Definition $1 A$ map f is C^{r}-structurally stable if there is $\varepsilon>0$ such that every map g with $\|f-g\|_{C^{r}}<\varepsilon$ is conjugate to f. Here $\|h\|_{C^{r}}$ is the C^{r}-norm, i.e., $\|h\|_{C^{r}}=\max _{i=0, \ldots, r} \sup _{x}\left|h^{(i)}\right|$, where $h^{(i)}$ denotes the i-th derivative.

Theorem 2 The map $Q_{a}(x)=a x(1-x)$ is C^{2}-structurally stable for $a \in(0,1)$.
Proof. Compute $Q_{a}^{\prime}(x)=a(1-2 x)$ and $Q_{a}^{\prime \prime}(x)=-2 a$. Fix $a \in(0,1)$. If $\left\|Q_{a}-g\right\|_{C^{2}}<\varepsilon$, then we can write $g=Q_{a}+\varepsilon h$ where $h=h_{\varepsilon}$ and $\|h\|_{C^{2}}<1$. We need to find a homeomorphism $\psi: \mathbb{R} \rightarrow \mathbb{R}$ such that $\psi \circ Q_{a}=g \circ \psi$.

Clearly Q_{a} has a fixed point at 0 . Set $F(x, \varepsilon)=Q_{a}(x)+\varepsilon h(x)-x$. Then $\frac{\partial F}{\partial x}(0,0)=a-1 \neq 0$, so the Implicit Function Theorem tells us that there is a neighbourhood $U \ni 0$ and a continuous function $p: U \rightarrow \mathbb{R}$ with $p(0)=0$, such that $F(p(\varepsilon), \varepsilon)=g(p(\varepsilon))-p(\varepsilon)=0$. That is, $p=p(\varepsilon)$ is a fixed point of g. Set $\psi(0)=p(\varepsilon)$.

Also assume that $\varepsilon<\min \{a, 1-a\}$ is so small that $g^{\prime}(p(\varepsilon))=a(1-2 p(\varepsilon))+\varepsilon h^{\prime}(p(\varepsilon))<1$. Therefore, the fixed point $p(\varepsilon)$ of g is attracting.

Next note that $g^{\prime \prime}(x)=-2 a+\varepsilon h^{\prime \prime}(x)<0$ (because $\sup _{x}\left|h^{\prime \prime}(x)\right|<1$). Therefore f is strictly convex, and it has therefore a unique global maximum $m=m(\varepsilon)$ with $m(0)=\frac{1}{2}$. Set $\psi\left(\frac{1}{2}\right)=m(\varepsilon)$.

Since $g^{\prime}(x)$ is decreasing on (p, m) and $0<g^{\prime}(p)<1$, we have $p<g(m)<m$. We call $(g(m), m]$ a fundamental domain for g.

Note that for $\varepsilon=0$, so $g=Q_{a}, Q_{a}(m)=Q_{a}\left(\frac{1}{2}\right)=\frac{a}{4}$. Set $\psi\left(\frac{a}{4}\right)=g(m)$ and extend $\psi:\left[\frac{a}{4}, \frac{1}{2}\right] \rightarrow[g(m), m]$ in some homeomorphic (e.g. affine) way.

For every $x \in\left(0, \frac{1}{2}\right]$, there is a unique $y \in\left(\frac{a}{4}, \frac{1}{2}\right]$ and $n \geq 0$ such that $Q_{a}^{n}(y)=x$. Set $\psi(x)=g^{m}(\psi(y))$. This defines ψ continuously on [0, $\frac{1}{2}$] so that $\psi \circ Q_{a}=g \circ \psi$.

Since $m>p$ and $g^{\prime}(x)<0$, there is a unique $q=q(\varepsilon)>m$ such that $g(q)=p$. Clearly $q(0)=1$, and $g:[m, q] \rightarrow[g(m), p]$ is a strictly decreasing homeomorphism. For $x \in\left(\frac{a}{4}, 1\right]$, let $\psi(x)$ the unique point in $(m, q]$ such that $\psi\left(Q_{a}(x)\right)=g(\psi(x))$. We now have $\psi:[0,1] \rightarrow[p, q]$ continuous (and in fact strictly increasing) such that $\psi \circ Q_{a}=g \circ \psi$.

Using similar arguments, we can extend ψ to $(-\infty, 0) \cup(1, \infty)$.

