Dynamical Systems and Nonlinear ODEs – PS 250088 Exercises Summer Semester 2018

Exercise 1 a) Consider the initial value problem

 $\dot{x} = \cos x + 1$ with x(0) = 0

for $x \in \mathbb{R}$. Find the equilibria and indicate if they are hyperbolic. Hence compute the ω -limit and α -limit of the given initial point.

b) Give the definition of an ω -limit set and calculate the ω -limit set for the initial value problem

$$\dot{x} = x^2 + x^3, \quad x(0) = -\frac{1}{2}$$

Exercise 2 Find the complete solution to the differential equation

$$\dot{x} = ax(1-x), \qquad x(0) = x_0.$$

Assuming a > 0, which are the stationary point and are they (asymptotically) stable? Are they exponentially (un)stable?

Exercise 3 Let $f: X \to X$ and $g: Y \to Y$ be two continuous mappings that are conjugate via the homeomorphism $\psi: \psi \circ f = g \circ \psi$. Show that

a) ψ maps (pre)periodic points of f to (pre)periodic points of g;

b) ψ maps omega-limit sets of f to omega-limit sets of g;

c) ψ maps attracting fixed points of f to attracting fixed points of g.

Exercise 4 Let $Q_a(x) = ax(1-x)$, $a \in [0,4]$ be the quadratic family. Which are the fixed points and for which values of a are they stable? **b)** Find the period two points. For which values of a do they exist? **c)** For which values of a is the period 2 orbit stable?

Exercise 5 a) Find the solutions and draw the phase portraits for the following systems of $ODEs \ \dot{x} = Ax$:

(i)
$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 (i) $A = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$.

b) Construct explicit conjugacies $h : \mathbb{R}^2 \to \mathbb{R}^2$ between the two-dimensional system $\dot{x} = -x$ and

(i)
$$\dot{y} = -2y$$
 (ii) $\dot{y} = \begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix} y.$

Exercise 6 a) Given is the ODE

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} y - x \\ x(y - 2) \end{pmatrix}.$$

Indicate the equilibria and their type (saddle, sink, source, center). Hence show that there is exactly one invariant horizontal line $\{y = L\}$. Compute the solutions on this line. **b**) Consider the ODE

$$\dot{x} = 3x + xy$$
$$\dot{y} = y + x(y - x)$$

and find a near identity transformation $u = x + axy \ v = y + bx^2 + cxy$, that removes the quadratic terms.

c) Consider the ODE

$$\dot{x} = 4x + y^2 - 3xy$$
$$\dot{y} = -y + y(x - y^2)$$

and find a near identity transformation $u = x + ay^2 + bxy$, v = y + cxy that removes the quadratic terms. Is the equilibrium at zero structurally stable? (Justify your answer!)

Exercise 7 Let $T_s(x) = \min\{sx, s(1-x)\}$ be the tent map with s = 3. Describe the set C of points $x \in \mathbb{R}$ such that $T_s^n(x) \in [0, 1]$ for all n. What happens with points $x \in \mathbb{R} \setminus C$?

Exercise 8 Let $T : [0,1] \rightarrow [0,1]$, $T(x) = \min\{2x, 2(1-x)\}$ be the tent-map. **a)** Argue that q is n-periodic if and only if the graph of T^n intersects the diagonal $\{y = x\}$ at x = q.

b) How many n-periodic points does T have? How many where n is the smallest period? **c)** Prove Fermat's little theorem: If p is prime, then $p|2^p - 2$ and more generally, if $2 \le a \in \mathbb{N}$ and p is prime, then $p|a^p - a$

Exercise 9 The quadratic map Q(x) = 4x(1-x) is also called the Chebyshev polynomial, and $T: [0,1] \rightarrow [0,1], T(x) \min\{2x, 2(1-x)\}$ is called the tent map. Let $\psi: [0,1] \rightarrow [0,1]$ be defined by $\psi(x) = \frac{1}{2}(1 - \cos \pi x)$.

a) Show that $Q \circ \psi = \psi \circ T$.

b) Show that if p is an n-periodic point of T, then $\psi(p)$ is an n-periodic point of Q.

c) Conclude that every n-periodic point $p \neq 0$ of Q has multiplier $|(Q^n)'(p)| = 2^n$. Why doesn't this argument apply also to p = 0?

Exercise 10 Which of the following map $f : \mathbb{R} \to \mathbb{R}$ are conjugate? Which are differentiably conjugate?

- (a) f(x) = x/2;
- (b) f(x) = 2x;
- (c) f(x) = -2x;
- (d) f(x) = 3x;
- (e) $f(x) = x^3$.

