
Entropy

In this lecture we start discussing the notion of entropy. In

dynamical systems, there is topological entropy (which is

independent of invariant measures), and in ergodic theory there is

measure-theoretic entropy, also misnamed as metric entropy. It

depends on the choice of invariant measure µ.

Topological and measure-theoretical entropy are related by the

Variation Principle which say that

htop(T ) = sup{hµ(T ) : µ is T -invariant probability measure}

If µ is such that hµ(T ) = htop(T ), then µ is called a measure of

maximal entropy.

We give some history �rst.



Entropy

I Entropy was �rst used by 19th century physicist Rudolf

Clausius and Ludwig Boltzmann as part of thermodynamics.
I Andrej Kolmogorov introduced a mathematical version in

probability in the 1950s, and used it as isomorphism invariant.

This is the way we still de�ne it in ergodic theory.
I Around the same time, Claude Shannon used it in information

theory.
I Major work in 1960s by Yakov Sina�� on measure-theoretic

entropy and generators.
I Topological entropy was introduced in 1969 by Roy Adler,

Alan Konheim and Harry McAndrew.
I In the early 1970s, Rufus Bowen and E�m Dinaburg

independently introduced a user-friendlier version of

topological entropy. Around this time, the Variational Principle

was proved.
I In 1974 Don Ornstein published his theorem that entropy is

complete invariant for two-sided Bernoulli shifts.



Entropy
The current mathematical de�nition has very little to do anymore

with the original de�nition from thermodynamics. Only it still

expresses the amount of disorder in the system.

I For the circle rotation (S1,B, µ,Rα) with Lebesgue measure,

htop(Rα) = hµ(Rα) = 0.

I For the doubling map (S1,B, µ,T ) with Lebesgue measure,

htop(T ) = hµ(T ) = log 2.

I For the Bernoulli shift ({1, . . . ,N}N orZ,B, µp, σ) with
probability vector p = (p1, . . . , pN),

htop(σ) = logN ≥ hµp(σ) = −
N∑
i=1

pi log pi .



Jensen's Inequality

A function f : R→ R is concave if

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y) (1)

for all x , y ∈ R and α ∈ [0, 1].

If f : R→ R is C 2 and f ′′ ≤ 0, then f is concave.

Theorem: For every strictly concave function f : [0,∞)→ R, and
all αi > 0,

∑n
i=1

αi = 1 and xi ∈ [0,∞) we have

n∑
i=1

αi f (xi ) ≤ f (
n∑

i=1

αixi ), (2)

with equality if and only if all the xi are the same.



Jensen's Inequality

Proof of Jensen's Inequality: We prove this by induction on n.
For n = 2 it is simply (1). So assume that (2) holds for some n.
For n + 1, take αi > 0 and

∑n+1

i=1
αi = 1 and write B =

∑n
i=1

αi .

f (
n+1∑
i=1

αixi ) = f (B
n∑

i=1

αi

B
xi + αn+1xn+1)

≥ Bf (
n∑

i=1

αi

B
xi ) + αn+1f (xn+1) by (1)

≥ B
n∑

i=1

αi

B
f (xi ) + αn+1f (xn+1) by (2) for n

=
n+1∑
i=1

αi f (xi )

Equality also carries over by induction. If xi are all equal for i ≤ n,
then (1) for n + 1 is an equality only if xn+1 =

∑n
i=1

αi
B xi = x1.



Jensen's Inequality

For measure-theoretic entropy, the function ϕ : [0, 1]→ R de�ned

as

ϕ(x) = −x log x ϕ(0) = ϕ(1) = 0

is important. Compute

ϕ′(x) = −1− log x , ϕ′′(x) = −1

x
< 0,

so ϕ is concave.

By Jensen's Inequality (with all αi =
1

N )

−
N∑
i=1

pi log pi = N
N∑
i=1

1

N
ϕ(pi ) ≤ Nϕ(

1

N

N∑
i=1

pi ) = logN,

with equality if and only if all pi are the same.



