
Symbolic dynamics emerges from a dynamical system ((X,T ) if we code the T -orbits of the
points x ∈ X. To this end, we let J = {Ja}a∈A (for a finite or countable alphabet A) be a
partition of X, and to each x ∈ X we assign an itinerary i(x) ∈ AN0 :

in(x) = a if T n(x) ∈ Ja.

If T is invertible, then we can extend sequences to AZ. It is clear that i ◦ T (x) = σ ◦ i(x).
Therefore, if we set Σ = i(X), then σ(Σ) ⊂ Σ and if T : X → X is surjective, then σ(Σ) = Σ.
But (Σ, σ) is in general not a subshift, because Σ is not closed.

Example 0.1. Let X = [0, 1] and T (x) = Q4(x) = 4x(1 − x). Let J0 = [0, 1
2
] and J1 = (1

2
, 1].

Then i(X) is not closed, because there is no x ∈ [0, 1] such that i(x) = 1100000 . . . , while
1100000 · · · = limx↘ 1

2
i(x). Naturally, redefining the partition to J0 = [0, 1

2
) and J1 = [1

2
, 1]

doesn’t help, because then there is no x ∈ [0, 1] such that i(x) = 0100000 . . . , while 0100000 · · · =
limx↗ 1

2
i(x).

Other “solutions” that one sees in the literature are:

• Assigning a different symbol (often ∗ or C) to 1
2
. That is, using the partition J0 = [0, 1

2
),

J∗ = {1
2
} and J1 = (1

2
, 1]. This resolves the “ambiguity” about which symbol to give to 1

2
,

but it doesn’t make the shift space closed.

• Assigning the two symbols to 1
2
, so J0 = [0, 1

2
] and J1 = [1

2
, 1] are noo longer a partition,

but have 1
2

in common. Therefore 1
2

will have two itineraries, and so will every point in
the backward orbit of 1

2
. With all these extra itineraries, i(X) becomes closed. But this

doesn’t work in all cases, see Exercise 0.2.

• Taking a quotient space i(X)/ ∼ where in this case x ∼ y if there is n ∈ N0 such that

x0 . . . xn−1 = y0 . . . yn−1 and

{
xnxn+1xn+2xn+3xn+4 · · · = 11000 . . . ,

ynyn+1yn+2yn+3yn+4 · · · = 01000 . . .

or vice versa. This quotient space adapts the quotient topology (so / ∼ is not a Cantor
set anymore), and it turns the coding map into a genuine homeomorphism.

Exercise 0.2. Let a = 3.83187405528332 . . . and T (x) = Qa(x) = ax(1− x). For this param-
eter, T 3(1

2
) = 1

2
. Let J ′ = {[0, 1

2
], (1

2
, 1]} and J = {[0, 1

2
], [1

2
, 1]}, so 1

2
get two symbols. Let

Σ′ = i(X) w.r.t. J ′ and Σ = i(X) w.r.t. J . Show that Σ′ 6= Σ.

From now on, assume that X is compact metric space without isolated points. We will
now discuss the properties of the coding map i itself. First of all, for i to be continuous it
is crucial that T |Ja is continuous on each element Ja ∈ J . But this is not enough: if x is a
common boundary of two element of J then (no matter how you assign the symbol to x in
Example 0.1), for each neighborhood U 3 x, diam(i(U)) = 1, so continuity fails at x. It is only
by using quotient spaces of i(X) (so changing the topology of i(X)) that can make i continuous.
Normally, we choose to live with the discontinuity, because it affects only few points:

Lemma 0.3. Let ∂J denote the collection of common boundary points of different elements in
J . If orb(x) ∩ ∂J = ∅, then the coding map i : X → AN0 or AZ is continuous at x.
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Proof. We carry out the proof for invertible maps. Let ε > 0 be arbitrary and fix N ∈ N such
that 2−N < ε. For each n ∈ Z with |n| ≤ N , let Un 3 T n(x) be such a small neighborhood
that it is contained in a single partition element Jin(x). Since orb(x)∩ ∂J = ∅, this is possible.
Then U := ∩|n|≤NT n(Un) is an open neighborhood of x and in(y) = in(x) for all |n| ≤ N and
y ∈ U . Therefore diam(i(U)) ≤ 2−N < ε, and continuity at x follows.

Definition 0.4. A system (X,T ) is called expansive if there exists δ > 0 such that for all
distinct x, y ∈ X, there is n ≥ 0 (or n ∈ Z if T is invertible) such that d(T nx, T ny) > δ. We
call δ the expansivity constant.

Lemma 0.5. Suppose that T is a continuous expansive dynamical system and injective on
each Ja ∈ J . If the expansivity constant is larger than supa∈A diam(Ja), then the coding map
i : X → AN0 or AZ is injective.

Proof. Suppose that there are x 6= y ∈ X such that i(x) = i(y). Since T |Ja is injective for each
a ∈ A, T n(x) ≥ T n(y) for all n ≥ 0. Let δ > 0 be an expansitivity constant of T . Thus, there
is n ∈ Z such that d(T n(x), T n(y)) > δ, so, by assumption, they cannot lie in the same element
of J . Hence x and y cannot have the same itinerary after all.

To obtain injectivity of the coding map, it often suffices that T is expanding on each partition
element Ja. Expanding should not be confused with expansive.

Definition 0.6. Given a metric space X and Y ⊂ X, a map T : Y → T (Y ) is expanding if
d(T (x), T (y)) ≥ ρd(x, y) for all x, y ∈ Y , and uniformly expanding there is ρ > 1 such that
d(T (x), T (y)) ≥ ρd(x, y) for all x, y ∈ Y .

Example 0.7. Let T : S1 → S1, x 7→ 2x mod 1, be the doubling map, and J0 = (1
4
, 3
4
) and

J1 = S1 \ J0. Clearly T ′(x) = 2 for all x ∈ S1, but T is not expanding on the whole of S1,
because for instance d(T (1

4
), T (3

4
)) = 0 < 1

2
= d(1

4
, 3
4
). More importantly, T is not expanding

on the either Ja; for example d(T (1
4

+ ε), T (3
4
− ε)) = 4ε < 1

2
− 2ε = d(1

4
+ ε, 3

4
− ε) for each

ε ∈ (0, 1
12

). The corresponding coding map is not injective. The way to see this by noting
that the involution S(x) = 1 − x commutes with T and also preserves each Ja. It follows that
i(x) = i(S(x)) for all x ∈ S1, and only x = 0 and x = 1

2
have unique itineraries.
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