Exercise 11 Show that the map $f : \mathbb{R} \to R$, $x \mapsto x^3 + x/2$ is C^1 structurally stable, i.e., all maps that are C^1 close to f are conjugate to f.

Exercise 12 Consider the "normal form" of the cusp bifurcation $\dot{x} = r + kx + x^3$.

(a) Find the bifurcation curve(s) in the parameter plane.

(b) Fix k = -3. Describe the nature of the equilibria and the bifurcations that take place when r increases (say from -3 to 3).

(c) Replace $+x^3$ by $-x^3$ in the normal form, so $\dot{x} = r + kx - x^3$. Repeat part (b) for k = +3.

Exercise 13 Consider the logistic family $Q_a(x) = ax(1-x)$, where $a \in [0,4]$ is such that the critical point $c = \frac{1}{2}$ is periodic of period 3. We abbreviate $c_k = Q_a^k(c)$; the **core** $[c_2, c_1]$ is an invariant set for Q_a . A partition $\{I_i\}_{i=1}^N$ of $[c_2, c_1]$ is a **Markov partition** if Q_a maps each interval I_i homeomorphically onto a union of interval I_j . (We allow ourselves some sloppiness, and don't care about overlap at the boundary points of the I_i s.)

- (a) Show that the intervals $[c_2, c]$ and $[c, c_1]$ form a Markov partition of $[c_2, c_1]$.
- (b) Define a transition matrix $A = (a_{i,j})_{i,j=1}^2$ where $a_{i,j} = 1$ if $Q_a(I_i) \supset I_j$ and $a_{i,j} = 0$ otherwise. Write down the transition matrix for item (a).
- (c) Argue that the number of n-periodic points (not necessarily prime period) of $Q_a|_{[c_2,c_1]}$ equals the trace $tr(A^n)$. How many periodic points of prime period 11 does Q_a have?
- (d) Repeat the construction for the case that parameter a is such that $c_2 < c_3 < c_4 < \cdots < c_n = c < c_1$. What is the exponential growth rate of the number of n-periodic points?

Exercise 14 Give a C^3 -function $f : \mathbb{R} \to \mathbb{R}$, define the Schwarzian derivative of f as

$$Sf = \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)^2 \qquad \text{if } f' \neq 0$$

a) Show that Möbius transformations $g(x) = \frac{ax+b}{cx+d}$ (with $ad - bc = \pm 1$) have Sg = 0, but $SQ_a < 0$ for $Q_a(x) = ax(1-x)$.

b) Show that $S(f \circ g) = (Sf) \circ g \cdot (g')^2 + Sg$. Conclude that $S(Q_a^n) < 0$ for all $n \ge 1$.

c) Suppose that C^3 -function $f : \mathbb{R} \to \mathbb{R}$ has Sf < 0. Then f' cannot have a positive local minimum or a negative local maximum.

d) Suppose Sf < 0 and p is an attracting fixed point. Show that there must be a critical point c (i.e., a point c where f'(c) = 0) such that [p, c] contains no other fixed point of f. Therefore $f^n(c) \to p$.

e) Conclude that Q_a can have at most one attracting periodic orbit.

Exercise 15 Recall the Sharkovskiy order

A tail S is any set of integers such that if $s \in S$, then also $t \in S$ for all $s \succ t$. Therefore the tail of 3 is $\mathbb{N} \setminus \{0\}$, the tail of 6 are all even numbers, and there is a single tail $\{1, 2, 4, 8, 16, \ldots\}$

having no Sharkovskiy maximum. Show that for every S there is a parameter $a \in [0, 4]$ such that $\{p \in \mathbb{N} : Q_a \text{ has a } p \text{-periodic point}\} = S$.

Hint: The off-shot of Exercise 14 is that at every parameter value $a \in [0, 4]$ only one bifurcation can take place, since the orbit of $c = \frac{1}{2}$ converges to the stable periodic orbit emerging in the bifurcation.

Exercise 16 a) Let $T: M \to M$ be a continuous map on a compact manifold. Show that every omega-limit set is closed and T-invariant $(T(\omega(x)) = \omega(x))$.

b) If φ^t is a flow on a compact manifold, show that $\omega(x)$ is connected.

Exercise 17 Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be a C^1 vector field, and assume that the ODE $\dot{x} = F(x)$ has a limit cycle Γ . Show that the bounded component U of $\mathbb{R}^2 \setminus \Gamma$ contains an equilibrium point.

