In this lecture we study the relation between roperties of measure preserving systems, most of which we introduced before: A measure preserving system $(X, \mathcal{B}, \mu; \mathcal{T})$ is

- Bernoulli if it is isomorphic to a two-sided Bernoulli shift.
- strong mixing if for all $A, B \in \mathcal{B}$

$$\mu(T^{-n}(A)\cap B)-\mu(A)\mu(B)\to 0.$$

• weak mixing if for all $A, B \in \mathcal{B}$ the average

$$\frac{1}{n}\sum_{i=0}^{n-1}|\mu(T^{-i}(A)\cap B)-\mu(A)\mu(B)|\to 0.$$

- ergodic if $T^{-1}(A) = A \mod \mu$ implies $\mu(A) = 0$ or $\mu(A^c) = 0$.
- ▶ recurrent if for all $A \in \mathcal{B}$ with $\mu(A) > 0$ there is $n \ge 1$ such that $\mu(T^n(A) \cap A) > 0$.

First an alternative way of stating ergodicity:

Lemma: A probability preserving dynamical system $(X, \mathcal{B}, \mathcal{T}, \mu)$ is ergodic if and only if

$$\frac{1}{n}\sum_{i=0}^{n-1}\mu(T^{-i}(A)\cap B)-\mu(A)\mu(B)\to 0 \text{ as } n\to\infty,$$

for all $A, B \in \mathcal{B}$. (Compared to weak mixing, note the absence of absolute value bars.)

Proof: Assume that T is ergodic, so by Birkhoff's Ergodic Theorem $\frac{1}{n}\sum_{i=0}^{n-1} 1_A \circ T^i(x) \to \mu(A) \mu$ -a.e. Multiplying by 1_B gives

$$\frac{1}{n}\sum_{i=0}^{n-1}\mathbf{1}_A\circ T^i(x)\mathbf{1}_B(x)\to \mu(A)\mathbf{1}_B(x)\quad \mu\text{-a.e.}$$

Integrating over x (using the Dominated Convergence Theorem to swap limit and integral), gives

$$\lim_{n} \frac{1}{n} \sum_{i=0}^{n-1} \int_{X} 1_{A} \circ T^{i}(x) 1_{B}(x) \ d\mu = \mu(A) \mu(B).$$

Conversely, assume that $A = T^{-1}A$ and take B = A. Then we obtain $\mu(A) = \frac{1}{n} \sum_{i=0}^{n-1} \mu(A \cap T^{-i}(A)) \rightarrow \mu(A)^2$, hence $\mu(A) \in \{0, 1\}$.

Theorem We have the implications:

 $\begin{array}{l} \textit{Bernoulli} \Rightarrow \textit{mixing} \Rightarrow \textit{weak mixing} \Rightarrow \textit{ergodic} \Rightarrow \\ \textit{recurrent.} \end{array}$

None of the reverse implications holds.

Example We know already that irrational rotations $R_{\alpha} : \mathbb{S}^1 \to \mathbb{S}^1$ are ergodic (even uniquely ergodic). Let us show R_{α} is not mixing: Take an interval A of length $\frac{1}{4}$. There are infinitely many n such that $R_{\alpha}^{-n}(A) \cap A = \emptyset$, so

$$\liminf_n \mu(R^{-n}(A) \cap A) = 0 \neq (\frac{1}{4})^2.$$

Circle rotations are not weak mixing either.

Proof Bernoulli \Rightarrow mixing holds for any pair of cylinder sets $Z = Z_{[a,b]}, Z' = Z_{[c,d]}$ because $\mu(\sigma^{-n}(Z) \cap Z') = \mu(Z)\mu(Z')$ for n > d - a. The property carries over to all measurable sets by the Kolmogorov Extension Theorem.

 $Mixing \Rightarrow weak mixing$ is immediate from the definition.

Weak mixing \Rightarrow ergodic is immediate from the characterization of ergodicity in the previous lemma.

Ergodic \Rightarrow recurrent. If $B \in \mathcal{B}$ has positive measure, then $A := \bigcup_{i \in \mathbb{N}} T^{-i}(B)$ is *T*-invariant up to a set of measure 0, see the Poincaré Recurrence Theorem. By ergodicity, $\mu(A) = 1$, and thus μ -a.e. $x \in B$ returns to *B*.

An example of a recurrent but not ergodic transformation is the identity map $T : [0, 1] \rightarrow [0, 1]$ with $\mu =$ Lebesgue.

There are standard examples to show that

- ► weak mixing ⇒ mixing. The first counter-example in the literature is Chácon's cutting and stacking example.
- ▶ mixing ⇒ Bernoulli.

But I will not cover these examples in class. (See the notes for Chacon's cutting and stacking example.)