
The Shannon-McMillan-Breiman Theorem

The Shannon-McMillan-Breiman Theorem uses entropy to measure
how large sets in the n-th joint Pn are. Typically, they decrease
exponentially and the exponential rate is exactly the
measure-theoretical entropy.

Shannon-McMillan-Breiman Theorem: Let (X ,B, µ,T ) be a
measure-preserving transformation and P a (countable or finite)
partition with H(P) <∞ Let Pn =

∨n−1
k=0 T

−k(P) and Pn(x) the
element of Pn containing x . Then

− lim
n→∞

1
n
logµ(Pn(x)) = h(P,T ) µ-a.e.

Apart from proving this theorem, we will discuss an application
called Lochs’ Theorem, on the number of known digits of
expansions of reals.



The Shannon-McMillan-Breiman Theorem

Define the information function

IP(x) := − logµ(P(x)) = −
∑
P∈P

1P(x) logµ(P),

with respect to which we have H(P) = E(IP). Inserting this in the
definition of the entropy, we obtain

h(P,T ) = lim
n→∞

1
n
H(Pn) = lim

n→∞

∫
X

1
n
IPn(x) dµ.

The Shannon-McMillan-Breiman Theorem says that in fact the
integrand converges to h(P,T ) µ-a.e.



The Shannon-McMillan-Breiman Theorem
The proof requires some more technical tools: conditional
expectation, conditional entropy and the Martingale theorem.

For a measure preserving system (X ,B, µ,T ), some measurable
function f : X → R and σ-algebra C (possibly C = B, possibly C
coarser than B), we can define the conditional expectation Eµ(f |C)
as the unique C-measurable function f̄ such that∫

C
f̄ dµ =

∫
C
f dµ for all C ∈ C.

I Recall that C-measurable means that f̄ −1([t,∞)) ∈ C for all
t ∈ R, and therefore f̄ must be constant on all atoms of C.

I Note that conditional expectation is a function, and (unlike
expectation or conditional probability) not a number. It is the
function f̄ such that for each atom C ,

f̄ (x) =
1

µ(C )

∫
C
f dµ for µ-a.e. x ∈ C .



The Shannon-McMillan-Breiman Theorem

The finer the σ-algebra C, the more f̄ looks like f . This is
expressed in the following version of the

Theorem (Martingale Convergence Theorem)
If (Cn)n is a sequence of σ-algebras such that Cn+1 refines Cn and
C = limn→∞ Cn :=

∨∞
n=1 Cn, then for every f ∈ L1(µ)

Eµ(f |Cn)→ Eµ(f |C) µ-a.e. as n→∞.

We skip the proof.



Conditional Entropy

Definition: Motivated by conditional measure µ(P|Q) = µ(P∩Q)
µ(Q) ,

we define conditional entropy of a measure µ as

Hµ(P|Q) = −
∑
Qj∈Q

µ(Qj)
∑
Pi∈P

µ(Pi ∩ Qj)

µ(Qj)
log

µ(Pi ∩ Qj)

µ(Qj)
. (1)

Before trying to interpret this notion, let us first list some properties
that follow directly from the definition and Jensen’s inequality:

Proposition: Given measures µ, µi and two partitions P and Q,
1. Hµ(P ∨Q) ≤ Hµ(P) + Hµ(Q);
2. Hµ(Q) = Hµ(P) + Hµ(Q | P), and hence

hµ(T ,Q) = hµ(T ,P) + Hµ(Q | P).
3.
∑n

i=1 piHµi (P) ≤ H∑n
i=1 piµi

(P) for each probability vector
(p1, . . . , pn).



Conditional Information Function

Similarly to conditional entropy, we define the conditional
information function

IP|Q(x) := −
∑
P∈P

∑
Q∈Q

1P∩Q(x) log
µ(P ∩ Q)

µ(Q)
.

Comparing this to the definition of conditional entropy, we get∫
X
IP|Q dµ = −

∑
P∈P

∑
Q∈Q

µ(P ∩ Q) log
µ(P ∩ Q)

µ(Q)
= Hµ(P|Q).

(2)
One can check (using the previous proposition and the definition)
that

IP∨Q = IP + IQ|P . (3)



Conditional Information Function

By the definition of conditional expectation and because
1P1Q = 1P∩Q we have

− logEµ(1P(x)|Q) = − logEµ(
∑
P∈P

1P |Q)

= − log
∑
Q∈Q

1
µ(Q)

∫
Q

∑
P∈P

1P dµ

= − log
∑
P∈P

∑
Q∈Q

1P∩Q
µ(P ∩ Q)

µ(Q)

∫
Q
1P dµ

= IP|Q(x).



Proof of the Shannon-McMillan-Breiman Theorem
We are now ready to do the proof of the Shannon-Breiman-
McMillan Theorem.

Proof: Write gk(x) = IP|∨k−1
j=1 T−jP(x) for k ≥ 2 and g1(x) = IP .