Exercise 18 Given is the differential equation

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} \beta & -\alpha \\ \alpha & \beta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \sqrt{x^2 + y^2} \begin{pmatrix} x \\ y \end{pmatrix}, \tag{1}$$

for parameters $\alpha, \beta \in \mathbb{R}, \alpha \neq 0$. a) Rewrite (1) in polar coordinates.

b) Describe the bifurcation that takes place if β goes through zero.

c) Give the definition of ω -limit and α -limit set. Hence describe the ω -limit and α -limit sets of the system (1) for parameters $\beta = 1$ and $\alpha = 0.3$.

Exercise 19 a) Consider the ODE

$$\frac{d^2x}{dt^2} + \mu \frac{dx}{dt} = f(x)$$

with parameter $\mu \in \mathbb{R}$ and $x \in \mathbb{R}$. Write this as a system of two first order equations. Show that if $f(x^*) = 0$, $\mu > 0$ and $f'(x^*) < -\mu^2/4$ then there is an equilibrium that is a stable spiral. **b**) Sketch a bifurcation diagram showing the location of all equilibria of the ODE

 $\dot{x} = x^4 - \mu x$

with $x \in \mathbb{R}$, on varying the parameter $\mu \in \mathbb{R}$. Indicate the stability of equilibria and the location and type of all bifurcation points. Which type of bifurcation takes place? c) Consider the ODE

 $\dot{x} = (x^2 - 2)^2 + \mu x,$

with parameter $\mu \in \mathbb{R}$. Name a describe in detail the bifurcations that take place when μ increases from -1 to 1.

Exercise 20 Consider the following ODE on the first (on-negative) quadrant of \mathbb{R}^2 :

$$\begin{cases} \dot{x} = a_1 x - a_2 x y\\ \dot{y} = a_2 x y - a_3 y \end{cases} \qquad a_1, a_2, a_3 > 0.$$
(2)

a) Find the equilibrium points and their types (sink, saddle, source, center) of (2).
b) Show that

$$L(x,y) = a_2(x+y) - a_1 - a_3 - a_3 \log \frac{a_2 x}{a_3} - a_1 \log \frac{a_2 y}{a_1}$$

is a Lyapunov function (but never strict). Hence sketch the phase portrait of (2). c) Using the change of coordinates $u = \log \frac{a_2y}{a_1}$, $v = \log \frac{a_2x}{a_3}$, show that (2) is in fact a Hamiltonian system. **Exercise 21** Let a one-parameter family of interval maps be given by

$$f_{\mu}(x) = \mu - x^2.$$

a) Find the smallest $\mu_0 \in \mathbb{R}$ such that f_{μ} has a fixed point. Describe the bifurcation that takes place at μ_0 .

b) There is a smallest $\mu_1 > \mu_0$ such that f_{μ} undergoes a period doubling bifurcation. Let p be the rightmost fixed point of f_{μ_1} . What is $f'_{\mu_1}(p)$? Compute μ_1 . **c)** Let

$$\mu_2 = \inf \{ \mu \in \mathbb{R} : f_\mu \text{ has a periodic point of period 6} \}.$$

Argue which bifurcation takes place at μ_2 .

Exercise 22 Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous map with periodic orbit $x_0 < x_1 < \cdots < x_{n-1}$ with $f(x_i) = x_{i+1 \mod n}$ and $n \ge 3$. Use (the method of) Sharkovskiy's Theorem to show that f has periodic points of all period.

Exercise 23 Let $f : \mathbb{S}^1 \to \mathbb{S}^1$ be an orientation preserving homeomorphism. Show that the rotation number $\rho(f) \in \mathbb{Q}$ if and only if f has a periodic orbit.

Exercise 24 Let $F : \mathbb{R} \to \mathbb{R}$ be a lift of an orientation preserving circle homeomorphism $f : \mathbb{S}^1 \to \mathbb{S}^1$, i.e., F(x+1) = F(x) + 1 and $F(x) \mod 1 = f(x \mod 1)$ for all $x \in \mathbb{R}$. Recall that the rotation number of f is defined as

$$\rho(f) = \lim_{n \to \infty} \frac{F^n(x) - x}{n} \mod 1.$$

a) Verify that $\rho(f)$ doesn't depend on the choice of the point x.

b) Verify that $\rho(f)$ doesn't depend on the choice of the lift F.