Entropy

Let (X ,B, µ) be a probability measure space. We call a collection

P = {Pi} Pi measurable

a (measurable) partition if all Pi 's are disjoint, and X = ∪iPi .

We say that a partition P is �ner than Q (written as P � Q) if
every P ∈ P is contained in some Q ∈ Q. For example, the �nest

possible partition is when if Pi = {i}, i ∈ X ; this is the point

partition. It is (uncountably) in�nite if X is. The coarsest partition

P = {X} is called the trivial partition.

Given two partitions P and Q, the joint is

P ∨Q := {P ∩ Q : P ∈ P,Q ∈ Q};

This joint is �ner than both P and Q.



Entropy

If T : X → X is measurable, then the n-th joint of P is de�ned as

Pn =

{∨n−1
k=−n T

−kP. if T is invertible,∨n−1
k=0

T−kP. if T is non-invertible,

For example, if T : S1 → S1 is the doubling map (non-invertible),

and

P = {[0, 1
2
), [

1

2
, 1)}

then

Pn = {[i/2n, (i + 1)/2n), i = 0, . . . , 2n − 1} so #Pn = 2n.

A partition is generating for T if for almost all x 6= y ∈ X , there is

n such that x and y lie in di�erent elements of Pn.



Entropy

Given a �nite partition P of a probability space (X , µ), let

Hµ(P) =
∑
P∈P

ϕ(µ(P)) = −
∑
P∈P

µ(P) log(µ(P)), (3)

where we can ignore the partition elements with µ(P) = 0 because

ϕ(0) = 0. For a T -invariant probability measure µ on (X ,B,T ),
and a partition P, de�ne the entropy of µ w.r.t. P as

hµ(T ,P) = lim
n→∞

1

n
Hµ(

n−1∨
k=0

T−kP). (4)

Finally, the measure theoretic entropy of µ is

hµ(T ) = sup{hµ(T ,P) : P is a �nite partition of X}. (5)



Fekete's Lemma

For this de�nition to make sense, we need to verify that the limit in

(4) exists. For this we need:

De�nition: We call a real sequence (an)n≥1 subadditive if

am+n ≤ am + an for all m, n ∈ N.

A positive sequence (an)n≥1 submultiplicative if

am+n ≤ am · an for all m, n ∈ N.

NB: If (an) is submultiplicative, then (log an) is subadditve.

Fekete's Lemma: If (an)n≥1 is subadditive, then

lim
n

an
n

= inf
r≥1

ar
r
.



Fekete's Lemma

Proof of Fekete's Lemma: Every integer n can be written

uniquely as n = p · q + r for 0 ≤ r < q. Therefore

lim sup
n→∞

an
n

= lim sup
p→∞

ap·q+r

p · q + r
≤ lim sup

p→∞

paq + ar
p · q + r

=
aq
q
.

This holds for all q ∈ N, so we obtain

inf
q

aq
q
≤ lim inf

n

an
n
≤ lim sup

n

an
n
≤ inf

q

aq
q
,

as required.



Fekete's Lemma

Call an = Hµ(
∨n−1

k=0
T−kP). Then (Prop. 13 of the Class Notes)

am+n = Hµ(
m+n−1∨
k=0

T−kP)

≤ Hµ(
m−1∨
k=0

T−kP) + Hµ(
m+n−1∨
k=m

T−kP)

by T -invariance of µ = Hµ(
m−1∨
k=0

T−kP) + Hµ(
n−1∨
k=0

T−kP)

= am + an.

Therefore Hµ(
∨n−1

k=0
T−kP) is subadditive, and the existence of

the limit hµ(T ,P) = limn
1

nHµ(
∨n−1

k=0
T−kP) follows.



Entropy

The second natural question about computing entropy:

How can one possibly consider all partitions of X?

By the next theorem, which we state without proof (see Theorem

22 in the Class Notes), we can reduce �all partitions� to �a single

generating partition�:

Theorem (Kolmogorov-Sina��): Let (X ,B,T , µ) be a

measure-preserving dynamical system. If partition P is such that{ ∨∞
j=0

T−kP generates B if T is non-invertible,∨∞
j=−∞ T−kP generates B if T is invertible,

then hµ(T ) = hµ(T ,P).



