter r, there is moderate damping, overdamping
(when the solution is no longer oscillatory) and critical damping in between. Find the critical
damping parameter r = rc, and find the solution of ODE at critical damping.

Exercise 56 The harmonic oscillator with parametric driving is given by the non-autonomous
ODEs

ẍ+ r(t)ẋ+ ω2(t)x = 0.

a) Show that you can eliminate the linear term using the change of coordinates q(t) = e
1
2

∫ t r(s) dsx(t).
The result should be

q̈ + Ω2(t)q = 0,

for Ω2(t) = ω2(t)− 1
2
ṙ(t)− 1

4
r2(t).

b) Assume now that r(t) and ω2(t) are functions that oscillate mildly with the same frequency
around some fixed value. That is

r(t) = ω0(b+O(ε)) ω2(t) = ω2
0(1 +O(ε))

where the O(ε) stand for oscillating functions of fixed frequency ω1 and small amplitude ≈ ε.
Show that this reduces the ODE to

q̈ + ω2
0(1− b2

4
)(1 + εf(t))q = 0,

where f is periodic with frequency 2ω2 for some ω2.
c) Assume f(t) = f0 sin 2ω2t. Use the change of coordinates q(t) = A(t) cos(ω2t)+B(t) sin(ω2t)

to come to an ODEs {
2ω2Ȧ = f0

2
ω2

0A− (ω2
2 − ω2

0)B,

2ω2Ḃ = −f0
2
ω2

0B + (ω2
2 − ω2

0)A.

d) Approximate the solutions of this latter ODE using the Ansatz A(t) = p(t) cos θ(t) and
B(t) = p(t) sin θ(t). This should lead to{

ṗ = pmax cos(2θ(t)) p(t) pmax =
f0ω2

0

4ω2

θ̇ = −pmax (sin 2θ − sin 2θeq) sin 2θeq =
2(ω2

2−ω2
0)

f0ω2
0

e) The equation for θ(t) is independent of p(t), and is close to a linear equation. Its solution
decays exponentially fast to the constant solution θ(t) ≡ θeq. Use this solution to solve the
equation for p(t).

f) What conclusion can you draw for the original variable x(t) = q(t)e−
1
2

∫ t r(s) ds? Specifi-
cally, is the equilibrium solution x(t) ≡ 0 stable?

Exercise 57 Show that if the Hamiltonian H = Ekin(p) + Epot(q) and Ekin = p2

2m
, then the

Lagrangian is L = Ekin(p)− Epot(q).

Exercise 58 Assume that XH is a Hamiltonian vector field in R2:
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• Show that equilibria of XH can only be centers or saddles.

• Which bifurcations (of the ones we treated in class) can occur in a family of Hamiltonian
vector fields?

• Find a family of Hamiltonians Hε : R2 → R such that at ε = 0, a saddle becomes a center.

Exercise 59 A Lagrangian system in R3 has the Lagrangian

L(v, q) =
v2

1 + v2
2 + v2

3

2
− q2

1 + q2
2 + q3

3

2
.

Use Noether’s Theorem to find first integrals. Is the system integrable?

Exercise 60 We have a Hamiltonian system in coordinates (x, y) ∈ R2 where the Hamiltonian
has the form

H(x, y) =
y2

2
+ V (x), V is C2-smooth,

and assume that V (x) = V (−x) has V ′′(0) > 0. This means that (0, 0) is

(a) Show that (0, 0) is a center, with periodic motion around it.

(b) Let T (a) be the period of the orbit starting at (a, 0). Show that

T (a) =

∫ a

0

4√
2(V (a)− V (x))

dx.

Hint: Integrate T (a) =
∫ t2
t1

a quarter of the periodic orbit and invert t = t(x) (instead of
x = x(t)) to rewrite the integral.

• Show that T (a) = 2π is constant for V (x) = x2

2
(harmonic oscillator).

• Show that T (a) is increasing if V (x) = − cosx (pendulum), and find lima↘0 T (a) and
lima↗0 T (a).

Exercise 61 Consider the following sets in R2.

(i) x(y − 2) = 0 (ii) x2 + y2 = 1 (iii) (x− 1)2 + (y − 1)2 = 1.

a) Which of these is a manifolds and which one has co-dimension 1?
b) Which of the sets is transversely to the vector field f(x, y) = (1, 0) at the points (1, 0) and
(0, 1)?
c) Compute the Poincaré map of the flow generated by the vector field g(x, y) = (y,−x) for the
set (iii) above as Poincaré section.
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