
Topological Entropy
In this lecture we de�ne and give the basic properties of topological

entropy. We start with the original de�nition due to Adler,

Konheim and McAndrew. It has much in common with

measure-theoretic entropy, but instead of partitions it uses open

covers for compact metric space.

De�nition: We say that U = {Ui} is an open ε-cover if all Ui are

open sets of diameter ≤ ε and X ⊂
⋃
i Ui .

Given two open covers U and V, the joint

U ∨ V := {U ∩ V : U ∈ U ,V ∈ V}

is an open cover again.

Given a continuous map T : X → X , the n-th joint of U is

Un :=
n−1∨
i=0

T−i (U).

NB: Without continuity of T , T−1(U) need not be an open cover.



Topological Entropy

A subcover of U is a subcollection of U that still covers X . Let

N (U) = min{#V : V is subcover of U}.

Note that by compactness of X , every open cover has a �nite

subcover, so N (U) <∞.

De�ne the topological entropy as

htop(T ) = lim
ε→0

sup
U

lim
n

1

n
logN (Un), (1)

where the supremum is taken over all open ε-covers U .

Because N (U ∨ V) ≤ N (U)N (V), the sequence (logN (Un))n∈N is

subadditive, and limn
1

n
logN (Un) exists by Fekete's Lemma.



Topological Entropy

Let T : X → X be a continuous map on a compact metric space X .

Lemma 1

I htop(T
k) = khtop(T ) for k ≥ 0.

I If T is invertible, then htop(T
−1) = htop(T ).



Topological Entropy

Proof: Let U be an open cover of X and V = Uk . Then
Ukn = (V)n, and the exponential growth-rates:

htop(T
k ,V) = khtop(T ,U).

Because there might be open covers V that cannot be written as

V = Uk , this only proves htop(T
k) ≥ khtop(T ).

But V = Uk re�nes U , so that htop(T
k ,U) ≤ htop(T

k ,V).
Therefore also htop(T

k) ≤ khtop(T ).

Exercise: Prove the second statement: If T is invertible, then

htop(T
−1) = htop(T ).



Topological Entropy

Two maps (X ,T ) and (Y , S) are conjugate if there is a

homeomorphism h : X → Y such that h ◦ T = S ◦ h. They are

called semi-conjugate (and (Y , S) is a topological factor of (X , S))
if the map h is only continuous (and not necessarily with a

continuous inverse).

Lemma 2 If (Y , S) is semi-conjugate to (X ,T ), then
htop(S) ≤ htop(T ). In particular, conjugate systems (on compact

spaces!) have the same entropy.



Topological Entropy

Proof: Let V be an open cover of Y . Then U := h−1(V) is an
open over of X . Furthermore, indicating the map used as subscript:

h−1(VnS) = (UT )n and N (Vn) = N (Un).

Therefore htop(T ,U) = htop(S ,V).

Because there are potentially open covers U on X that do not

come from some open V of Y (for example,

V ′ = V ∨ {�xed ε-cover}), we have

htop(T ) ≥ htop(S).

If h is a conjugacy, then we can reverse the role of T and S and get

the other inequality too.



Topological Entropy of Interval Maps

Let T : [0, 1]→ [0, 1] be an interval map. A maximal piece on

which T is monotone is called a lap or branch. Unimodal maps are

maps with two laps. The lap-number is denoted as `(T ).
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Figure: Unimodal maps: a quadratic map and a tent map.

The variation of T is de�ned as

Var(T ) = sup
0≤x0<... xN≤1

N∑
i=1

|T (xi )− T (xi−1)|,

where the supremum runs over all �nite collections of points in

[0, 1].



Topological Entropy of Interval Maps

There are various shortcuts to compute the entropy of a continuous

map T : [0, 1]→ [0, 1]. The following result is due to Misiurewicz

& Szlenk:

Theorem Let T : [0, 1]→ [0, 1] have �nitely many laps. Then

htop(T ) = lim
n→∞

1

n
log `(T n)

= lim sup
n→∞

1

n
log#{clusters of n-periodic points}

= max{0, lim
n→∞

1

n
log Var(T n)}.

where two n-periodic points are in the same cluster if they belong

to the same lap of T n.



