Toral Automorphisms

In this lecture we study hyperbolic toral automorphisms $T_{A}: \mathbb{T}^{d} \rightarrow T^{d}$ on the d-dimensional torus $\mathbb{T}^{d}=\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}$, which are basically a linear map given by a matrix A, taken $(\bmod 1)$ to fit on the torus.

The best know example is Arnol'd Catmap:

$$
T_{C}(x, y)=C\binom{x}{y} \quad(\bmod 1) \quad \text { for the matrix } C=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) .
$$

Figure: Arnol'd Catmap.

Toral Automorphisms

The name catmap comes solely from the fact that Vladimir Arnold used this picture of a cat's head in his book to illustrate the map.

Figure: Catmap taken from Jason Davies' page, https://www.jasondavies.com/catmap/ (check iterate 348)

Although this map is extremely chaotic (unpredictable dynamics) and the cat is distorted beyond recognition, on the web you see simulations where the cat returns.

Exercise 10.1: Show that every rational point $x \in \mathbb{T}^{2}$ is periodic under T_{C}. Explain why this implies that the cat returns.

Toral Automorphisms

Definition: A toral automorphism $T: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ is an invertible linear map on the (d-dimensional) torus \mathbb{T}^{d}. Each such T is of the form $T_{A}(x)=A x(\bmod 1)$, where the matrix A satisfies:

- A is an integer matrix with $\operatorname{det}(A)= \pm 1$;
- If the eigenvalues of A are not on the unit circle, then the toral automorphism is called hyperbolic.
For example, the eigenvalues of C are $\lambda_{ \pm}=(3 \pm \sqrt{5}) / 2$, and the corresponding eigenspaces $E_{ \pm}$are spanned $(-1,(\sqrt{5}+1) / 2)^{t}$ and $(1,(\sqrt{5}-1) / 2)^{t}$. These are orthogonal (naturally, since C is symmetric), and have irrational slopes, so they wrap densely around the torus.

Toral Automorphisms

Properties of T_{A} are:

- To avoid degenerate examples including $A=I d$, we assume that A is primitive, i.e., A^{n} is strictly positive for some $n \geq 1$.
- A preserves the integer lattice \mathbb{Z}^{d}, so T_{A} is well-defined and continuous.
- $\operatorname{det}(A)= \pm 1$, so Lebesgue measure m is preserved (both by A and T_{A}). Also A and T_{A} are invertible, and A^{-1} is still an integer matrix (so T_{A}^{-1} is well-defined and continuous too).
- T_{A} fixes the origin, so δ_{0} is an invariant measure, too. There are in fact many invariant measures (the Choquet simplex is Poulsen!).

Markov Partitions

Somewhat easier to treat than the catmap is T_{A} for $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$, which is an orientation reversing matrix with $A^{2}=C$.
The map T_{A} has a Markov partition, that is a partition $\left\{R_{i}\right\}_{i=1}^{N}$ for sets such that

1. The R_{i} have disjoint interiors and $\cup_{i} R_{i}=\mathbb{T}^{d}$;
2. If $T_{A}\left(R_{i}\right) \cap R_{j} \neq \emptyset$, then $T_{A}\left(R_{i}\right)$ stretches across R_{j} in the unstable direction (i.e., the direction spanned by the unstable eigenspaces of A).
3. If $T_{A}^{-1}\left(R_{i}\right) \cap R_{j} \neq \emptyset$, then $T_{A}^{-1}\left(R_{i}\right)$ stretches across R_{j} in the stable direction (i.e., the direction spanned by the stable eigenspaces of A).

Markov Partitions

Figure: The Markov partition for T_{A}. The arrows indicate the stable and unstable directions at $(0,0)$.

In fact, every hyperbolic toral automorphism has a Markov partition, but in general they are fiendishly difficult to find explicitly.

Markov Partitions

Figure: The Markov partition of Arnol'd catmap.

Markov Partitions

The corresponding transition matrix is

$$
B=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \text { where } B_{i j}= \begin{cases}1 & \text { if } T_{A}\left(R_{i}\right) \cap R_{j} \neq \emptyset \\
0 & \text { if } T_{A}\left(R_{i}\right) \cap R_{j}=\emptyset\end{cases}
$$

The characteristic polynomial of B is

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =-\lambda^{3}+2 \lambda+1 \\
& =-(\lambda+1)\left(\lambda^{2}-\lambda-1\right) \\
& =-(\lambda+1) \operatorname{det}(A-\lambda I) .
\end{aligned}
$$

Note that B has the eigenvalues of A (no coincidence!), together with $\lambda=-1$.

