
Toral Automorphisms
In this lecture we study hyperbolic toral automorphisms
TA : Td → T d on the d -dimensional torus Td = S1 × · · · × S1,
which are basically a linear map given by a matrix A, taken
(mod 1) to �t on the torus.

The best know example is Arnol'd Catmap:

TC (x , y) = C

(
x

y

)
(mod 1) for the matrix C =

(
2 1
1 1

)
.

Figure: Arnol'd Catmap.



Toral Automorphisms
The name catmap comes solely from the fact that Vladimir Arnold
used this picture of a cat's head in his book to illustrate the map.

Figure: Catmap taken from Jason Davies' page,
https://www.jasondavies.com/catmap/ (check iterate 348)

Although this map is extremely chaotic (unpredictable dynamics)
and the cat is distorted beyond recognition, on the web you see
simulations where the cat returns.

Exercise 10.1: Show that every rational point x ∈ T2 is periodic
under TC . Explain why this implies that the cat returns.



Toral Automorphisms

De�nition: A toral automorphism T : Td → Td is an invertible
linear map on the (d -dimensional) torus Td . Each such T is of the
form TA(x) = Ax (mod 1), where the matrix A satis�es:

I A is an integer matrix with det(A) = ±1;
I If the eigenvalues of A are not on the unit circle, then the toral

automorphism is called hyperbolic.

For example, the eigenvalues of C are λ± = (3±
√
5)/2, and the

corresponding eigenspaces E± are spanned (−1, (
√
5 + 1)/2)t and

(1, (
√
5− 1)/2)t . These are orthogonal (naturally, since C is

symmetric), and have irrational slopes, so they wrap densely around
the torus.



Toral Automorphisms

Properties of TA are:

I To avoid degenerate examples including A = Id , we assume
that A is primitive, i.e., An is strictly positive for some n ≥ 1.

I A preserves the integer lattice Zd , so TA is well-de�ned and
continuous.

I det(A) = ±1, so Lebesgue measure m is preserved (both by A
and TA). Also A and TA are invertible, and A−1 is still an
integer matrix (so T−1A is well-de�ned and continuous too).

I TA �xes the origin, so δ0 is an invariant measure, too. There
are in fact many invariant measures (the Choquet simplex is
Poulsen!).



Markov Partitions

Somewhat easier to treat than the catmap is TA for A =
(
1 1

1 0

)
,

which is an orientation reversing matrix with A2 = C .
The map TA has a Markov partition, that is a partition {Ri}Ni=1

for
sets such that

1. The Ri have disjoint interiors and ∪iRi = Td ;

2. If TA(Ri ) ∩ Rj 6= ∅, then TA(Ri ) stretches across Rj in the
unstable direction (i.e., the direction spanned by the unstable
eigenspaces of A).

3. If T−1A (Ri ) ∩ Rj 6= ∅, then T−1A (Ri ) stretches across Rj in the
stable direction (i.e., the direction spanned by the stable
eigenspaces of A).



Markov Partitions
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Figure: The Markov partition for TA. The arrows indicate the stable and
unstable directions at (0, 0).

In fact, every hyperbolic toral automorphism has a Markov
partition, but in general they are �endishly di�cult to �nd explicitly.



Markov Partitions

Figure: The Markov partition of Arnol'd catmap.



Markov Partitions

The corresponding transition matrix is

B =

0 1 1
1 0 1
0 1 0

 where Bij =

{
1 if TA(Ri ) ∩ Rj 6= ∅
0 if TA(Ri ) ∩ Rj = ∅.

The characteristic polynomial of B is

det(B − λI ) = −λ3 + 2λ+ 1

= −(λ+ 1)(λ2 − λ− 1)

= −(λ+ 1) det(A− λI ).

Note that B has the eigenvalues of A (no coincidence!), together
with λ = −1.

Exercise 10:2 Find the transition matrix of the (same) Markov
partition for the catmap TC .



Markov Partitions

The transition matrix B generates a subshift of �nite type:

ΣB = {(xi )i∈Z : xi ∈ {1, 2, 3},Bxixi+1 = 1 ∀ i ∈ Z},

equipped with the left-shift σ. That is, ΣB contains only sequences
in which each xixi+1 indicate transitions from Markov partition
elements that are allowed by the map TA.
It can be shown that (Td ,B,TA, Leb) is isomorphic to the shift
space (ΣB , C, σ, µ) where

µ([xkxk+1 . . . xn]) = mxkΠxkxk+1Πxk+1xk+2 . . .Πxn−1xn ,

for mi = Leb(Ri ), i = 1, . . . , d}, and weighted transition matrix Π
where

Πij =
Leb(TB(Ri ) ∩ Rj)

Leb(Ri )

is the relative mass that TA

transports from Ri to Rj .

