The Shannon-McMillan-Breiman Theorem

The Shannon-McMillan-Breiman Theorem uses entropy to measure
how large sets in the n-th joint P, are. Typically, they decrease
exponentially and the exponential rate is exactly the
measure-theoretical entropy.

Shannon-McMillan-Breiman Theorem: Let (X,B,u, T) be a
measure-preserving transformation and P a (countable or finite)
partition with H(P) < oo Let P, = \/7_3 T~X(P) and P,(x) the
element of P, containing x. Then

o1
— lim —log u(Pn(x)) = h(P, T) p-a.e.
n—oo N
Apart from proving this theorem, we will discuss an application
called Lochs' Theorem, on the number of known digits of
expansions of reals.



The Shannon-McMillan-Breiman Theorem

Define the information function

Ip(x) := —log u(P — > 1p(x)log u(P
Pep

with respect to which we have H(P) = E(/p). Inserting this in the
definition of the entropy, we obtain

WP, T) = lim LH(P,) = lim /Xl/pn( ) dy.

n—oo N n—o00 n

The Shannon-McMillan-Breiman Theorem says that in fact the
integrand converges to h(P, T) p-a.e.



The Shannon-McMillan-Breiman Theorem

The proof requires some more technical tools: conditional
expectation, conditional entropy and the Martingale theorem.

For a measure preserving system (X, B, i, T), some measurable
function f : X — R and o-algebra C (possibly C = B, possibly C
coarser than B), we can define the conditional expectation E,(f|C)
as the unique C-measurable function f such that

/qu:/fdyforallCEC.
C C

» Recall that C-measurable means that f~1([t,0)) € C for all
t € R, and therefore f must be constant on all atoms of C.

» Note that conditional expectation is a function, and (unlike
expectation or conditional probability) not a number. It is the
function f such that for each atom C,

1
fx:/fdu for p-a.e. x € C.
() mw(C) Je



The Shannon-McMillan-Breiman Theorem

The finer the o-algebra C, the more f looks like f. This is
expressed in the following version of the

Theorem (Martingale Convergence Theorem)

If (Cpn)n is a sequence of o-algebras such that C,1 refines C, and
C = limp00 Cp := /52 Cn, then for every f € L}(u)

E.(fICn) = Eu(f|C) p-a.e. as n — oo.

We skip the proof.



Conditional Entropy

Definition: Motivated by conditional measure p(P|Q) = “Ef()g?),

we define conditional entropy of a measure u as

H(PIO) = = 3 (@) Y- MBI g MBS

QeQ PeP @)

Before trying to interpret this notion, let us first list some properties
that follow directly from the definition and Jensen's inequality:

Proposition: Given measures p, p; and two partitions P and Q,
Hu(P vV Q)< Hu(P) + Hu(Q)?
2. Hu(Q) = H,(P)+ H.(Q | P) and hence
h(T, Q) = hu(T,P) + H(Q | P).
3. 220y piHu(P) < Hsn ., (P) for each probability vector
(P1s- -+, Pn)-



Conditional Information Function

Similarly to conditional entropy, we define the conditional
information function

ne
I'P|Q( Z Z 1PQQ(X IOg ( (Q) )
PEP QeQ
Comparing this to the definition of conditional entropy, we get

/X/pgdu_ > uPnQ) Iog(f(g)Q):Hﬂ(PQ).

PeP QeQ ( )
2

One can check (using the previous proposition and the definition)
that
lpvo = bp + Igpp. (3)



Conditional Information Function

By the definition of conditional expectation and because
1P]-Q = 1me we have

—logE,(1p)|Q) = —|ogE#(le]Q)

PGP

= —Iogz /led,u

QGQ Q@ pep
(PN Q@
- —Iogz ZleQ ) )/ lpdu
PeP QeQ Q
= Ipjo(x).



Proof of the Shannon-McMillan-Breiman Theorem

We are now ready to do the proof of the Shannon-Breiman-
McMillan Theorem.

(x) for k > 2 and gi(x) = Ip.

Proof: Write gx(x) = Imvjtll T-ip
Then by (3)
Ivj’?;()l T_J/])(X) = Ivjz—ll —,—_j,P(X) + /P|Vj';11 T_JP(X)

= IVJ;OZT,J»P(TX) + gn(X)
e IVj:_lszj'P(TX) + /P|\/j:_12 T,j,P(TX) + gn(X)

= IVJ:_03T7J'P(T2X) +gn—]_(TX) +gn(X)

= gu(T" (X)) + -+ gn-1(T(x)) + &n(x)

n—1 )
= Zg,,_j(rfx).
j=0



Proof of the Shannon-McMillan-Breiman Theorem

Let g = lim,_,00 gn, Which exists y-a.e. and belongs to L1(1)
because of the Martingale Convergence Theorem. We write the
previous equality as

n—1 n—1
1 1 . 1 ;
g r-ip(X) = n >_&(Tx)+ n 2_(en-; = £)(T).
j=0 j=0

Since 1 is ergodic, the first sum converges yi-a.e. to [, g dpu, which
is equal to H,(P| V52, TIP) by (2), which in turn is equal to
h(P, T).



