
Variational Principle

Measure-theoretic and topological entropy are related via the

Variational Principle:

Theorem: Let (X , d) be a compact metric space and T : X → X a

continuous map. Then

htop(T ) = sup{hµ(T ) : µ is a T -invariant probability measure}.

Any measure µ such that htop(T ) = hµ(T ) is called a measure of

maximal entropy.

If there is a unique measure of maximal entropy µmax, then (X ,T )
is called intrinsically ergodic.



Variational Principle

Remark: A measure of maximal entropy is automatically ergodic.

Indeed, If µmax is not ergodic, say µmax = αµ1 + (1− α)µ2, then

hµmax(T ) = αhµ1(T ) + (1− α)hµ2(T ),

because measure-theoretic entropy is linear in the measure (check

the de�nitions). But this means that at least one of µi , i = 1, 2 has

hµi ≥ hµmax(T ).

Remark: A measure of maximal entropy need not exist if T is

discontinuous. For example, the Gauss map G (x) = 1

x
− b 1

x
c has

no measure of maximal entropy.

Exercise: Show that the Gauss map has in�nite topological entropy.



Measures of Maximal Entropy

Most dynamical systems we see are intrinsically ergodic, but �nding

this measure of maximal entropy is not always simple.

I Any uniquely ergodic system is intrinsicially ergodic.

I For the full shift on N symbols, the ( 1

N
, . . . , 1

N
)-Bernoulli

measure is the unique measure of maximal entropy.

I For transitive maps T : [0, 1]→ [0, 1] of constant slope ±s,
|s| > 1, the measure that is absolutely continuous w.r.t

Lebesgue is the unique measure of maximal entropy.

I Lebesgue measure is the unique measure of maximal entropy

of hyperbolic toral automorphism.

The next main result (a theorem due to Parry) is about �nding the

maximal measure for subshifts of �nite type.



Subshifts of Finite Type

Let A = (Aij)
N
i ,j=1

be a non-negative N × N integer matrix.

I We A it transition matrix because Aij usually indicates whether

(or in how many ways) you can go from state i to state j in a

Markov partition.

I A is irreducible if for every i , j there is k such that the

i , j-entry of Ak is positive.

I Let p(i) = min{k ≥ 1 : the i , i-entry of Ak is positive}. A is

aperiodic if gcd{p(i) : p(i) exists} = 1.

I A is primitive if A is both irreducible and aperiodic.

Alternatively, there is k such that Ak is a strictly positive

matrix.



Subshifts of Finite Type
The set of (bi)in�nite strings

ΣA = {(xi )i∈Z : xi ∈ {1, . . . ,N},Axi ,xi+1 > 0 for all i ∈ Z}

is shift-invariant and closed in the standard product topology of

{1, . . . ,N}Z. Hence it is a subshift.

It is called subshift of �nite type (SFT) because of the �nite

collection of forbidden words (namely the pairs i , j such that

Ai ,j = 0) that fully determines ΣA.

The word-complexity

pn(ΣA) := #{x0 . . . xn−1 subword appearing in ΣA}

Because the n-cylinders form an open 2−n-cover of ΣA:

htop(σ|ΣA
) = lim

n→∞

1

n
log pn(ΣA) = log λ,

where λ is the leading eigenvalue of the transition matrix A.



Subshifts of Finite Type

Perron-Frobenius Theorem: Let A be a primitive nonnegative

N × N-matrix. Then A has a unique (up to scaling) eigenvector

with all entries > 0. The corresponding eigenvalue λ is positive,

has multiplicity one, and is larger than the absolute value of every

other eigenvalue of A.

I λ is called the leading or Perron-Frobenius eigenvalue.

I If A is not irreducible, then λ can have higher multiplicity. For

example A =

(
1 0

0 1

)
.

I If A is not aperiodic, then there can be other eigenvalues of

the same absolute value as λ. For example A =

(
0 1

1 0

)
.

I The Perron-Frobenius Theorem holds both for left and right

eigenvalues.



Parry Measure
Bill Parry constructed the measure of maximal entropy, which is

now called after him. Let (ΣA, σ) be a subshift of �nite type on

alphabet {1, . . . ,N} with transition matrix A = (Ai ,j)
N
i ,j=1

,

Aij ∈ {0, 1}, so x = (xn) ∈ ΣA if and only if Axn,xn+1 = 1 for all n.

We assume that A is aperiodic and irreducible. Then by the

Perron-Frobenius Theorem, the leading eigenvalue λ has

multiplicity one, is larger in absolute value than every other

eigenvalue, and htop(σ) = log λ.

