Dynamical Systems and Nonlinear ODEs - PS 250088 Exercises Summer Semester 2018

Exercise 1 a) Consider the initial value problem

$$
\dot{x}=\cos x+1 \text { with } x(0)=0
$$

for $x \in \mathbb{R}$. Find the equilibria and indicate if they are hyperbolic. Hence compute the ω-limit and α-limit of the given initial point.
b) Give the definition of an ω-limit set and calculate the ω-limit set for the initial value problem

$$
\dot{x}=x^{2}+x^{3}, \quad x(0)=-\frac{1}{2} .
$$

Exercise 2 Find the complete solution to the differential equation

$$
\dot{x}=a x(1-x), \quad x(0)=x_{0} .
$$

Assuming $a>0$, which are the stationary point and are they (asymptotically) stable? Are they exponentially (un)stable?

Exercise 3 Let $f: X \rightarrow X$ and $g: Y \rightarrow Y$ be two continuous mappings that are conjugate via the homeomorphism $\psi: \psi \circ f=g \circ \psi$. Show that
a) ψ maps (pre)periodic points of f to (pre)periodic points of g;
b) ψ maps omega-limit sets of f to omega-limit sets of g;
c) ψ maps attracting fixed points of f to attracting fixed points of g.

Exercise 4 Let $Q_{a}(x)=a x(1-x), a \in[0,4]$ be the quadratic family.
Which are the fixed points and for which values of a are they stable?
b) Find the period two points. For which values of a do they exist?
c) For which values of a is the period 2 orbit stable?

Exercise 5 a) Find the solutions and draw the phase portraits for the following systems of ODEs $\dot{x}=A x$:

$$
\text { (i) } \quad A=\left(\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right) \quad \text { (i) } \quad A=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{array}\right)
$$

b) Construct explicit conjugacies $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ between the two-dimensional system $\dot{x}=-x$ and

$$
\text { (i) } \dot{y}=-2 y \quad \text { (ii) } \quad \dot{y}=\left(\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right) y
$$

Exercise 6 a) Given is the $O D E$

$$
\binom{\dot{x}}{\dot{y}}=\binom{y-x}{x(y-2)} .
$$

Indicate the equilibria and their type (saddle, sink, source, center). Hence show that there is exactly one invariant horizontal line $\{y=L\}$. Compute the solutions on this line.
b) Consider the $O D E$

$$
\begin{aligned}
& \dot{x}=3 x+x y \\
& \dot{y}=y+x(y-x)
\end{aligned}
$$

and find a near identity transformation $u=x+a x y v=y+b x^{2}+c x y$, that removes the quadratic terms.
c) Consider the $O D E$

$$
\begin{aligned}
\dot{x} & =4 x+y^{2}-3 x y \\
\dot{y} & =-y+y\left(x-y^{2}\right)
\end{aligned}
$$

and find a near identity transformation $u=x+a y^{2}+b x y, v=y+c x y$ that removes the quadratic terms. Is the equilibrium at zero structurally stable? (Justify your answer!)

Exercise 7 Let $T_{s}(x)=\min \{s x, s(1-x)\}$ be the tent map with $s=3$. Describe the set C of points $x \in \mathbb{R}$ such that $T_{s}^{n}(x) \in[0,1]$ for all n. What happens with points $x \in \mathbb{R} \backslash C$?

Exercise 8 Let $T:[0,1] \rightarrow[0,1], T(x)=\min \{2 x, 2(1-x)\}$ be the tent-map.
a) Argue that q is n-periodic if and only if the graph of T^{n} intersects the diagonal $\{y=x\}$ at $x=q$.
b) How many n-periodic points does T have? How many where n is the smallest period?
c) Prove Fermat's little theorem: If p is prime, then $p \mid 2^{p}-2$ and more generally, if $2 \leq a \in \mathbb{N}$ and p is prime, then $p \mid a^{p}-a$