Topological Entropy of Interval Maps

Remark The identity map has one branch, consisting of

(uncountably many) �xed point, that form one cluster. The map

x 7→ x + (x/10)2 sin(π/x) mod 1 has also one branch, but with

countably many �xed point, forming one cluster. For an expanding

map, every branch can contain only one �xed point.

Remark From the variation part of the theorem, it follows

immediatley that a continuous map with slope ±s (such as a tent

map) has entropy htop(T ) = max{log s, 0}.



Topological Entropy of Interval Maps

Sketch of Proof: Since the variation of a monotone function is

given by supT − inf T , and due to the de�nition of �cluster� of

n-periodic points, we have

#{clusters of n-periodic points},Var(T n) ≤ `(T n).

For a lap J of T n, let γ := |T n(J)| be its height. We state without

proof: For every δ > 0, there is γ > 0 such that

#{J : J is a lap of T n, |T n(J)| > γ} ≥ (1− δ)n`(T n).

This means that Var(T n) ≥ γ(1− δ)n`(T n), and therefore

−2δ + lim
n→∞

1

n
log `(T n) ≤ lim

n→∞

1

n
log Var(T n) ≤ lim

n→∞

1

n
log `(T n).

Since δ is arbitrary, limn
1

n
log Var(T n) = limn

1

n
log `(T n).



Topological Entropy of Interval Maps

Proof continued: Assume further1 that there is K = K (γ) such
that ∪Ki=0

T i (J) = X for every lap of height |T n(J)| ≥ γ,

#{clusters of n + i-periodic points, 0 ≤ i ≤ K} ≥ (1− δ)n`(T n).

This implies that

−2δ + lim
n

1

n
log `(T n) ≤

lim sup
n→∞

1

n
max
0≤i≤K

log#{clusters of n + i-periodic points},

so

limn
1

n
log `(T n) = lim supn→∞

1

n
log#{clusters of n-periodic points}.

1Without proof. In fact, it is not entirely true if T has an invariant subset

attracting an open neighbourhood. But it su�ces to restrict T to its

nonwandering set, that is, the set Ω(T ) = {x ∈ X : x ∈ ∪n≥1T
n(U)) for every

neighbourhood U 3 x}, because htop(T ) = htop(T |Ω(T )).



Topological Entropy of Interval Maps

Proof continued: If ε > 0 is so small that the width of every lap is

greater than 2ε, then for every ε-cover U , every subcover of Un has

at least one element in each lap of T n. Therefore `(T n) ≤ N (Un).

On the other hand, for this ε-cover U , if N is so large that the

width of every lap of TN is smaller than every U ∈ U , then we also

have N (Un) ≤ `(T n+N). Therefore

lim
n→∞

1

n
log `(T n) ≤ htop(T ) ≤ lim

n

1

n
log `(T n+N).

This shows that htop(T ) = limn
1

n
log `(T n).

Now all limits have been shown to be the same, so the proof sketch

is complete.



Bowen's Approach

Let T be map of a compact metric space (X , d). If my eyesight is

not so good, I cannot distinguish two points x , y ∈ X if they are at

a distance d(x , y) < ε from one another. I may still be able to

distinguish there orbits, if d(T kx ,T ky) > ε for some k ≥ 0.

Hence, if I'm willing to wait n− 1 iterations, I can distinguish x and

y if

dn(x , y) := max{d(T kx ,T ky) : 0 ≤ k < n} > ε.

If this holds, then x and y are said to be (n, ε)-separated.

Among all the subsets of X of which all points are mutually

(n, ε)-separated, choose one, say En(ε), of maximal cardinality.

Then sn(ε) := #En(ε) is the maximal number of n-orbits I can

distinguish with ε-poor eyesight.



Bowen's Approach

The topological entropy is de�ned as the limit (as ε→ 0) of the

exponential growth-rate of sn(ε):

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε). (2)

Note that sn(ε1) ≥ sn(ε2) if ε1 ≤ ε2, so lim supn
1

n
log sn(ε) is a

decreasing function in ε, and the limit as ε→ 0 indeed exists.



