Symbolic dynamics emerges from a dynamical system $((X, T)$ if we code the T-orbits of the points $x \in X$. To this end, we let $\mathcal{J}=\left\{J_{a}\right\}_{a \in \mathcal{A}}$ (for a finite or countable alphabet \mathcal{A}) be a partition of X, and to each $x \in X$ we assign an itinerary $i(x) \in \mathcal{A}^{\mathbb{N}_{0}}$:

$$
i_{n}(x)=a \quad \text { if } T^{n}(x) \in J_{a}
$$

If T is invertible, then we can extend sequences to $\mathcal{A}^{\mathbb{Z}}$. It is clear that $i \circ T(x)=\sigma \circ i(x)$. Therefore, if we set $\Sigma=i(X)$, then $\sigma(\Sigma) \subset \Sigma$ and if $T: X \rightarrow X$ is surjective, then $\sigma(\Sigma)=\Sigma$. But (Σ, σ) is in general not a subshift, because Σ is not closed.

Example 0.1. Let $X=[0,1]$ and $T(x)=Q_{4}(x)=4 x(1-x)$. Let $J_{0}=\left[0, \frac{1}{2}\right]$ and $J_{1}=\left(\frac{1}{2}, 1\right]$. Then $i(X)$ is not closed, because there is no $x \in[0,1]$ such that $i(x)=1100000 \ldots$, while $1100000 \cdots=\lim _{x \searrow \frac{1}{2}} i(x)$. Naturally, redefining the partition to $J_{0}=\left[0, \frac{1}{2}\right)$ and $J_{1}=\left[\frac{1}{2}, 1\right]$ doesn't help, because then there is no $x \in[0,1]$ such that $i(x)=0100000 \ldots$, while $0100000 \cdots=$ $\lim _{x \nmid \frac{1}{2}} i(x)$.

Other "solutions" that one sees in the literature are:

- Assigning a different symbol (often $*$ or C) to $\frac{1}{2}$. That is, using the partition $J_{0}=\left[0, \frac{1}{2}\right.$), $J_{*}=\left\{\frac{1}{2}\right\}$ and $J_{1}=\left(\frac{1}{2}, 1\right]$. This resolves the "ambiguity" about which symbol to give to $\frac{1}{2}$, but it doesn't make the shift space closed.
- Assigning the two symbols to $\frac{1}{2}$, so $J_{0}=\left[0, \frac{1}{2}\right]$ and $J_{1}=\left[\frac{1}{2}, 1\right]$ are noo longer a partition, but have $\frac{1}{2}$ in common. Therefore $\frac{1}{2}$ will have two itineraries, and so will every point in the backward orbit of $\frac{1}{2}$. With all these extra itineraries, $i(X)$ becomes closed. But this doesn't work in all cases, see Exercise 0.2.
- Taking a quotient space $i(X) / \sim$ where in this case $x \sim y$ if there is $n \in \mathbb{N}_{0}$ such that

$$
x_{0} \ldots x_{n-1}=y_{0} \ldots y_{n-1} \text { and }\left\{\begin{array}{c}
x_{n} x_{n+1} x_{n+2} x_{n+3} x_{n+4} \cdots=11000 \ldots \\
y_{n} y_{n+1} y_{n+2} y_{n+3} y_{n+4} \cdots=01000 \ldots
\end{array}\right.
$$

or vice versa. This quotient space adapts the quotient topology (so / ~is not a Cantor set anymore), and it turns the coding map into a genuine homeomorphism.

Exercise 0.2. Let $a=3.83187405528332 \ldots$ and $T(x)=Q_{a}(x)=a x(1-x)$. For this parameter, $T^{3}\left(\frac{1}{2}\right)=\frac{1}{2}$. Let $\mathcal{J}^{\prime}=\left\{\left[0, \frac{1}{2}\right],\left(\frac{1}{2}, 1\right]\right\}$ and $\mathcal{J}=\left\{\left[0, \frac{1}{2}\right],\left[\frac{1}{2}, 1\right]\right\}$, so $\frac{1}{2}$ get two symbols. Let $\Sigma^{\prime}=i(X)$ w.r.t. \mathcal{J}^{\prime} and $\Sigma=i(X)$ w.r.t. \mathcal{J}. Show that $\overline{\Sigma^{\prime}} \neq \Sigma$.

