Variational Principle

Measure-theoretic and topological entropy are related via the Variational Principle:

Theorem: Let (X, d) be a compact metric space and $T: X \rightarrow X$ a continuous map. Then

$$
h_{\text {top }}(T)=\sup \left\{h_{\mu}(T): \mu \text { is a } T \text {-invariant probability measure }\right\} .
$$

Any measure μ such that $h_{\text {top }}(T)=h_{\mu}(T)$ is called a measure of maximal entropy.
If there is a unique measure of maximal entropy $\mu_{\text {max }}$, then (X, T) is called intrinsically ergodic.

Variational Principle

Remark: A measure of maximal entropy is automatically ergodic. Indeed, If $\mu_{\max }$ is not ergodic, say $\mu_{\max }=\alpha \mu_{1}+(1-\alpha) \mu_{2}$, then

$$
h_{\mu_{\max }}(T)=\alpha h_{\mu_{1}}(T)+(1-\alpha) h_{\mu_{2}}(T),
$$

because measure-theoretic entropy is linear in the measure (check the definitions). But this means that at least one of $\mu_{i}, i=1,2$ has $h_{\mu_{i}} \geq h_{\mu_{\max }}(T)$.

Remark: A measure of maximal entropy need not exist if T is discontinuous. For example, the Gauss map $G(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor$ has no measure of maximal entropy.

Exercise: Show that the Gauss map has infinite topological entropy.

Measures of Maximal Entropy

Most dynamical systems we see are intrinsically ergodic, but finding this measure of maximal entropy is not always simple.

- Any uniquely ergodic system is intrinsicially ergodic.
- For the full shift on N symbols, the $\left(\frac{1}{N}, \ldots, \frac{1}{N}\right)$-Bernoulli measure is the unique measure of maximal entropy.
- For transitive maps $T:[0,1] \rightarrow[0,1]$ of constant slope $\pm s$, $|s|>1$, the measure that is absolutely continuous w.r.t Lebesgue is the unique measure of maximal entropy.
- Lebesgue measure is the unique measure of maximal entropy of hyperbolic toral automorphism.
The next main result (a theorem due to Parry) is about finding the maximal measure for subshifts of finite type.

Subshifts of Finite Type

Let $A=\left(A_{i j}\right)_{i, j=1}^{N}$ be a non-negative $N \times N$ integer matrix.

- We A it transition matrix because $A_{i j}$ usually indicates whether (or in how many ways) you can go from state i to state j in a Markov partition.
- A is irreducible if for every i, j there is k such that the i, j-entry of A^{k} is positive.
- Let $p(i)=\min \left\{k \geq 1\right.$: the i, i-entry of A^{k} is positive $\}$. A is aperiodic if $\operatorname{gcd}\{p(i): p(i)$ exists $\}=1$.
- A is primitive if A is both irreducible and aperiodic. Alternatively, there is k such that A^{k} is a strictly positive matrix.

Subshifts of Finite Type

The set of (bi)infinite strings

$$
\Sigma_{A}=\left\{\left(x_{i}\right)_{i \in \mathbb{Z}}: x_{i} \in\{1, \ldots, N\}, A_{x_{i}, x_{i+1}}>0 \text { for all } i \in \mathbb{Z}\right\}
$$

is shift-invariant and closed in the standard product topology of $\{1, \ldots, N\}^{\mathbb{Z}}$. Hence it is a subshift.

It is called subshift of finite type (SFT) because of the finite collection of forbidden words (namely the pairs i, j such that $A_{i, j}=0$) that fully determines Σ_{A}.

The word-complexity

$$
p_{n}\left(\Sigma_{A}\right):=\#\left\{x_{0} \ldots x_{n-1} \text { subword appearing in } \Sigma_{A}\right\}
$$

Because the n-cylinders form an open 2^{-n}-cover of Σ_{A} :

$$
h_{\text {top }}\left(\left.\sigma\right|_{\Sigma_{A}}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log p_{n}\left(\Sigma_{A}\right)=\log \lambda
$$

where λ is the leading eigenvalue of the transition matrix A,

Subshifts of Finite Type

Perron-Frobenius Theorem: Let A be a primitive nonnegative $N \times N$-matrix. Then A has a unique (up to scaling) eigenvector with all entries >0. The corresponding eigenvalue λ is positive, has multiplicity one, and is larger than the absolute value of every other eigenvalue of A.

