Symbolic dynamics emerges from a dynamical system ((X, T) if we code the *T*-orbits of the points $x \in X$. To this end, we let $\mathcal{J} = \{J_a\}_{a \in \mathcal{A}}$ (for a finite or countable alphabet \mathcal{A}) be a partition of X, and to each $x \in X$ we assign an **itinerary** $i(x) \in \mathcal{A}^{\mathbb{N}_0}$:

$$i_n(x) = a$$
 if $T^n(x) \in J_a$.

If T is invertible, then we can extend sequences to $\mathcal{A}^{\mathbb{Z}}$. It is clear that $i \circ T(x) = \sigma \circ i(x)$. Therefore, if we set $\Sigma = i(X)$, then $\sigma(\Sigma) \subset \Sigma$ and if $T: X \to X$ is surjective, then $\sigma(\Sigma) = \Sigma$. But (Σ, σ) is in general not a subshift, because Σ is not closed.

Example 0.1. Let X = [0, 1] and $T(x) = Q_4(x) = 4x(1 - x)$. Let $J_0 = [0, \frac{1}{2}]$ and $J_1 = (\frac{1}{2}, 1]$. Then i(X) is not closed, because there is no $x \in [0, 1]$ such that $i(x) = 1100000 \dots$, while $1100000 \dots = \lim_{x \searrow \frac{1}{2}} i(x)$. Naturally, redefining the partition to $J_0 = [0, \frac{1}{2})$ and $J_1 = [\frac{1}{2}, 1]$ doesn't help, because then there is no $x \in [0, 1]$ such that $i(x) = 0100000 \dots$, while $0100000 \dots = \lim_{x \nearrow \frac{1}{2}} i(x)$.

Other "solutions" that one sees in the literature are:

- Assigning a different symbol (often * or C) to ¹/₂. That is, using the partition J₀ = [0, ¹/₂), J_{*} = {¹/₂} and J₁ = (¹/₂, 1]. This resolves the "ambiguity" about which symbol to give to ¹/₂, but it doesn't make the shift space closed.
- Assigning the two symbols to $\frac{1}{2}$, so $J_0 = [0, \frac{1}{2}]$ and $J_1 = [\frac{1}{2}, 1]$ are noo longer a partition, but have $\frac{1}{2}$ in common. Therefore $\frac{1}{2}$ will have two itineraries, and so will every point in the backward orbit of $\frac{1}{2}$. With all these extra itineraries, i(X) becomes closed. But this doesn't work in all cases, see Exercise 0.2.
- Taking a quotient space $i(X)/\sim$ where in this case $x \sim y$ if there is $n \in \mathbb{N}_0$ such that

$$x_0 \dots x_{n-1} = y_0 \dots y_{n-1} \text{ and } \begin{cases} x_n x_{n+1} x_{n+2} x_{n+3} x_{n+4} \dots = 11000 \dots, \\ y_n y_{n+1} y_{n+2} y_{n+3} y_{n+4} \dots = 01000 \dots \end{cases}$$

or vice versa. This quotient space adapts the quotient topology (so $/ \sim$ is not a Cantor set anymore), and it turns the coding map into a genuine homeomorphism.

Exercise 0.2. Let a = 3.83187405528332... and $T(x) = Q_a(x) = ax(1-x)$. For this parameter, $T^3(\frac{1}{2}) = \frac{1}{2}$. Let $\mathcal{J}' = \{[0, \frac{1}{2}], (\frac{1}{2}, 1]\}$ and $\mathcal{J} = \{[0, \frac{1}{2}], [\frac{1}{2}, 1]\}$, so $\frac{1}{2}$ get two symbols. Let $\Sigma' = i(X)$ w.r.t. \mathcal{J}' and $\Sigma = i(X)$ w.r.t. \mathcal{J} . Show that $\overline{\Sigma'} \neq \Sigma$.