The left and right eigenvectors

u = (u1, . . . , uN) and v = (v1, . . . , vN)T

associated to λ are unique up to a multiplicative factor. We will

scale them such that they are positive and

N∑
i=1

uivi = 1.



Parry Measure

De�ne the Parry measure by

pi := uivi = µ([i ]),

pi ,j :=
Ai ,jvj

λvi
= µ([ij ] | [i ]),

so pi ,j indicates the conditional probability that xn+1 = j knowing

that xn = i . Therefore µ([ij ]) = µ([i ])µ([ij ] | [i ]) = pipi ,j . It is

stationary (i.e., shift-invariant) but not quite a product measure:

µ([im . . . in]) = pim · pim,im+1 · · · pin−1,in .

Theorem: The Parry measure µ is the unique measure of maximal

entropy for a subshift of �nite type with aperiodic irreducible

transition matrix.



Parry Measure

Proof: In this proof, we will only show that

hµ(σ) = htop(σ) = log λ, and skip the (more complicated)

uniqueness part.

The de�nitions of the masses of 1-cylinders and 2-cylinders are

compatible, because (since v is a right eigenvector)

N∑
j=1

µ([ij ]) =
N∑
j=1

pipi ,j = pi

N∑
j=1

Ai ,jvj

λvi
= pi

λvi
λvi

= pi = µ([i ]).

Summing over i , we get
∑N

i=1
µ([i ]) =

∑N
i=1

pi =
∑N

i=1
uivi = 1,

due to our scaling.



Parry Measure

To show that µ is shift-invariant, we take any cylinder set

Z = [im . . . in] and compute

µ(σ−1Z ) =
N∑
i=1

µ([iim . . . in]) =
N∑
i=1

pipi ,im
pim

µ([im . . . in])

= µ([im . . . in])
N∑
i=1

uivi Ai ,imvim
λvi uimvim

= µ(Z )
N∑
i=1

uiAi ,im

λuim
= µ(Z )

λuim
λuim

= µ(Z ).

This invariance carries over to all sets in the σ-algebra B generated

by the cylinder sets.



Parry Measure

Based on the interpretation of conditional probabilities, the

identities

N∑
im+1,...,in=1

Aik ,ik+1
=1

pimpim,im+1 · · · pin−1,in = pim

and (1)
N∑

im,...,in−1=1

Aik ,ik+1
=1

pimpim,im+1 · · · pin−1,in = pin

follows because the left hand side indicates the total probability of

starting in state im and reaching some state after n −m steps,

respectively starting at some state and reaching state n after n−m

steps.



Parry Measure

To compute hµ(σ), we will take the partition P of 1-cylinder sets;

this partition is generating, so this restriction is justi�ed by the

Kolmogorov-Sina�� Theorem (on generating partitions).

Hµ(
n−1∨
k=0

σ−kP) = −
N∑

i0,...,in−1=1

Aik ,ik+1
=1

µ([i0 . . . in−1]) logµ([i0 . . . in−1])

= −
N∑

i0,...,in−1=1

Aik ,ik+1
=1

pi0pi0,i1 · · · pin−1,in (log pi0

+ log pi0,i1 + · · ·+ log pin−2,in−1

)
= −

N∑
i0=1

pi0 log pi0 − (n − 1)
N∑

i ,j=1

pipi ,j log pi ,j ,

by (1) used repeatedly.



Parry Measure

Hence

hµ(σ) = lim
n→∞

1

n
Hµ(

n−1∨
k=0

σ−kP)

= −
N∑

i ,j=1

pipi ,j log pi ,j

= −
N∑

i ,j=1

uiAi ,jvj

λ
(logAi ,j + log vj − log vi − log λ) .

The �rst term in the brackets is zero because Ai ,j ∈ {0, 1}.



Parry Measure

The second term −
∑N

i ,j=1

uiAi,jvj
λ log vj (summing �rst over i)

simpli�es to

−
N∑
j=1

λujvj
λ

log vj = −
N∑
j=1

ujvj log vj ,

The third term
∑N

i ,j=1

uiAi,jvj
λ log vi (summing �rst over j) simpli�es

to
N∑
i=1

uiλvi
λ

log vi =
N∑
i=1

uivi log vi .

Hence these two terms cancel each other.



Parry Measure

The remaining term is

N∑
i ,j=1

uiAi ,jvj

λ
log λ =

N∑
i=1

uiλvi
λ

log λ =
N∑
i=1

uivi log λ = log λ.

This �nishes the proof.

Remark: To deal with entries Aij ∈ {2, 3, 4, . . . }, we can split states

and regain a 0, 1-matrix.


