Variational Principle

Measure-theoretic and topological entropy are related via the
Variational Principle:

Theorem: Let (X, d) be a compact metric space and T: X — X a
continuous map. Then

htop(T) = sup{h,(T): pisa T-invariant probability measure}.

Any measure p such that hsop(T) = h,(T) is called a measure of
maximal entropy.

If there is a unique measure of maximal entropy fimax, then (X, T)
is called intrinsically ergodic.



Variational Principle

Remark: A measure of maximal entropy is automatically ergodic.
Indeed, If pimax is not ergodic, say fimax = au1 + (1 — a)pz, then

hllmax(T) = O‘hMl(T) +(1 - O‘)hﬂz(T)v

because measure-theoretic entropy is linear in the measure (check
the definitions). But this means that at least one of uj, i = 1,2 has
h,ufi 2 h#max(T)'

Remark: A measure of maximal entropy need not exist if T is
discontinuous. For example, the Gauss map G(x) =1 — | 1] has

X
no measure of maximal entropy.

Exercise: Show that the Gauss map has infinite topological entropy.



Measures of Maximal Entropy

Most dynamical systems we see are intrinsically ergodic, but finding
this measure of maximal entropy is not always simple.
» Any uniquely ergodic system is intrinsicially ergodic.
> For the full shift on N symbols, the (..., +)-Bernoulli
measure is the unique measure of maximal entropy.
» For transitive maps T : [0,1] — [0, 1] of constant slope +s,
|s| > 1, the measure that is absolutely continuous w.r.t
Lebesgue is the unique measure of maximal entropy.
> Lebesgue measure is the unique measure of maximal entropy
of hyperbolic toral automorphism.

The next main result (a theorem due to Parry) is about finding the
maximal measure for subshifts of finite type.



Subshifts of Finite Type

Let A= (Aij):[\,ljzl be a non-negative N x N integer matrix.

» We A it transition matrix because Aj; usually indicates whether
(or in how many ways) you can go from state i to state j in a
Markov partition.

» A is irreducible if for every i, there is k such that the
i, j-entry of AK is positive.

» Let p(i) = min{k > 1: the i, i-entry of AX is positive}. Ais
aperiodic if ged{p(i) : p(i) exists} = 1.

> Ais primitive if A is both irreducible and aperiodic.

Alternatively, there is k such that A¥ is a strictly positive
matrix.



Subshifts of Finite Type
The set of (bi)infinite strings

Ya={(x)iez:xi€{l,...,N},Ag ., >0forallicZ}

is shift-invariant and closed in the standard product topology of
{1,...,N}%. Hence it is a subshift.

It is called subshift of finite type (SFT) because of the finite
collection of forbidden words (namely the pairs i, such that
A;j = 0) that fully determines > 4.

The word-complexity
pn(Xa) := #{x0 ... xp—1 subword appearing in X4}

Because the n-cylinders form an open 27 "-cover of ¥ 4:

1
heop(ols,) = lim —log pn(Ea) = log A,

where X is the leading eigenvalue of the transition matrix A.



Subshifts of Finite Type

Perron-Frobenius Theorem: Let A be a primitive nonnegative

N x N-matrix. Then A has a unique (up to scaling) eigenvector
with all entries > 0. The corresponding eigenvalue X is positive,
has multiplicity one, and is larger than the absolute value of every
other eigenvalue of A.

> )\ is called the leading or Perron-Frobenius eigenvalue.

» If Ais not irreducible, then A can have higher multiplicity. For

example A = (é (1)>

» If Ais not aperiodic, then there can be other eigenvalues of

the same absolute value as A\. For example A = <(1) (1)>

» The Perron-Frobenius Theorem holds both for left and right
eigenvalues.



Parry Measure
Bill Parry constructed the measure of maximal entropy, which is
now called after him. Let (¥4, 0) be a subshift of finite type on
alphabet {1,..., N} with transition matrix A = (A;J),lyjzl,
Aj € {0,1}, s0 x = (x,) € X4 if and only if A, .., =1 forall n.