Entropy

Now a good property of entropy:

Theorem: Two isomorphic measure preserving systems have the

same entropy.

Indeed, let (X ,B,T , µ) and (Y , C,S , ν) have full-measured sets

X ′ ⊂ X , Y ′ ⊂ Y and a bi-measurable invertible measure-preserving

map φ : X ′ → Y ′ such that

(X ′,B, µ) T−→ (X ′,B, µ)

φ ↓ ↓ φ

(Y ′, C, ν) S−→ (Y ′, C, ν)

commutes, then hµ(T ) = hν(S).

This holds, because the bi-measurable measure-preserving map φ
preserves all the quantities involved in (3)-(5), including the class of

partitions for both systems.



Entropy

For two-sided (i.e., invertible) Bernoulli shifts

(X = {0, . . . ,N}Z,B, µp) based on the probability vector

p = (p1, . . . , pN}, the cylinder partition

P = {[i ] : i = 0, . . . ,N} is generating.

Lemma: For the cylinder partition P

hµp(σ,P) = −
∑
i

pi log pi .

By the Kolmogorov-Sina�� Theorem, this generating partition

su�ces to compute the entropy.

Theorem (Ornstein 1974): Two two-sided Bernoulli shifts (X , µp, σ)
and (X ′, µp′ , σ) are isomorphic if and only if hµp(σ) = hµp′ (σ).



Entropy

Let us now compute that
∨n−1

k=0
T−kP. = −

∑
i pi log pi , just for

two symbols, and using the cylinder partition P = {[0], [1]}, which
can denote �head� and �tail� in coin-�ips.

P(k heads in n �ips) =

(
n

k

)
pk(1− p)n−k ,

so by full probability:

n∑
k=0

(
n

k

)
pk(1− p)n−k = 1.

Here
(n
k

)
= n!

k!(n−k)! are the binomial coe�cients, and k
(n
k

)
= n!

(k−1)!(n−k)! = n (n−1)!
(k−1)!(n−k)! = n

(n−1
k−1
)

(n − k)
(n
k

)
= n!

(k)!(n−k−1)! = n (n−1)!
k!(n−k−1)! = n

(n−1
k

) (6)



Entropy
We compute.

Hµ(
n−1∨
k=0

σ−kP) = −
1∑

x0,...,xn−1=0

µ([x0, . . . , xn−1]) logµ([x0, . . . , xn−1])

= −
1∑

x0,...,xn−1=0

n−1∏
j=0

ρ(xj) log
n−1∏
j=0

ρ(xj)

= −
n∑

k=0

(
n

k

)
pk(1− p)n−k log

(
pk(1− p)n−k

)
= −

n∑
k=0

(
n

k

)
pk(1− p)n−kk log p

−
n∑

k=0

(
n

k

)
pk(1− p)n−k(n − k) log(1− p)

In the �rst sum, the term k = 0 gives zero, as does the term k = n
for the second sum.



Entropy
Thus we leave out these terms and rearrange by (6):

Hµ(
n−1∨
k=0

σ−kP) = −p log p
n∑

k=1

k

(
n − 1

k

)
pk−1(1− p)n−k

−(1− p) log(1− p)
n−1∑
k=0

(n − k)

(
n

k

)
pk(1− p)n−k−1

= −p log p
n∑

k=1

n

(
n − 1

k − 1

)
pk−1(1− p)n−k

−(1− p) log(1− p)
n−1∑
k=0

n

(
n − 1

k

)
pk(1− p)n−k−1

= n (−p log p − (1− p) log(1− p)) .

P is generating, so by the Kolomogorov-Sina�� Theorem,

hµ(σ) = hµ(σ,P) = lim
n

1

n
Hµ(

n−1∨
k=0

σ−kP) = −p log p − (1− p) log(1− p).