From now on, assume that X is compact metric space without isolated points. We will now discuss the properties of the coding map i itself. First of all, for i to be continuous it is crucial that $\left.T\right|_{J_{a}}$ is continuous on each element $J_{a} \in \mathcal{J}$. But this is not enough: if x is a common boundary of two element of \mathcal{J} then (no matter how you assign the symbol to x in Example 0.1), for each neighborhood $U \ni x, \operatorname{diam}(i(U))=1$, so continuity fails at x. It is only by using quotient spaces of $i(X)$ (so changing the topology of $i(X)$) that can make i continuous. Normally, we choose to live with the discontinuity, because it affects only few points:

Lemma 0.3. Let $\partial \mathcal{J}$ denote the collection of common boundary points of different elements in \mathcal{J}. If $\operatorname{orb}(x) \cap \partial J=\varnothing$, then the coding map $i: X \rightarrow \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is continuous at x.

Proof. We carry out the proof for invertible maps. Let $\varepsilon>0$ be arbitrary and fix $N \in \mathbb{N}$ such that $2^{-N}<\varepsilon$. For each $n \in \mathbb{Z}$ with $|n| \leq N$, let $U_{n} \ni T^{n}(x)$ be such a small neighborhood that it is contained in a single partition element $J_{i_{n}(x)}$. Since $\operatorname{orb}(x) \cap \partial J=\varnothing$, this is possible. Then $U:=\cap_{|n| \leq N} T^{n}\left(U_{n}\right)$ is an open neighborhood of x and $i_{n}(y)=i_{n}(x)$ for all $|n| \leq N$ and $y \in U$. Therefore $\operatorname{diam}(i(U)) \leq 2^{-N}<\varepsilon$, and continuity at x follows.

Definition 0.4. A system (X, T) is called expansive if there exists $\delta>0$ such that for all distinct $x, y \in X$, there is $n \geq 0$ (or $n \in \mathbb{Z}$ if Tis invertible) such that $d\left(T^{n} x, T^{n} y\right)>\delta$. We call δ the expansivity constant.

Lemma 0.5. Suppose that T is a continuous expansive dynamical system and injective on each $J_{a} \in \mathcal{J}$. If the expansivity constant is larger than $\sup _{a \in \mathcal{A}} \operatorname{diam}\left(J_{a}\right)$, then the coding map $i: X \rightarrow \mathcal{A}^{\mathbb{N}_{0}}$ or $\mathcal{A}^{\mathbb{Z}}$ is injective.

Proof. Suppose that there are $x \neq y \in X$ such that $i(x)=i(y)$. Since $\left.T\right|_{J_{a}}$ is injective for each $a \in \mathcal{A}, T^{n}(x) \geq T^{n}(y)$ for all $n \geq 0$. Let $\delta>0$ be an expansitivity constant of T. Thus, there is $n \in \mathbb{Z}$ such that $d\left(T^{n}(x), T^{n}(y)\right)>\delta$, so, by assumption, they cannot lie in the same element of \mathcal{J}. Hence x and y cannot have the same itinerary after all.

To obtain injectivity of the coding map, it often suffices that T is expanding on each partition element J_{a}. Expanding should not be confused with expansive.

Definition 0.6. Given a metric space X and $Y \subset X$, a map $T: Y \rightarrow T(Y)$ is expanding if $d(T(x), T(y)) \geq \rho d(x, y)$ for all $x, y \in Y$, and uniformly expanding there is $\rho>1$ such that $d(T(x), T(y)) \geq \rho d(x, y)$ for all $x, y \in Y$.

Example 0.7. Let $T: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}, x \mapsto 2 x \bmod 1$, be the doubling map, and $J_{0}=\left(\frac{1}{4}, \frac{3}{4}\right)$ and $J_{1}=\mathbb{S}^{1} \backslash J_{0}$. Clearly $T^{\prime}(x)=2$ for all $x \in \mathbb{S}^{1}$, but T is not expanding on the whole of \mathbb{S}^{1}, because for instance $d\left(T\left(\frac{1}{4}\right), T\left(\frac{3}{4}\right)\right)=0<\frac{1}{2}=d\left(\frac{1}{4}, \frac{3}{4}\right)$. More importantly, T is not expanding on the either J_{a}; for example $d\left(T\left(\frac{1}{4}+\varepsilon\right), T\left(\frac{3}{4}-\varepsilon\right)\right)=4 \varepsilon<\frac{1}{2}-2 \varepsilon=d\left(\frac{1}{4}+\varepsilon, \frac{3}{4}-\varepsilon\right)$ for each $\varepsilon \in\left(0, \frac{1}{12}\right)$. The corresponding coding map is not injective. The way to see this by noting that the involution $S(x)=1-x$ commutes with T and also preserves each J_{a}. It follows that $i(x)=i(S(x))$ for all $x \in \mathbb{S}^{1}$, and only $x=0$ and $x=\frac{1}{2}$ have unique itineraries.

