
Normal Numbers

Introductory question:

Which numbers in [0, 1] are truly random?

Random in base 10 would mean:

x = 0.x1x2x3x4 . . . xi ∈ {0, 1, 2, . . . , 9}

and the frequency of every digits is 1

10
:

lim
n→∞

1

n
#{1 ≤ i ≤ n : xi = a} = 1

10
of each a ∈ {0, 1, 2, . . . , 9}.

In fact, the frequency of every block d1 . . . dk of k digits is 10−k :

lim
n→∞

1

n
#{1 ≤ i ≤ n : xixi+1 . . . xi+k−1 = d1d2 . . . dk} = 10−k .



Normal Numbers

In more generality, a number is called normal in base b ≥ 2 if the

frequency of every block d1 . . . dk ∈ {0, . . . , , b − 1}k is b−k :

lim
n→∞

1

n
#{1 ≤ i ≤ n : xixi+1 . . . xi+k−1 = d1d2 . . . dk} = 10−k .

Emile Borel proved in 1909 that Lebesgue-a.e., is normal w.r.t.

every base b ≥ 2, based on an intricate use of the (now called)

Borel-Cantelli Lemma.

But it is not trivial to �nd any normal number, even in base 10.

Exercise 1.1: Every rational number x ∈ [0, 1] ∩Q is not normal

w.r.t. any base.

Question: Is π − 3 normal? Or e − 2? Or
√
2− 1?



Normal Numbers

The best known example of a normal number is Champernowne's

Number:

x = 0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 . . .

but it doesn't look random at all! Similar normal numbers can be

obtained by concatenating the primes 0.2 3 5 7 11 13 . . .
(Copeland & Erdös, 1946) or the squares 0.1 4 9 16 25 36 . . .
(Besicovich, 1953).

A general result (well outside the scope of this lecture):

Theorem: For every polynomial p with real coe�cients so that

p(R+) ⊂ R+,

0.[p(1)] [p(2)] [p(3)] [p(4)] [p(5)] [p(6)] [p(7)] [p(8)] . . .

is a normal number in base 10. ([x ] is the integer part of x .)



Dynamical Systems

Let (X ,T ) be dynamical system:

I X is the space, usually compact metric,

I T is the evulation rule, usually a continous (or at least

piecewise continuous) map from X to itself, which we iterate.

That is, we study the orbit of points x ∈ X :

orb(x) = x ,T (x),T ◦ T (x)︸ ︷︷ ︸
T 2(x)

,T ◦ T ◦ T (x)︸ ︷︷ ︸
T 3(x)

, . . .

A point x is periodic if T p(x) = x for some p ≥ 1 (the minimal

such p is called the period. If p = 1, then x is a �xed point. If x is

not periodic, but T n(x) is periodic, it is called eventually periodic.

Orbits can be very chaotic; even the slightest computation or

round-o� error can blow up rapidly. Therefore orbits are in general

very di�cult to computed with useful accuracy. In Ergodic Theory

we study the average behaviour of orbits.



Dynamical Systems

Example:

T : [0, 1)→ [0, 1)

T (x) = 10x mod 1

On S1, T is continuous!

The �xed points are x = k/9, k = 0, . . . , 8. The points y = k/10,
k = 0, . . . , 9 are pre�xed.

Take x =
√
2− 1. Is T 1000(x) > 1

2
or < 1

2
? For this you need to

know digit x1001 of x!



Dynamical Systems

Exercise 1.2: Prove that T 1000 6= 1

2
for x =

√
2− 1.

Exercise 1.3: Prove: x ∈ [0, 1] ∩Q if and only if x is (eventually)

periodic.

Exercise 1.4: Show that Chapernowne's number x has are current

orbit: x ∈ orb(T (x)).

Exercise 1.5: Show that a normal number in base 10 has a dense

orbit under T (x) = 10x mod 1.



Invariant measures

De�nition: A measure is T -invariant if µ(T−1(A)) = µ(A) for
every set A in the algebra of µ-measurable sets.

In the example T (x) = 10x mod 1, Lebesgue measure is

T -invariant, because if A = (a, b) ⊂ [0, 1],

b − a = Leb(A) = 10 ∗ b − a

10
= Leb(T−1(A)).

Since the Borel sets are generated by the open sets,

Leb(B) = Leb(T−1(B)) for every Borel set. Also

Leb(N) = Leb(T−1(N)) for every null-set N, so Leb is

T -invariant.



Dynamical Systems

To simplify our lives a bit, we switch to the doubling map:

T : S1 → S1, T (x) = 2x .

Invariant measures are:

I Lebesgue measure;

I The Dirac measure δ0 at the �xed point 0;

I Equidistributions of periodic orbits, e.g. 1

2
(δ1/3 + δ2/3);

I A measure µ is called atomic if there is x ∈ X such that

µ({x}) > 0.

I Bernoulli measures are T -invariant.

I Convex combinations αµ+ (1− α)ν of invariant measures are

invariant.

I Many many more...



Birkho�'s Ergodic Theorem
Birkho�'s Ergodic Theorem formalizes a frequent observation in

physics:

Space Average = Time Average (for typical points).

This is expressed in the Birkho�'s Ergodic Theorem:

Theorem: Let µ be a probability measure and ψ ∈ L1(µ). Then the

ergodic average

ψ∗(x) := lim
n→∞

1

n

n−1∑
i=0

ψ ◦ T i (x)

exists µ-a.e., and ψ∗ is T -invariant, i.e., ψ∗ ◦ T = ψ∗ µ-a.e.

If in addition µ is ergodic then

ψ∗ =

∫
X
ψ dµ µ-a.e.

Recall that µ-a.e. means: all points x ∈ X , except for a null-set.



Birkho�'s Ergodic Theorem

For T (x) = 10x mod 1 and µ = Leb, we can apply Birkho�'s

Theorem. We didn't de�ne ergodic yet, but Lebesgue measure is

indeed ergodic in this case.

Take ψ = 1[0, 1
10

) (then ψ ∈ L1(µ). Hence, for Lebesgue-a.e. x :

1

10
=

∫
1

0

ψ dµ = lim
n→∞

1

n

n−1∑
k=0

ψ ◦ T k(x)

= lim
n→∞

1

n
#{1 ≤ k ≤ n : xk = 0}.



Birkho�'s Ergodic Theorem

By varying the map ψ, we can get the frequency of the other digits,

and the frequency of blocks of digits.

Figure: Emile Borel (1871-1956) and George Birkho� (1884�1944).

Exercise 1.6: Complete the proof of Borel's result, using Birkho�'s

Ergodic Theorem.