Exercise 25 Consider the Arnol'd family $f_{\varepsilon} : \mathbb{S}^1 \to S^1, x \mapsto x + \alpha + \varepsilon \sin(2\pi x)$.

a) for which $\varepsilon \geq 0$ is f_{ε} a homeomorphism (diffeomorphism)?

b) Compute the region of (α, ε) where f_{ε} has resonance of period 1 (i.e., f_{ε} has a fixed point). **c)** Fix $\varepsilon > 0$ small and let I_{ε} be the set of $\alpha \in S^1$ where the rotation number $\rho(f_{\varepsilon}) \notin \mathbb{Q}$. Given is that there is C > 0 such that the width of any resonance tongue of period q is $\leq C\varepsilon^q$. Show

that $\overline{I_{\varepsilon}}$ is a Cantor set of positive Lebesgue measure.

Exercise 26 Which of the following dynamical systems has (i) a dense set of periodic orbits, (ii) a dense orbit, (iii) sensitive dependence on initial conditions?

- 1. a circle rotation;
- 2. the tent-map $T(x) = \min\{2x, 2(1-x)\}$ on [0, 1];
- 3. the twist map on the torus \mathbb{T}^2 defined by $T(x,y) = (x, x + y \mod 1)$;
- 4. the pendulum $\ddot{x} + \sin x = 0$;
- 5. The cat-map on the torus \mathbb{T}^2 defined as $T(x, y) = (2x + y \mod 1, x + y \mod 1)$. Hint: locally the cat-map is linear, so it helps to consider the stable and unstable directions at each point.

Exercise 27 Suppose T is a continuous map on an X is an infinite space. If T has a dense set of periodic orbits as well as a dense orbit, then T has sensitive dependence on initial conditions.

Exercise 28 Define the annulus $\mathbb{A} = \mathbb{S}^1 \times [0,1]$ (where $\mathbb{S}^1 = [0,1]/0 \sim 1$ is the interval with endpoints identified. Define the map T on \mathbb{A} as

$$f(x, y) = (3x \mod 1, (2x + y)/3).$$

a) Show that f has a horseshoe, and that its invariant set Λ is a Cantor set. Hence show that is Devaney chaotic on Λ .

b) The map f has a lift $F : \mathbb{R} \times [0,1] \to \mathbb{R} \times [0,1]$ satisfying F(x+1,y) = F(x,y)+1, and you can define rotation numbers just as in the case of circle homeomorphisms:

$$\rho_f(p) = \lim_{n \to \infty} \frac{\|F^n(p) - p\|}{n}$$

Show that the limit **does** depend on p: for each $c \in [0, 2]$ there are points p with $\rho_f(p) = c$, and there are also points where the limit does not exist.

Exercise 29 The Hénon map $H_{a,b} : \mathbb{R}^2 \to \mathbb{R}^2$ is given by

$$H_{a,b}(x,y) = (1+y-ax^2,bx).$$

a) Show that the Hénon map has a horseshoe for a = 3 and $b = \frac{1}{5}$. Hint: draw and investigate what happens to (the boundary of the) rectangle $R = \left[-\frac{5}{6}, \frac{5}{6}\right] \times \left[-\frac{1}{6}, \frac{1}{6}\right]$ if H is applied.

b) Suppose a > 2. Show that the Hénon map has a horseshoe provided |b| is sufficiently small.

Exercise 30 Consider the following sets in \mathbb{R}^2 .

(i)
$$x(y-2) = 0$$
 (ii) $x^2 + y^2 = 1$ (iii) $(x-1)^2 + (y-1)^2 = 1$.

a) Which of these is a manifolds and which one has co-dimension 1?

b) Which of the sets is transversely to the vector field f(x, y) = (1, 0) at the points (1, 0) and (0, 1)?

c) Compute the Poincaré map of the flow generated by the vector field g(x, y) = (y, -x) for the set (iii) above as Poincaré section.

Exercise 31 An approximation of the Poincaré map on the section $\{z = 0\}$ is given by the map $P : \Sigma \to \Sigma$ for $\Sigma = [-1, 1] \times [0, 1]$:

$$P(x,y) = \begin{cases} (2x+1,\frac{2-xy}{3}) & x < 0\\ (2x-1,\frac{xy}{3}) & x > 0 \end{cases}.$$

a) Describe the set $\Lambda = \bigcup_{n \ge 0} P^n(\Sigma)$ topologically. Is it a Cantor set of arcs?

b) Show that P is chaotic in the sense of Devaney on the attracting set

Exercise 32 Solve the Lorenz equations

$$\begin{aligned} \dot{x} &= -\sigma(x-y) \\ \dot{y} &= rx - y - xz \\ \dot{z} &= xy - bz \end{aligned}$$

for parameters $\sigma = 0$, b = 1 and r > 0.