Bowen's Approach

Instead of (n, ε)-separated sets, we can also work with

(n, ε)-spanning sets, that is, sets that contain, for every x ∈ X , a y

such that dn(x , y) ≤ ε. Due to its maximality, En(ε) is always
(n, ε)-spanning, and no proper subset of En(ε) is (n, ε)-spanning.
Set

rn(ε) = min{Fn(ε) : Fn(ε) is (n, ε)-spanning}

Each y ∈ En(ε) must have a point of an (n, ε/2)-spanning set

within an ε/2-ball (in dn-metric) around it, and by the triangle

inequality, this ε/2-ball is disjoint from ε/2-ball centred around all

other points in En(ε). Therefore,

rn(ε) ≤ sn(ε) ≤ rn(ε/2). (3)

Thus we can equally well de�ne

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log rn(ε). (4)



Bowen's Approach

Examples: Consider the β-transformation

Tβ : [0, 1)→ [0, 1), x 7→ βx (mod 1)

for some β > 1.

Take ε < 1/(2β2), and Gn = { k
βn : 0 ≤ k < βn}. Then Gn is

(n, ε)-separating, so sn(ε) ≥ βn.

On the other hand, G ′n = {2kεβn : 0 ≤ k < βn/(2ε)} is
(n, ε)-spanning, so rn(ε) ≤ βn/(2ε). Therefore

log β = lim sup
n→∞

1

n
log βn ≤ htop(Tβ) ≤ lim sup

n→∞

1

n
log βn/(2ε) = log β.

NB: the β-transformation is not continuous, but Bowen's de�nition

of entropy works.



Bowen's Approach

Examples: Circle rotations, or in general isometries, T have zero

topological entropy. Indeed, if E (ε) is an ε-separated set (or

ε-spanning set), it will also be (n, ε)-separated (or (n, ε)-spanning)
for every n ≥ 1. Hence sn(ε) and rn(ε) are bounded in n, and their

exponential growth rates are equal to zero.

Let (X , σ) be the full shifts on N symbols. Let ε > 0 be arbitrary,

and take m such that 2−m < ε. If we select a point from each

n+m-cylinder, this gives an (n, ε)-spanning set, whereas selecting a

point from each n-cylinder gives an (n, ε)-separated set. Therefore

logN = lim sup
n→∞

1

n
logNn ≤ lim sup

n→∞

1

n
log sn(ε)

≤ lim sup
n→∞

1

n
log rn(ε)

≤ lim sup
n→∞

logNn+m = logN.



Bowen's Approach

Proposition For a continuous map T on a compact metric space

(X , d), the three de�nitions of topological entropy (1), (2) and (4)

give the same outcome.

Proof: The equality of the limits (2) and (4) follows directly from

(3):

rn(ε) ≤ sn(ε) ≤ rn(ε/2).

If U is an ε-cover, every A ∈ Un can contain at most one point in

an (n, ε)-separated set, so s(n, ε) < N (Un), Therefore

lim sup
n→∞

1

n
log s(n, ε) ≤ lim

n→∞

1

n
logN (Un).



Bowen's Approach

Proof continued: In a compact metric space, every open cover U
has a number (called its Lebesgue number) such that for every

x ∈ X , there is U ∈ U such that Bδ(x) ⊂ U. Clearly δ < ε if U is

an ε-cover.

Now if an open ε-cover U has Lebesgue number δ, and E is an

(n, δ)-spanning set of cardinality #E = r(n, δ), then

X ⊂
⋃
x∈E

n−1⋂
i=0

T−i (Bδ(T
ix)).

Since each Bδ(T
i (x)) is contained in some U ∈ U , we have

N (Un) ≤ r(n, δ). Since δ → 0 as ε→ 0, also

lim
ε→0

lim
n

1

n
logN (Un) ≤ lim

δ→0

lim sup
n

1

n
log r(n, δ).

This completes the proof.