The σ-algebra C is generated by the allowed cylinder sets.



Lebesgue is ergodic and mixing

Theorem: For every hyperbolic toral automorphism based on a
primitive matrix A, Lebesgue measure is ergodic and mixing.

Proof: We only give the proof for dimension 2. The higher
dimensional case goes similarly. Consider the Fourier modes (also
called characters)

χ(m,n) : T2 → C, χ(m,n)(x , y) = e2πi(mx+ny).

These form an orthogonal system (w.r.t. 〈ϕ,ψ〉 =
∫
ϕψ dλ),

spanning L2(λ) for Lebesgue measure λ.



Lebesgue is ergodic

We have for the Koopman operator

UTA
χ(m,n)(x , y) = χ(m,n) ◦ TA(x , y)

= e2πi(am+cn)x+(bm+dn)y)

= χAt(m,n)(x , y).

In other words, UTA
maps the character with index (m, n) to the

character with index At(m, n), where At is the transpose matrix.

Assume that ϕ is a TA-invariant L
2-function. Write it as Fourier

series:
ϕ(x , y) =

∑
m,n∈Z

ϕ(m,n)χ(m,n)(x , y),

where the Fourier coe�cients ϕm,n → 0 as |m|+ |n| → ∞.



Lebesgue is ergodic

By TA-invariance, we have

ϕ(x , y) = ϕ ◦ TA(x , y) =
∑
m,n∈Z

ϕ(m,n)χAt(m,n)(x , y),

and hence ϕ(m,n) = ϕAt(m,n) for all m, n. For (m, n) = (0, 0) this is
not a problem, but this only produces constant functions.

If (m, n) 6= (0, 0), then the At-orbit of (m, n), so in�nitely many
equal Fourier coe�cients

ϕ(m,n) = ϕAt(m,n) = ϕ(At)2(m,n) = ϕ(At)3(m,n) = ϕ(At)4(m,n) . . .

As the Fourier coe�cients converge to zero as |m|+ |n| → ∞, they
all must be equal to zero, and hence ϕ is a constant function. This
proves ergodicity.



Lebesgue is mixing

For the proof of mixing, we need a lemma, which we give without
proof.

Lemma: A transformation (X ,T , µ) is mixing if and only if for all
ϕ,ψ in a complete orthogonal system spanning L2(µ), we have∫

X

ϕ ◦ TN(x)ψ(x) dµ→
∫
X

ϕ(x) dµ ·
∫
X

ψ(x) dµ

as N →∞.



Lebesgue is mixing

To use this lemma on ϕ = χ(m,n) and ψ = χ(k,l), we compute∫
X

χ(m,n) ◦ TN
A (x)χ(k,l)(x) dλ =

∫
X

χ(At)N(m,n)χ(k,l)(x) dλ.

I If (m, n) = (0, 0), then (At)N(m, n) = (0, 0) = (m, n) for all
N. Hence, the integral is non-zero only if (k , l) = (0, 0), but
then∫
X

χ(0,0) ◦ TN
A (x)χ(0,0)(x) dλ = 1 =

∫
X

χ(0,0) dλ

∫
X

χ(0,0) dλ.

If (k , l) 6= (0, 0), then∫
X

χ(0,0) ◦ TN
A (x)χ(k,l)(x) dλ = 0 =

∫
X

χ(0,0) dλ

∫
X

χ(0,0)(x) dλ.



Lebesgue is mixing

Repeat from previous slide:∫
X

χ(m,n) ◦ TN
A (x)χ(k,l)(x) dλ =

∫
X

χ(At)N(m,n)χ(k,l)(x) dλ.

I If (m, n) 6= (0, 0), then, regardless what (k , l) is, there is N
such that (At)M(m, n) 6= (k , l) for all M ≥ N. Therefore∫
X

χ(m,n) ◦ TM(x)χ(k,l)(x) dλ = 0 =

∫
X

χ(m,n) dλ

∫
X

χ(k,l) dλ.

The lemma therefore guarantees mixing.

Exercise: Where is hyperbolicity used in this proof. Is every
non-hyperbolic toral automorphism ergodic and/or mixing?
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