From now on, assume that X is compact metric space without isolated points. We will now discuss the properties of the coding map i itself. First of all, for i to be continuous it is crucial that $T|_{J_a}$ is continuous on each element $J_a \in \mathcal{J}$. But this is not enough: if x is a common boundary of two element of \mathcal{J} then (no matter how you assign the symbol to x in Example 0.1), for each neighborhood $U \ni x$, diam(i(U)) = 1, so continuity fails at x. It is only by using quotient spaces of i(X) (so changing the topology of i(X)) that can make i continuous. Normally, we choose to live with the discontinuity, because it affects only few points:

Lemma 0.3. Let $\partial \mathcal{J}$ denote the collection of common boundary points of different elements in \mathcal{J} . If $orb(x) \cap \partial J = \emptyset$, then the coding map $i : X \to \mathcal{A}^{\mathbb{N}_0}$ or $\mathcal{A}^{\mathbb{Z}}$ is continuous at x.

Proof. We carry out the proof for invertible maps. Let $\varepsilon > 0$ be arbitrary and fix $N \in \mathbb{N}$ such that $2^{-N} < \varepsilon$. For each $n \in \mathbb{Z}$ with $|n| \leq N$, let $U_n \ni T^n(x)$ be such a small neighborhood that it is contained in a single partition element $J_{i_n(x)}$. Since $\operatorname{orb}(x) \cap \partial J = \emptyset$, this is possible. Then $U := \bigcap_{|n| \leq N} T^n(U_n)$ is an open neighborhood of x and $i_n(y) = i_n(x)$ for all $|n| \leq N$ and $y \in U$. Therefore diam $(i(U)) \leq 2^{-N} < \varepsilon$, and continuity at x follows.

Definition 0.4. A system (X,T) is called **expansive** if there exists $\delta > 0$ such that for all distinct $x, y \in X$, there is $n \ge 0$ (or $n \in \mathbb{Z}$ if *T* is invertible) such that $d(T^n x, T^n y) > \delta$. We call δ the **expansivity constant**.

Lemma 0.5. Suppose that T is a continuous expansive dynamical system and injective on each $J_a \in \mathcal{J}$. If the expansivity constant is larger than $\sup_{a \in \mathcal{A}} \operatorname{diam}(J_a)$, then the coding map $i: X \to \mathcal{A}^{\mathbb{N}_0}$ or $\mathcal{A}^{\mathbb{Z}}$ is injective.

Proof. Suppose that there are $x \neq y \in X$ such that i(x) = i(y). Since $T|_{J_a}$ is injective for each $a \in \mathcal{A}, T^n(x) \geq T^n(y)$ for all $n \geq 0$. Let $\delta > 0$ be an expansitivity constant of T. Thus, there is $n \in \mathbb{Z}$ such that $d(T^n(x), T^n(y)) > \delta$, so, by assumption, they cannot lie in the same element of \mathcal{J} . Hence x and y cannot have the same itinerary after all. \Box

To obtain injectivity of the coding map, it often suffices that T is expanding on each partition element J_a . Expanding should not be confused with expansive.

Definition 0.6. Given a metric space X and $Y \subset X$, a map $T : Y \to T(Y)$ is expanding if $d(T(x), T(y)) \ge \rho d(x, y)$ for all $x, y \in Y$, and uniformly expanding there is $\rho > 1$ such that $d(T(x), T(y)) \ge \rho d(x, y)$ for all $x, y \in Y$.

Example 0.7. Let $T : \mathbb{S}^1 \to \mathbb{S}^1$, $x \mapsto 2x \mod 1$, be the doubling map, and $J_0 = (\frac{1}{4}, \frac{3}{4})$ and $J_1 = \mathbb{S}^1 \setminus J_0$. Clearly T'(x) = 2 for all $x \in \mathbb{S}^1$, but T is not expanding on the whole of \mathbb{S}^1 , because for instance $d(T(\frac{1}{4}), T(\frac{3}{4})) = 0 < \frac{1}{2} = d(\frac{1}{4}, \frac{3}{4})$. More importantly, T is not expanding on the either J_a ; for example $d(T(\frac{1}{4} + \varepsilon), T(\frac{3}{4} - \varepsilon)) = 4\varepsilon < \frac{1}{2} - 2\varepsilon = d(\frac{1}{4} + \varepsilon, \frac{3}{4} - \varepsilon)$ for each $\varepsilon \in (0, \frac{1}{12})$. The corresponding coding map is **not** injective. The way to see this by noting that the involution S(x) = 1 - x commutes with T and also preserves each J_a . It follows that i(x) = i(S(x)) for all $x \in \mathbb{S}^1$, and only x = 0 and $x = \frac{1}{2}$ have unique itineraries.