Proof of the Shannon-McMillan-Breiman Theorem

For the second sum, we define

Gy =suplgk—g| and g" =supg.
k>N n>1

Then 0 < Gy < g+ g* and g + g* € L1(u); this is because

[ gndu = H,(P| \/1";11 P) is decreasing in n. Moreover, Gy — 0
p-a.e., so by the Dominated Convergence Theorem,

[ G = [ im G =0



Proof of the Shannon-McMillan-Breiman Theorem

Now for any N > 1 and n > N we split the second sum:

1 n—1 ]
- (o~ £)(T7x)
j=0
1 n—N-1 n—1
_ J J
= Z gn—j — &)(T'x) + Z (gn-j — &)(T'x)
Jj=0 Jj=n—N
1 n—N-1 1 n—1
<= Gn(T’x) + = i — &)(Tx).
> w( X)+nJ;N(g j—&)(Tx)

First take the limit n — oo. The the second sum tends to zero,
and by the Ergodic Theorem, the first sum tends to [, Gy d.
Finally, taking N — oo, also [, Gy dpu — 0. Hence
Ivfz_ol.,-,jp(x) — h(P, T) p-a.e., as required. This finishes the
proof.



Lochs' Theorem

Lochs" Theorem: For Lebesgue-a.e. x € (0,1), the number ¢(d) of
terms of the continued fraction expansion of x that are required to
determine the first d decimal places satisfies

. c(d) 6log2log10
lim =

d—oo d 2

~ 0.97027014.

The proof relies on the fact that the terms a,, are obtained as

symbolic itineraries of a particular dynamical system, namely the

GauB map G(x) = 1 — | 1] for continued fractions and the map

T : x — 10x mod 1 for decimal expansion.

We can do this for other expansions too. For example, if b(d) is
the number of binary digits necessary to determine the d-th
decimal, then

b(d) log10

lim —% = ~ 3.321809.
e d log 2 3.32189




Proof of Lochs' Theorem

Proof: That ¢ = ¢(d) digits of the continued fraction determine d
decimal digital means that the c-cylinder Z.(x) of the Gauss map
G is contained in the d-cylinder Z;(x) of the (Lebesgue measure
preserving) map T : x — 10x mod 1, but not in the d + 1-cylinder.
Since the invariant measure 1 of the Gaull map has density

dlfiix) = |oé21+%' we find
log 2 ~
1o Leb(Za) < u(Ze(x)) < 2log 2 Leb(Za(x))- (4)

The Shannon-McMillan-Breiman Theorem gives

malT) . —logleb(Zu(x)  c(d)
hu(G) d—+00 d — log p(Zc(x))
(d) | log Leb(Z4(x))

Leb-a.e.




Proof of Lochs' Theorem

Combining this with (4), we obtain

hren(T)

im c(d) dlog10
hu(G)

d—oo d dlogl0 — log(2log?2)

im c(d) 1+ log(2log2) '
d—oo d dlog 10 — log(2 log 2)

By the same token

hLen(T) im c(d) L log log 2
hu(G) — d=oo d d log 10 — log('%52)




Proof of Lochs' Theorem

Hence the limit

The entropy hren(T)
isomorphic to the (1—10

= log 10, because the map ([0, 1],Leb, T) is
e 10) Bernoulli shift.

The entropy h,(G) = % is trickier to prove, but it can be done
as follows. The Rokhlin formula says that for absolutely continuous

measures
/ log | T'| dpu.

- d 1
Recalling that ¢ = 7 1+x' we get

2 log1/x
h = .
w(C) |og2/0 1+x dx




Proof of Lochs' Theorem

Use H% = Y22 o(—x)* and integration by parts:

/1 log x d i
X g

0 1 + x —

= i [—(_k:)_k;rl |ogx]: +/01 (k_j)lk dx
(

1
/ (—x)K log x dx
0




Lochs' Theorem

. 2,
Inserting fo log X oy = —T5 in

1+x
h(G) = 2 /1 log x 4
FAE2 log2 Jo 14 x x

This concludes the proof.

we arrive at h,(G) = 6|Og2
This number &7 2 5 is sometimes called Khinchin-Lévy's constant.
The original proof by Paul Lévy from 1936 which doesn't use
Rokhlin's formula, was adjusted by Khinchin.



