Topological Entropy

In this lecture we define and give the basic properties of topological
entropy. We start with the original definition due to Adler,
Konheim and McAndrew. It has much in common with
measure-theoretic entropy, but instead of partitions it uses open
covers for compact metric space.

Definition: We say that & = {U;} is an open e-cover if all U; are
open sets of diameter < e and X C |J; U;.

Given two open covers U and V), the joint
Uvy:={Unv:Uel,VvV eV}
is an open cover again.

Given a continuous map T : X — X, the n-th joint of U is
n—1 )
un=\/ 7).
i=0

NB: Without continuity of T, T~1({/) need not be an open cover.



Topological Entropy

A subcover of U is a subcollection of U/ that still covers X. Let
N(U) = min{#V : V is subcover of U}.

Note that by compactness of X, every open cover has a finite
subcover, so N(U) < co.

Define the topological entropy as

htop(T) = lim suplim % log N'(U™), (1)

e—0 U n
where the supremum is taken over all open e-covers U.

Because N (U V V) < N(U)N(V), the sequence (log N (U"))nen is
subadditive, and lim, L log N'(1") exists by Fekete's Lemma.



Topological Entropy

Let 7 : X — X be a continuous map on a compact metric space X.

Lemma 1
> htop(Tk) = khtop(T) for k Z 0.
» If T is invertible, then hyop(T 1) = heop(T).



Topological Entropy

Proof: Let U be an open cover of X and V = UX. Then
Uk = (V)", and the exponential growth-rates:

heop(T*, V) = kheop( T, U).

Because there might be open covers V that cannot be written as
V = UK, this only proves hiop( TX) > khiop(T).

But V = UK refines U, so that huop(T*,U) < hiop( T, V).
Therefore also hyop(T*) < khyop(T).

Exercise: Prove the second statement: If T is invertible, then
htop(T 1) = heop(T).



Topological Entropy

Two maps (X, T) and (Y, S) are conjugate if there is a
homeomorphism h: X — Y such that ho T = S o h. They are
called semi-conjugate (and (Y, S) is a topological factor of (X, 5))
if the map h is only continuous (and not necessarily with a
continuous inverse).

Lemma 2 If (Y, S) is semi-conjugate to (X, T), then
htop(S) < hiop(T). In particular, conjugate systems (on compact
spaces!) have the same entropy.



Topological Entropy

Proof: Let V be an open cover of Y. Then U := h~1(V) is an
open over of X. Furthermore, indicating the map used as subscript:

h=1(V) = (Ur)" and N(V") = N(U").

Therefore hop(T,U) = hop(S, V).

Because there are potentially open covers U on X that do not
come from some open V of Y (for example,
V' =V V {fixed e-cover}), we have

htop(T) = hiop(S5)-

If his a conjugacy, then we can reverse the role of T and S and get
the other inequality too.



Topological Entropy of Interval Maps

Let T :[0,1] — [0, 1] be an interval map. A maximal piece on
which T is monotone is called a lap or branch. Unimodal maps are
maps with two laps. The lap-number is denoted as ¢(T).

Figure: Unimodal maps: a quadratic map and a tent map.

The variation of T is defined as

N
Var(T) = sup Z | T(xi) — T(xi-1)l,

0<xp<... xy<1 i—1

where the supremum runs over all finite collections of points in
[0,1].



Topological Entropy of Interval Maps

There are various shortcuts to compute the entropy of a continuous
map T : [0,1] — [0,1]. The following result is due to Misiurewicz
& Szlenk:

Theorem Let T : [0,1] — [0, 1] have finitely many laps. Then
.1 n
hiop(T) = nhj;oﬁlogé(T)

: 1 e
= limsup — log #{clusters of n-periodic points}

n—oco N

.1 "
= max{O,nlemE log Var(T")}.

where two n-periodic points are in the same cluster if they belong
to the same lap of T".



Topological Entropy of Interval Maps

Remark The identity map has one branch, consisting of
(uncountably many) fixed point, that form one cluster. The map
x = x + (x/10)?sin(m/x) mod 1 has also one branch, but with
countably many fixed point, forming one cluster. For an expanding
map, every branch can contain only one fixed point.

Remark From the variation part of the theorem, it follows
immediatley that a continuous map with slope +s (such as a tent
map) has entropy hiop(T) = max{logs,0}.



Topological Entropy of Interval Maps

Sketch of Proof: Since the variation of a monotone function is
given by sup T —inf T, and due to the definition of “cluster” of
n-periodic points, we have

#{clusters of n-periodic points}, Var(T") < £(T").

For alap J of T", let v :=|T"(J)| be its height. We state without
proof: For every § > 0, there is v > 0 such that

#{J:Jisalapof T" |T"(J)| >~} > (1 —0)"(T").

This means that Var(T") > ~v(1 —0)"¢(T"), and therefore

—26 + ||m flogE(T") < I|m flogVar(T") < lim flogE(T")

n—oo n

Since § is arbitrary, lim, X log Var(T") = lim, L log ¢(T").



Topological Entropy of Interval Maps

Proof continued: Assume further! that there is K = K(v) such
that UK T/(J) = X for every lap of height |T"(J)| > 7,

#{clusters of n + i-periodic points,0 </ < K} > (1 —9)"(T").

This implies that
-2 + ||m |og oTm) <

1
limsup — max log #{clusters of n+ i-periodic points},
n—oo N O0<i<K

so
lim, & log £(T™) = limsup,,_,., % log #{clusters of n-periodic points}.