Exercise 9 The quadratic map $Q(x)=4 x(1-x)$ is also called the Chebyshev polynomial, and $T:[0,1] \rightarrow[0,1], T(x) \min \{2 x, 2(1-x)\}$ is called the tent map. Let $\psi:[0,1] \rightarrow[0,1]$ be defined by $\psi(x)=\frac{1}{2}(1-\cos \pi x)$.
a) Show that $Q \circ \psi=\psi \circ T$.
b) Show that if p is an n-periodic point of T, then $\psi(p)$ is an n-periodic point of Q.
c) Conclude that every n-periodic point $p \neq 0$ of Q has multiplier $\left|\left(Q^{n}\right)^{\prime}(p)\right|=2^{n}$. Why doesn't this argument apply also to $p=0$?

Exercise 10 Which of the following map $f: \mathbb{R} \rightarrow \mathbb{R}$ are conjugate? Which are differentiably conjugate?
(a) $f(x)=x / 2$;
(b) $f(x)=2 x$;
(c) $f(x)=-2 x$;
(d) $f(x)=3 x$;
(e) $f(x)=x^{3}$.

Exercise 11 Show that the map $f: \mathbb{R} \rightarrow R, x \mapsto x^{3}+x / 2$ is C^{1} structurally stable, i.e., all maps that are C^{1} close to f are conjugate to f.

Exercise 12 Consider the "normal form" of the cusp bifurcation $\dot{x}=r+k x+x^{3}$.
(a) Find the bifurcation curve(s) in the parameter plane.
(b) Fix $k=-3$. Describe the nature of the equilibria and the bifurcations that take place when r increases (say from -3 to 3).
(c) Replace $+x^{3}$ by $-x^{3}$ in the normal form, so $\dot{x}=r+k x-x^{3}$. Repeat part (b) for $k=+3$.

Exercise 13 Consider the logistic family $Q_{a}(x)=a x(1-x)$, where $a \in[0,4]$ is such that the critical point $c=\frac{1}{2}$ is periodic of period 3. We abbreviate $c_{k}=Q_{a}^{k}(c)$; the core $\left[c_{2}, c_{1}\right]$ is an invariant set for Q_{a}. A partition $\left\{I_{i}\right\}_{i=1}^{N}$ of $\left[c_{2}, c_{1}\right]$ is a Markov partition if Q_{a} maps each interval I_{i} homeomorphically onto a union of interval I_{j}. (We allow ourselves some sloppiness, and don't care about overlap at the boundary points of the $I_{i} s$.)
(a) Show that the intervals $\left[c_{2}, c\right]$ and $\left[c, c_{1}\right]$ form a Markov partition of $\left[c_{2}, c_{1}\right]$.
(b) Define a transition matrix $A=\left(a_{i, j}\right)_{i, j=1}^{2}$ where $a_{i, j}=1$ if $Q_{a}\left(I_{i}\right) \supset I_{j}$ and $a_{i, j}=0$ otherwise. Write down the transition matrix for item (a).
(c) Argue that the number of n-periodic points (not necessarily prime period) of $\left.Q_{a}\right|_{\left[c_{2}, c_{1}\right]}$ equals the trace $\operatorname{tr}\left(A^{n}\right)$. How many periodic points of prime period 11 does Q_{a} have?
(d) Repeat the construction for the case that parameter a is such that $c_{2}<c_{3}<c_{4}<\cdots<$ $c_{n}=c<c_{1}$. What is the exponential growth rate of the number of n-periodic points?

Exercise 14 Give a C^{3}-function $f: \mathbb{R} \rightarrow \mathbb{R}$, define the Schwarzian derivative of f as

$$
S f=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2} \quad \text { if } f^{\prime} \neq 0
$$