Exercise 10:2 Find the transition matrix of the (same) Markov partition for the catmap T_{C}.

Markov Partitions

The transition matrix B generates a subshift of finite type:

$$
\Sigma_{B}=\left\{\left(x_{i}\right)_{i \in \mathbb{Z}}: x_{i} \in\{1,2,3\}, B_{x_{i} x_{i+1}}=1 \forall i \in \mathbb{Z}\right\}
$$

equipped with the left-shift σ. That is, Σ_{B} contains only sequences in which each $x_{i} x_{i+1}$ indicate transitions from Markov partition elements that are allowed by the $\operatorname{map} T_{A}$. It can be shown that ($\left.\mathbb{T}^{d}, \mathcal{B}, T_{A}, L e b\right)$ is isomorphic to the shift space $\left(\Sigma_{B}, \mathcal{C}, \sigma, \mu\right)$ where

$$
\mu\left(\left[x_{k} x_{k+1} \ldots x_{n}\right]\right)=m_{x_{k}} \Pi_{x_{k} x_{k+1}} \Pi_{x_{k+1} x_{k+2}} \ldots \Pi_{x_{n-1} x_{n}}
$$

for $\left.m_{i}=\operatorname{Leb}\left(R_{i}\right), i=1, \ldots, d\right\}$, and weighted transition matrix Π where

$$
\Pi_{i j}=\frac{\operatorname{Leb}\left(T_{B}\left(R_{i}\right) \cap R_{j}\right)}{\operatorname{Leb}\left(R_{i}\right)} \quad \begin{aligned}
& \text { is the relative mass that } T_{A} \\
& \text { transports from } R_{i} \text { to } R_{j}
\end{aligned}
$$

The σ-algebra \mathcal{C} is generated by the allowed cylinder sets.

Lebesgue is ergodic and mixing

Theorem: For every hyperbolic toral automorphism based on a primitive matrix A, Lebesgue measure is ergodic and mixing.

Proof: We only give the proof for dimension 2. The higher dimensional case goes similarly. Consider the Fourier modes (also called characters)

$$
\chi_{(m, n)}: \mathbb{T}^{2} \rightarrow \mathbb{C}, \quad \chi_{(m, n)}(x, y)=e^{2 \pi i(m x+n y)}
$$

These form an orthogonal system (w.r.t. $\langle\varphi, \psi\rangle=\int \varphi \bar{\psi} d \lambda$), spanning $L^{2}(\lambda)$ for Lebesgue measure λ.

Lebesgue is ergodic

We have for the Koopman operator

$$
\begin{aligned}
U_{T_{A}} \chi_{(m, n)}(x, y) & =\chi_{(m, n)} \circ T_{A}(x, y) \\
& =e^{2 \pi i(a m+c n) x+(b m+d n) y)} \\
& =\chi_{A^{t}(m, n)}(x, y)
\end{aligned}
$$

In other words, $U_{T_{A}}$ maps the character with index (m, n) to the character with index $A^{t}(m, n)$, where A^{t} is the transpose matrix.

Assume that φ is a T_{A}-invariant L^{2}-function. Write it as Fourier series:

$$
\varphi(x, y)=\sum_{m, n \in \mathbb{Z}} \varphi_{(m, n)} \chi_{(m, n)}(x, y)
$$

where the Fourier coefficients $\varphi_{m, n} \rightarrow 0$ as $|m|+|n| \rightarrow \infty$.

Lebesgue is ergodic

By T_{A}-invariance, we have

$$
\varphi(x, y)=\varphi \circ T_{A}(x, y)=\sum_{m, n \in \mathbb{Z}} \varphi_{(m, n)} \chi_{A^{t}(m, n)}(x, y)
$$

and hence $\varphi_{(m, n)}=\varphi_{A^{t}(m, n)}$ for all m, n. For $(m, n)=(0,0)$ this is not a problem, but this only produces constant functions.