We assume that A is aperiodic and irreducible. Then by the
Perron-Frobenius Theorem, the leading eigenvalue \ has
multiplicity one, is larger in absolute value than every other
eigenvalue, and hyop(0) = log A

The left and right eigenvectors
u=(uv1,...,uy)and v=(v1,...,vy)"

associated to A are unique up to a multiplicative factor. We will
scale them such that they are positive and

N

Z ujvi = 1.

i=1



Parry Measure

Define the Parry measure by

pi = uivi = p([i]),
pi = T = i) | 1),

1

so p;j indicates the conditional probability that x,;1 = j knowing

that x, = i. Therefore u([ij]) = ([ p([i] | [/]) = pipij. Itis
stationary (i.e., shift-invariant) but not quite a product measure:

p[im - - in]) = Pim * Pimyimss = Pin_1,in-

Theorem: The Parry measure p is the unique measure of maximal
entropy for a subshift of finite type with aperiodic irreducible
transition matrix.



Parry Measure

Proof: In this proof, we will only show that
hu(0) = heop(o) = log A, and skip the (more complicated)
uniqueness part.

The definitions of the masses of 1-cylinders and 2-cylinders are
compatible, because (since v is a right eigenvector)

N

S i) = zp,pu p,z“gvvf: = pi = ([,
j=1 ' i

I

Summing over i, we get S u([]) = SN pi = SN uivi = 1,
due to our scaling.



Parry Measure

To show that p is shift-invariant, we take any cylinder set
Z =[im...Ip) and compute

N

u(ailz) = Z ([iim - - - in]) ZP,P”,,, ([im - - - in])

i=1

B [I y ] ujvi A; Uivi Aiig Vi Vi,
= m---1In E
AV uj Vi,

II Au;
p— m p— m pr— Z .
Z i )/\Ui,,, mw(Z)

This invariance carries over to all sets in the o-algebra B generated
by the cylinder sets.



Parry Measure

Based on the interpretation of conditional probabilities, the

identities
N
E PimPimyim+1 " Pin—1,in — Pim
Im+11“.,ln:1
i =1
ko'k+1
and (1)
N
E Pim Pim,im+1 o Pin_1,in = Pip,
imyeeoin_1=1
Aigig 1 =1

follows because the left hand side indicates the total probability of
starting in state ip, and reaching some state after n — m steps,
respectively starting at some state and reaching state n after n — m
steps.



Parry Measure

To compute h,(c), we will take the partition P of 1-cylinder sets;
this partition is generating, so this restriction is justified by the
Kolmogorov-Sinal Theorem (on generating partitions).

n—1 N
Ho(\ e P) = = > wlio-.in1])logu(lio- .- in1])
k=0 igseeesip_1=1
Aisigesr =1
N
= = Z PioPi,ix * * * Pin_1,in (108 Pig
iQs-esin_1=1
Ak =

+log piy.iy + -+ log Pin—z,in—l)

N N
= = pilogpi, — (n—1) > pipijlogpij,
o—1 ij=1

by (1) used repeatedly.



Parry Measure

Hence
1 n—1
i —k
hu(0) = Jim " Hu(\/ o7P)
k=0
N
= = Z pipi jlog pi;
ij=1

N
= -y %Uogmﬁlogvj —log v — log \).
ij=1

The first term in the brackets is zero because A;; € {0,1}.



Parry Measure

The s.e.cond term — Z,{V’jzl = /’\"Vf log v; (summing first over /)
simplifies to

N oy N
Y
— E TlogVJ:— E ujvjlog vj,
Jj=1 Jj=1
The third term E,J 1 U’A”v’ log v; (summing first over j) simplifies
to
N N
U,‘)\V,‘
;1 y log v; = ;1 u;jv;log v;.

Hence these two terms cancel each other.



Parry Measure

The remaining term is

N o wiA;v: N v N
Z%Iogz\:z '/\'Iog/\:Zu,-v,-log)\:log)\.
ij=1 i=1 i=1

This finishes the proof.

Remark: To deal with entries Aj; € {2,3,4,...}, we can split states
and regain a 0, 1I-matrix.