a) Show that Möbius transformations $g(x)=\frac{a x+b}{c x+d}$ (with $a d-b c= \pm 1$) have $S g=0$, but $S Q_{a}<0$ for $Q_{a}(x)=a x(1-x)$.
b) Show that $S(f \circ g)=(S f) \circ g \cdot\left(g^{\prime}\right)^{2}+S g$. Conclude that $S\left(Q_{a}^{n}\right)<0$ for all $n \geq 1$.
c) Suppose that C^{3}-function $f: \mathbb{R} \rightarrow \mathbb{R}$ has $S f<0$. Then f^{\prime} cannot have a positive local minimum or a negative local maximum.
d) Suppose $S f<0$ and p is an attracting fixed point. Show that there must be a critical point c (i.e., a point c where $f^{\prime}(c)=0$) such that $[p, c]$ contains no other fixed point of f. Therefore $f^{n}(c) \rightarrow p$.
e) Conclude that Q_{a} can have at most one attracting periodic orbit.

Exercise 15 Recall the Sharkovskiy order

$$
\begin{aligned}
3 \succ & 5 \succ 7 \succ 9 \succ 11 \succ \ldots \\
& 2 \cdot 3 \succ 2 \cdot 5 \succ 2 \cdot 7 \succ 2 \cdot 9 \succ 2 \cdot 11 \succ \ldots \\
& 4 \cdot 3 \succ 4 \cdot 5 \succ 4 \cdot 7 \succ 4 \cdot 9 \succ 4 \cdot 11 \succ \ldots \\
& \vdots \\
& \vdots \\
& \ldots \ldots \succ 8 \succ 4 \succ 2 \succ 1 .
\end{aligned}
$$

A tail S is any set of integers such that if $s \in S$, then also $t \in S$ for all $s \succ t$. Therefore the tail of 3 is $\mathbb{N} \backslash\{0\}$, the tail of 6 are all even numbers, and there is a single tail $\{1,2,4,8,16, \ldots\}$
having no Sharkovskiy maximum. Show that for every S there is a parameter $a \in[0,4]$ such that $\left\{p \in \mathbb{N}: Q_{a}\right.$ has a p-periodic point $\}=S$.
Hint: The off-shot of Exercise 14 is that at every parameter value $a \in[0,4]$ only one bifurcation can take place, since the orbit of $c=\frac{1}{2}$ converges to the stable periodic orbit emerging in the bifurcation.

Exercise 16 a) Let $T: M \rightarrow M$ be a continuous map on a compact manifold. Show that every omega-limit set is closed and T-invariant $(T(\omega)(x))=\omega(x))$.
b) If φ^{t} is a flow on a compact manifold, show that $\omega(x)$ is connected.

Exercise 17 Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a C^{1} vector field, and assume that the $O D E \dot{x}=F(x)$ has a limit cycle Γ. Show that the bounded component U of $\mathbb{R}^{2} \backslash \Gamma$ contains an equilibrium point.

Exercise 18 Given is the differential equation

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
\beta & -\alpha \tag{1}\\
\alpha & \beta
\end{array}\right)\binom{x}{y}-\sqrt{x^{2}+y^{2}}\binom{x}{y},
$$

for parameters $\alpha, \beta \in \mathbb{R}, \alpha \neq 0$. a) Rewrite (1) in polar coordinates.
b) Describe the bifurcation that takes place if β goes through zero.
c) Give the definition of ω-limit and α-limit set. Hence describe the ω-limit and α-limit sets of the system (1) for parameters $\beta=1$ and $\alpha=0.3$.

Exercise 19 a) Consider the $O D E$

$$
\frac{d^{2} x}{d t^{2}}+\mu \frac{d x}{d t}=f(x)
$$

with parameter $\mu \in \mathbb{R}$ and $x \in \mathbb{R}$. Write this as a system of two first order equations. Show that if $f\left(x^{*}\right)=0, \mu>0$ and $f^{\prime}\left(x^{*}\right)<-\mu^{2} / 4$ then there is an equilibrium that is a stable spiral. b) Sketch a bifurcation diagram showing the location of all equilibria of the ODE

$$
\dot{x}=x^{4}-\mu x
$$

with $x \in \mathbb{R}$, on varying the parameter $\mu \in \mathbb{R}$. Indicate the stability of equilibria and the location and type of all bifurcation points. Which type of bifurcation takes place?
c) Consider the ODE

$$
\dot{x}=\left(x^{2}-2\right)^{2}+\mu x,
$$

with parameter $\mu \in \mathbb{R}$. Name a describe in detail the bifurcations that take place when μ increases from -1 to 1 .