If $(m, n) \neq(0,0)$, then the A^{t}-orbit of (m, n), so infinitely many equal Fourier coefficients

$$
\varphi_{(m, n)}=\varphi_{A^{t}(m, n)}=\varphi_{\left(A^{t}\right)^{2}(m, n)}=\varphi_{\left(A^{t}\right)^{3}(m, n)}=\varphi_{\left(A^{t}\right)^{4}(m, n)} \cdots
$$

As the Fourier coefficients converge to zero as $|m|+|n| \rightarrow \infty$, they all must be equal to zero, and hence φ is a constant function. This proves ergodicity.

Lebesgue is mixing

For the proof of mixing, we need a lemma, which we give without proof.

Lemma: A transformation (X, T, μ) is mixing if and only if for all φ, ψ in a complete orthogonal system spanning $L^{2}(\mu)$, we have

$$
\int_{X} \varphi \circ T^{N}(x) \overline{\psi(x)} d \mu \rightarrow \int_{X} \varphi(x) d \mu \cdot \int_{X} \overline{\psi(x)} d \mu
$$

as $N \rightarrow \infty$.

Lebesgue is mixing

To use this lemma on $\varphi=\chi_{(m, n)}$ and $\psi=\chi_{(k, l)}$, we compute

$$
\int_{X} \chi_{(m, n)} \circ T_{A}^{N}(x) \overline{\chi_{(k, l)}(x)} d \lambda=\int_{X} \chi_{\left(A^{t}\right)^{N}(m, n)} \overline{\chi_{(k, l)}(x)} d \lambda .
$$

- If $(m, n)=(0,0)$, then $\left(A^{t}\right)^{N}(m, n)=(0,0)=(m, n)$ for all N. Hence, the integral is non-zero only if $(k, l)=(0,0)$, but then

$$
\int_{X} \chi_{(0,0)} \circ T_{A}^{N}(x) \overline{\chi_{(0,0)}(x)} d \lambda=1=\int_{X} \chi_{(0,0)} d \lambda \int_{X} \overline{\chi_{(0,0)}} d \lambda
$$

If $(k, I) \neq(0,0)$, then

$$
\int_{X} \chi_{(0,0)} \circ T_{A}^{N}(x) \overline{\chi_{(k, l)}(x)} d \lambda=0=\int_{X} \chi_{(0,0)} d \lambda \int_{X} \overline{\chi_{(0,0)}(x)} d \lambda
$$

Lebesgue is mixing

Repeat from previous slide:

$$
\int_{X} \chi_{(m, n)} \circ T_{A}^{N}(x) \overline{\chi_{(k, l)}(x)} d \lambda=\int_{X} \chi_{\left(A^{t}\right)^{N}(m, n)} \overline{\chi_{(k, l)}(x)} d \lambda .
$$

- If $(m, n) \neq(0,0)$, then, regardless what (k, l) is, there is N such that $\left(A^{t}\right)^{M}(m, n) \neq(k, l)$ for all $M \geq N$. Therefore

$$
\int_{X} \chi_{(m, n)} \circ T^{M}(x) \overline{\chi_{(k, l)}(x)} d \lambda=0=\int_{X} \chi_{(m, n)} d \lambda \int_{X} \overline{\chi_{(k, l)}} d \lambda
$$

The lemma therefore guarantees mixing.

Lebesgue is mixing

Repeat from previous slide:

$$
\int_{X} \chi_{(m, n)} \circ T_{A}^{N}(x) \overline{\chi_{(k, l)}(x)} d \lambda=\int_{X} \chi_{\left(A^{t}\right)^{N}(m, n)} \overline{\chi_{(k, l)}(x)} d \lambda .
$$

- If $(m, n) \neq(0,0)$, then, regardless what (k, l) is, there is N such that $\left(A^{t}\right)^{M}(m, n) \neq(k, l)$ for all $M \geq N$. Therefore

$$
\int_{X} \chi_{(m, n)} \circ T^{M}(x) \overline{\chi_{(k, l)}(x)} d \lambda=0=\int_{X} \chi_{(m, n)} d \lambda \int_{X} \overline{\chi_{(k, l)}} d \lambda
$$

The lemma therefore guarantees mixing.
Exercise: Where is hyperbolicity used in this proof. Is every non-hyperbolic toral automorphism ergodic and/or mixing?