"Without proof. In fact, it is not entirely true if T has an invariant subset
attracting an open neighbourhood. But it suffices to restrict T to its
nonwandering set, that is, the set Q(T) = {x € X : x € Up>1 T"(U)) for every
neighbourhood U > x}, because hiop(T) = htop( T |o(Ty)-



Topological Entropy of Interval Maps

Proof continued: If € > 0 is so small that the width of every lap is
greater than 2¢, then for every e-cover U, every subcover of U" has
at least one element in each lap of T". Therefore ((T") < N(U").

On the other hand, for this e-cover U, if N is so large that the

width of every lap of TV is smaller than every U € U, then we also
have N'(U") < ¢(T™N). Therefore

1 1
lim ~log {(T") < heop(T) < lim log ¢(T™HM).
n

n—oo n

This shows that hyep(T) = lim, L log ¢(T").

Now all limits have been shown to be the same, so the proof sketch
is complete.



Bowen's Approach

Let T be map of a compact metric space (X, d). If my eyesight is
not so good, | cannot distinguish two points x, y € X if they are at
a distance d(x,y) < e from one another. | may still be able to
distinguish there orbits, if d(T*x, TXy) > ¢ for some k > 0.
Hence, if I'm willing to wait n — 1 iterations, | can distinguish x and
y if

da(x,y) == max{d(Tkx, T¥y) : 0 < k < n} > e.
If this holds, then x and y are said to be (n, £)-separated.
Among all the subsets of X of which all points are mutually
(n, e)-separated, choose one, say E,(¢), of maximal cardinality.

Then s,(e) := #Ep(e) is the maximal number of n-orbits | can
distinguish with e-poor eyesight.



Bowen's Approach

The topological entropy is defined as the limit (as ¢ — 0) of the
exponential growth-rate of s,(¢):

htop(T) = lim lim sup % log sn(e). (2)

e=0 pooo

Note that sp(1) > sp(e2) if 1 < €2, so limsup, % log sn(e) is a
decreasing function in ¢, and the limit as ¢ — 0 indeed exists.



Bowen's Approach

Instead of (n, £)-separated sets, we can also work with
(n,e)-spanning sets, that is, sets that contain, for every x € X, a y
such that d,(x,y) < e. Due to its maximality, E,(¢) is always
(n,e)-spanning, and no proper subset of E,(¢) is (n, €)-spanning.
Set

ra(€) = min{Fy(e) : Fa(e) is (n,e)-spanning}

Each y € E,(¢) must have a point of an (n,e/2)-spanning set
within an ¢/2-ball (in dp-metric) around it, and by the triangle
inequality, this €/2-ball is disjoint from ¢/2-ball centred around all
other points in Ep(g). Therefore,

rn(€) < sp(e) < ra(e/2). (3)

Thus we can equally well define

htop(T) = lim limsup ! log rp(e). (4)

e—0 n—oo N



Bowen's Approach

Examples: Consider the 3-transformation
T5:[0,1) = [0,1), x+— Bx (mod1)

for some 3 > 1.

Take ¢ < 1/(262), and G, = {ﬁ—kn . 0< k< B"}. Then G, is
(n, e)-separating, so sp(c) > B".

On the other hand, G} = {Qk‘E 0< k< pB"/(2)}is
(n,e)-spanning, so ry(e) < B /(2¢). Therefore

log B = limsup — Iogﬁ < hiop(Tp) < ||msup Iogﬁ /(2¢) = log B.

n—oo

NB: the S-transformation is not continuous, but Bowen's definition
of entropy works.



Bowen's Approach

Examples: Circle rotations, or in general isometries, T have zero
topological entropy. Indeed, if E(¢) is an e-separated set (or
e-spanning set), it will also be (n,¢)-separated (or (n,¢e)-spanning)
for every n > 1. Hence sp(¢) and r,(e) are bounded in n, and their
exponential growth rates are equal to zero.

Let (X, o) be the full shifts on N symbols. Let € > 0 be arbitrary,
and take m such that 27" < e. If we select a point from each

n+ m-cylinder, this gives an (n, )-spanning set, whereas selecting a
point from each n-cylinder gives an (n,¢)-separated set. Therefore

: 1 . 1
log N = limsup = log N" < limsup = log sy(¢)

n—oco N n—oo N

IN

) 1
lim sup = log ry(¢)
n—oo N

< limsuplog N"™™ = log N.

n—oo



Bowen's Approach

Proposition For a continuous map T on a compact metric space
(X, d), the three definitions of topological entropy (1), (2) and (4)
give the same outcome.

Proof: The equality of the limits (2) and (4) follows directly from
(3):

ra(e) < sn(e) < ra(e/2).
If U is an e-cover, every A € U™ can contain at most one point in
an (n,e)-separated set, so s(n,e) < N(U"), Therefore

1 1
: 1 “ o 1 .
limsup = log s(n, &) < Nim. - log N'(U™).

n—oo N



Bowen's Approach

Proof continued: In a compact metric space, every open cover U
has a number (called its Lebesgue number) such that for every

x € X, there is U € U such that Bs(x) C U. Clearly § < e if U is
an e-cover.

Now if an open e-cover U has Lebesgue number 9, and E is an
(n, d)-spanning set of cardinality #E = r(n,¢), then

XCUﬂT (B5(T'x)).

x€E i=0

Since each B;(T'(x)) is contained in some U € U, we have
NWU™) < r(n,d). Since 6 — 0 as e — 0, also

Iimolim IOgN(U") < ||m lim sup |og r(n, o).
e—

This completes the proof.