Exercise 20 Consider the following $O D E$ on the first (on-negative) quadrant of \mathbb{R}^{2} :

$$
\left\{\begin{array}{l}
\dot{x}=a_{1} x--a_{2} x y \tag{2}\\
\dot{y}=a_{2} x y-a_{3} y
\end{array} \quad a_{1}, a_{2}, a_{3}>0 .\right.
$$

a) Find the equilibrium points and their types (sink, saddle, source, center) of (2).
b) Show that

$$
L(x, y)=a_{2}(x+y)-a_{1}-a_{3}-a_{3} \log \frac{a_{2} x}{a_{3}}-a_{1} \log \frac{a_{2} y}{a_{1}}
$$

is a Lyapunov function (but never strict). Hence sketch the phase portrait of (2).
c) Using the change of coordinates $u=\log \frac{a_{2} y}{a_{1}}, v=\log \frac{a_{2} x}{a_{3}}$, show that (2) is in fact a Hamiltonian system.

Exercise 21 Let a one-parameter family of interval maps be given by

$$
f_{\mu}(x)=\mu-x^{2}
$$

a) Find the smallest $\mu_{0} \in \mathbb{R}$ such that f_{μ} has a fixed point. Describe the bifurcation that takes place at μ_{0}.
b) There is a smallest $\mu_{1}>\mu_{0}$ such that f_{μ} undergoes a period doubling bifurcation. Let p be the rightmost fixed point of $f_{\mu_{1}}$. What is $f_{\mu_{1}}^{\prime}(p)$? Compute μ_{1}.
c) Let

$$
\mu_{2}=\inf \left\{\mu \in \mathbb{R}: f_{\mu} \text { has a periodic point of period } 6\right\} .
$$

Argue which bifurcation takes place at μ_{2}.
Exercise 22 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous map with periodic orbit $x_{0}<x_{1}<\cdots<x_{n-1}$ with $f\left(x_{i}\right)=x_{i+1 \bmod n}$ and $n \geq 3$. Use (the method of) Sharkovskiy's Theorem to show that f has periodic points of all period.

Exercise 23 Let $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be an orientation preserving homeomorphism. Show that the rotation number $\rho(f) \in \mathbb{Q}$ if and only if f has a periodic orbit.

Exercise 24 Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a lift of an orientation preserving circle homeomorphism $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$, i.e., $F(x+1)=F(x)+1$ and $F(x) \bmod 1=f(x \bmod 1)$ for all $x \in \mathbb{R}$. Recall that the rotation number of f is defined as

$$
\rho(f)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n} \bmod 1 .
$$

a) Verify that $\rho(f)$ doesn't depend on the choice of the point x.
b) Verify that $\rho(f)$ doesn't depend on the choice of the lift F.

Exercise 25 Consider the Arnol'd family $f_{\varepsilon}: \mathbb{S}^{1} \rightarrow S^{1}, x \mapsto x+\alpha+\varepsilon \sin (2 \pi x)$.
a) for which $\varepsilon \geq 0$ is f_{ε} a homeomorphism (diffeomorphism)?
b) Compute the region of (α, ε) where f_{ε} has resonance of period 1 (i.e., f_{ε} has a fixed point).
c) Fix $\varepsilon>0$ small and let I_{ε} be the set of $\alpha \in S^{1}$ where the rotation number $\rho\left(f_{\varepsilon}\right) \notin \mathbb{Q}$. Given is that there is $C>0$ such that the width of any resonance tongue of period q is $\leq C \varepsilon^{q}$. Show that $\overline{I_{\varepsilon}}$ is a Cantor set of positive Lebesgue measure.

Exercise 26 Which of the following dynamical systems has (i) a dense set of periodic orbits, (ii) a dense orbit, (iii) sensitive dependence on initial conditions?