- λ is called the leading or Perron-Frobenius eigenvalue.
- If A is not irreducible, then λ can have higher multiplicity. For example $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
- If A is not aperiodic, then there can be other eigenvalues of the same absolute value as λ. For example $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
- The Perron-Frobenius Theorem holds both for left and right eigenvalues.

Parry Measure

Bill Parry constructed the measure of maximal entropy, which is now called after him. Let $\left(\Sigma_{A}, \sigma\right)$ be a subshift of finite type on alphabet $\{1, \ldots, N\}$ with transition matrix $A=\left(A_{i, j}\right)_{i, j=1}^{N}$, $A_{i j} \in\{0,1\}$, so $x=\left(x_{n}\right) \in \Sigma_{A}$ if and only if $A_{x_{n}, x_{n+1}}=1$ for all n.

We assume that A is aperiodic and irreducible. Then by the Perron-Frobenius Theorem, the leading eigenvalue λ has multiplicity one, is larger in absolute value than every other eigenvalue, and $h_{\text {top }}(\sigma)=\log \lambda$.

The left and right eigenvectors

$$
u=\left(u_{1}, \ldots, u_{N}\right) \text { and } v=\left(v_{1}, \ldots, v_{N}\right)^{T}
$$

associated to λ are unique up to a multiplicative factor. We will scale them such that they are positive and

$$
\sum_{i=1}^{N} u_{i} v_{i}=1
$$

Parry Measure

Define the Parry measure by

$$
\begin{aligned}
p_{i} & :=u_{i} v_{i}=\mu([i]) \\
p_{i, j} & :=\frac{A_{i, j} v_{j}}{\lambda v_{i}}=\mu([i j] \mid[i])
\end{aligned}
$$

so $p_{i, j}$ indicates the conditional probability that $x_{n+1}=j$ knowing that $x_{n}=i$. Therefore $\mu([i j])=\mu([i]) \mu([i j] \mid[i])=p_{i} p_{i, j}$. It is stationary (i.e., shift-invariant) but not quite a product measure:

$$
\mu\left(\left[i_{m} \ldots i_{n}\right]\right)=p_{i_{m}} \cdot p_{i_{m}, i_{m+1}} \cdots p_{i_{n-1}, i_{n}} .
$$

Theorem: The Parry measure μ is the unique measure of maximal entropy for a subshift of finite type with aperiodic irreducible transition matrix.

Parry Measure

Proof: In this proof, we will only show that $h_{\mu}(\sigma)=h_{t o p}(\sigma)=\log \lambda$, and skip the (more complicated) uniqueness part.

The definitions of the masses of 1-cylinders and 2-cylinders are compatible, because (since v is a right eigenvector)

$$
\sum_{j=1}^{N} \mu([i j])=\sum_{j=1}^{N} p_{i} p_{i, j}=p_{i} \sum_{j=1}^{N} \frac{A_{i, j} v_{j}}{\lambda v_{i}}=p_{i} \frac{\lambda v_{i}}{\lambda v_{i}}=p_{i}=\mu([i])
$$

Summing over i, we get $\sum_{i=1}^{N} \mu([i])=\sum_{i=1}^{N} p_{i}=\sum_{i=1}^{N} u_{i} v_{i}=1$, due to our scaling.

Parry Measure

To show that μ is shift-invariant, we take any cylinder set $Z=\left[i_{m} \ldots i_{n}\right]$ and compute

$$
\begin{aligned}
\mu\left(\sigma^{-1} Z\right) & =\sum_{i=1}^{N} \mu\left(\left[i_{m} \ldots i_{n}\right]\right)=\sum_{i=1}^{N} \frac{p_{i} p_{i, i_{m}}}{p_{i_{m}}} \mu\left(\left[i_{m} \ldots i_{n}\right]\right) \\
& =\mu\left(\left[i_{m} \ldots i_{n}\right]\right) \sum_{i=1}^{N} \frac{u_{i} v_{i} A_{i, i_{m}} v_{i_{m}}}{\lambda v_{i} u_{i_{m}} v_{i_{m}}} \\
& =\mu(Z) \sum_{i=1}^{N} \frac{u_{i} A_{i, i_{m}}}{\lambda u_{i_{m}}}=\mu(Z) \frac{\lambda u_{i_{m}}}{\lambda u_{i_{m}}}=\mu(Z) .
\end{aligned}
$$

This invariance carries over to all sets in the σ-algebra \mathcal{B} generated by the cylinder sets.