1. a circle rotation;
2. the tent-map $T(x)=\min \{2 x, 2(1-x)\}$ on $[0,1]$;
3. the twist map on the torus \mathbb{T}^{2} defined by $T(x, y)=(x, x+y \bmod 1)$;
4. the pendulum $\ddot{x}+\sin x=0$;
5. The cat-map on the torus \mathbb{T}^{2} defined as $T(x, y)=(2 x+y \bmod 1, x+y \bmod 1)$. Hint: locally the cat-map is linear, so it helps to consider the stable and unstable directions at each point.

Exercise 27 Suppose T is a continuous map on an X is an infinite space. If T has a dense set of periodic orbits as well as a dense orbit, then T has sensitive dependence on initial conditions.

Exercise 28 Define the annulus $\mathbb{A}=\mathbb{S}^{1} \times[0,1]$ (where $\mathbb{S}^{1}=[0,1] / 0 \sim 1$ is the interval with endpoints identified. Define the map T on \mathbb{A} as

$$
f(x, y)=(3 x \bmod 1,(2 x+y) / 3)
$$

a) Show that f has a horseshoe, and that its invariant set Λ is a Cantor set. Hence show that is Devaney chaotic on Λ.
b) The map f has a lift $F: \mathbb{R} \times[0,1] \rightarrow \mathbb{R} \times[0,1]$ satisfying $F(x+1, y)=F(x, y)+1$, and you can define rotation numbers just as in the case of circle homeomorphisms:

$$
\rho_{f}(p)=\lim _{n \rightarrow \infty} \frac{\left\|F^{n}(p)-p\right\|}{n}
$$

Show that the limit does depend on p : for each $c \in[0,2]$ there are points p with $\rho_{f}(p)=c$, and there are also points where the limit does not exist.

Exercise 29 The Hénon map $H_{a, b}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by

$$
H_{a, b}(x, y)=\left(1+y-a x^{2}, b x\right)
$$

a) Show that the Hénon map has a horseshoe for $a=3$ and $b=\frac{1}{5}$. Hint: draw and investigate what happens to (the boundary of the) rectangle $R=\left[-\frac{5}{6}, \frac{5}{6}\right] \times\left[-\frac{1}{6}, \frac{1}{6}\right]$ if H is applied.
b) Suppose $a>2$. Show that the Hénon map has a horseshoe provided $|b|$ is sufficiently small.

Exercise 30 Consider the following sets in \mathbb{R}^{2}.

$$
\text { (i) } x(y-2)=0 \quad \text { (ii) } x^{2}+y^{2}=1 \quad \text { (iii) }(x-1)^{2}+(y-1)^{2}=1
$$

a) Which of these is a manifolds and which one has co-dimension 1?
b) Which of the sets is transversely to the vector field $f(x, y)=(1,0)$ at the points $(1,0)$ and $(0,1)$?
c) Compute the Poincaré map of the flow generated by the vector field $g(x, y)=(y,-x)$ for the set (iii) above as Poincaré section.

Exercise 31 An approximation of the Poincaré map on the section $\{z=0\}$ is given by the map $P: \Sigma \rightarrow \Sigma$ for $\Sigma=[-1,1] \times[0,1]$:

$$
P(x, y)=\left\{\begin{array}{ll}
\left(2 x+1, \frac{2-x y}{3}\right) & x<0 \\
\left(2 x-1, \frac{x y}{3}\right) & x>0
\end{array} .\right.
$$

a) Describe the set $\Lambda=\bigcup_{n>0} P^{n}(\Sigma)$ topologically. Is it a Cantor set of arcs?
b) Show that P is chaotic in the sense of Devaney on the attracting set

Exercise 32 Solve the Lorenz equations

$$
\begin{aligned}
\dot{x} & =-\sigma(x-y) \\
\dot{y} & =r x-y-x z \\
\dot{z} & =x y-b z
\end{aligned}
$$

for parameters $\sigma=0, b=1$ and $r>0$.