Parry Measure

Based on the interpretation of conditional probabilities, the identities

$$
\sum_{\substack{i_{m+1}, \ldots, i_{n}=1 \\ A_{i_{k}, i_{k+1}}=1}}^{N} p_{i_{m}} p_{i_{m}, i_{m+1}} \quad \cdots \quad p_{i_{n-1}, i_{n}}=p_{i_{m}}
$$

$$
\sum_{\substack{i_{m}, \ldots, i_{n-1}=1 \\ A_{i_{k}, i_{k+1}}=1}}^{N} p_{i_{m}} p_{i_{m}, i_{m+1}} \cdots \quad p_{i_{n-1}, i_{n}}=p_{i_{n}}
$$

follows because the left hand side indicates the total probability of starting in state i_{m} and reaching some state after $n-m$ steps, respectively starting at some state and reaching state n after $n-m$ steps.

Parry Measure

To compute $h_{\mu}(\sigma)$, we will take the partition \mathcal{P} of 1 -cylinder sets; this partition is generating, so this restriction is justified by the Kolmogorov-Sinaĭ Theorem (on generating partitions).

$$
\begin{aligned}
& H_{\mu}\left(\bigvee_{k=0}^{n-1} \sigma^{-k} \mathcal{P}\right)=-\sum_{\substack{i_{0}, \ldots, i_{n-1}=1 \\
A_{i_{k}, i_{k+1}}=1}}^{N} \mu\left(\left[i_{0} \ldots i_{n-1}\right]\right) \log \mu\left(\left[i_{0} \ldots i_{n-1}\right]\right) \\
&=-\sum_{\substack{i_{0}, \ldots, i_{n-1}=1 \\
A_{i_{k}, i_{k+1}}=1}}^{N} p_{i_{0}} p_{i_{0}, i_{1}} \cdots p_{i_{n-1}, i_{n}}\left(\log p_{i_{0}}\right. \\
&\left.+\log p_{i_{0}, i_{1}}+\cdots+\log p_{i_{n-2}, i_{n-1}}\right) \\
&=-\sum_{i_{0}=1}^{N} p_{i_{0}} \log p_{i_{0}}-(n-1) \sum_{i, j=1}^{N} p_{i} p_{i, j} \log p_{i, j}
\end{aligned}
$$

by (1) used repeatedly.

Parry Measure

Hence

$$
\begin{aligned}
h_{\mu}(\sigma) & =\lim _{n \rightarrow \infty} \frac{1}{n} H_{\mu}\left(\bigvee_{k=0}^{n-1} \sigma^{-k} \mathcal{P}\right) \\
& =-\sum_{i, j=1}^{N} p_{i} p_{i, j} \log p_{i, j} \\
& =-\sum_{i, j=1}^{N} \frac{u_{i} A_{i, j} v_{j}}{\lambda}\left(\log A_{i, j}+\log v_{j}-\log v_{i}-\log \lambda\right)
\end{aligned}
$$

The first term in the brackets is zero because $A_{i, j} \in\{0,1\}$.

Parry Measure

The second term $-\sum_{i, j=1}^{N} \frac{u_{i} A_{i, j} v_{j}}{\lambda} \log v_{j}$ (summing first over i) simplifies to

$$
-\sum_{j=1}^{N} \frac{\lambda u_{j} v_{j}}{\lambda} \log v_{j}=-\sum_{j=1}^{N} u_{j} v_{j} \log v_{j}
$$

The third term $\sum_{i, j=1}^{N} \frac{u_{i} A_{i, j} v_{j}}{\lambda} \log v_{i}$ (summing first over j) simplifies to

$$
\sum_{i=1}^{N} \frac{u_{i} \lambda v_{i}}{\lambda} \log v_{i}=\sum_{i=1}^{N} u_{i} v_{i} \log v_{i}
$$

Hence these two terms cancel each other.

Parry Measure

The remaining term is

$$
\sum_{i, j=1}^{N} \frac{u_{i} A_{i, j} v_{j}}{\lambda} \log \lambda=\sum_{i=1}^{N} \frac{u_{i} \lambda v_{i}}{\lambda} \log \lambda=\sum_{i=1}^{N} u_{i} v_{i} \log \lambda=\log \lambda .
$$

This finishes the proof.
Remark: To deal with entries $A_{i j} \in\{2,3,4, \ldots\}$, we can split states and regain a 0,1-matrix.