Then by (3)

I∨n−1
j=0 T−jP(x) = I∨n−1

j=1 T−jP(x) + IP|∨n−1
j=1 T−jP(x)

= I∨n−2
j=0 T−jP(Tx) + gn(x)

= I∨n−2
j=1 T−jP(Tx) + IP|∨n−2

j=1 T−jP(Tx) + gn(x)

= I∨n−3
j=0 T−jP(T 2x) + gn−1(Tx) + gn(x)

...
...

...
= g1(T n−1(x)) + · · ·+ gn−1(T (x)) + gn(x)

=
n−1∑
j=0

gn−j(T
jx).



Proof of the Shannon-McMillan-Breiman Theorem

Let g = limn→∞ gn, which exists µ-a.e. and belongs to L1(µ)
because of the Martingale Convergence Theorem. We write the
previous equality as

1
n
I∨n−1

j=0 T−jP(x) =
1
n

n−1∑
j=0

g(T jx) +
1
n

n−1∑
j=0

(gn−j − g)(T jx).

Since µ is ergodic, the first sum converges µ-a.e. to
∫
X g dµ, which

is equal to Hµ(P| ∨∞j=1 T
−jP) by (2), which in turn is equal to

h(P,T ).



Proof of the Shannon-McMillan-Breiman Theorem

For the second sum, we define

GN = sup
k≥N
|gk − g | and g∗ = sup

n≥1
gn.

Then 0 ≤ GN ≤ g + g∗ and g + g∗ ∈ L1(µ); this is because∫
gn dµ = Hµ(P|

∨n−1
j=1 P) is decreasing in n. Moreover, GN → 0

µ-a.e., so by the Dominated Convergence Theorem,

lim
N→∞

∫
X
GN dµ =

∫
X

lim
N→∞

GN dµ = 0



Proof of the Shannon-McMillan-Breiman Theorem

Now for any N ≥ 1 and n ≥ N we split the second sum:

1
n

n−1∑
j=0

(gn−j − g)(T jx)

=
1
n

n−N−1∑
j=0

(gn−j − g)(T jx) +
1
n

n−1∑
j=n−N

(gn−j − g)(T jx)

≤1
n

n−N−1∑
j=0

GN(T jx) +
1
n

n−1∑
j=n−N

(gn−j − g)(T jx).

First take the limit n→∞. The the second sum tends to zero,
and by the Ergodic Theorem, the first sum tends to

∫
X GN dµ.

Finally, taking N →∞, also
∫
X GN dµ→ 0. Hence

I∨n−1
j=0 T−jP(x)→ h(P,T ) µ-a.e., as required. This finishes the

proof.



Lochs’ Theorem
Lochs’ Theorem: For Lebesgue-a.e. x ∈ (0, 1), the number c(d) of
terms of the continued fraction expansion of x that are required to
determine the first d decimal places satisfies

lim
d→∞

c(d)

d
=

6 log 2 log 10
π2 ≈ 0.97027014.

The proof relies on the fact that the terms an, are obtained as
symbolic itineraries of a particular dynamical system, namely the
Gauß map G (x) = 1

x − b
1
x c for continued fractions and the map

T : x 7→ 10x mod 1 for decimal expansion.

We can do this for other expansions too. For example, if b(d) is
the number of binary digits necessary to determine the d-th
decimal, then

lim
d→∞

b(d)

d
=

log 10
log 2

≈ 3.32189.



Proof of Lochs’ Theorem

Proof: That c = c(d) digits of the continued fraction determine d
decimal digital means that the c-cylinder Z̃c(x) of the Gauss map
G is contained in the d-cylinder Zd(x) of the (Lebesgue measure
preserving) map T : x 7→ 10x mod 1, but not in the d + 1-cylinder.
Since the invariant measure µ of the Gauß map has density
dµ(x)
dx = 1

log 2
1

1+x , we find

log 2
10

Leb(Zd) ≤ µ(Z̃c(x)) ≤ 2 log 2Leb(Zd(x)). (4)

The Shannon-McMillan-Breiman Theorem gives

hLeb(T )

hµ(G )
= lim

d→∞

− logLeb(Zd(x))

d

c(d)

− logµ(Z̃c(x))

= lim
d→∞

c(d)

d
lim

d→∞

logLeb(Zd(x))

logµ(Z̃c(x))
Leb -a.e.



Proof of Lochs’ Theorem

Combining this with (4), we obtain

hLeb(T )

hµ(G )
≤ lim

d→∞

c(d)

d

d log 10
d log 10− log(2 log 2)

≤ lim
d→∞

c(d)

d

(
1 +

log(2 log 2)

d log 10− log(2 log 2)

)
.

By the same token

hLeb(T )

hµ(G )
≥ lim

d→∞

c(d)

d

(
1− log log 2

d log 10− log( log 2
10 )

)
.



Proof of Lochs’ Theorem
Hence the limit

lim
d→∞

c(d)

d
=

hLeb(T )

hµ(G )
Leb−a.e.

The entropy hLeb(T ) = log 10, because the map ([0, 1],Leb,T ) is
isomorphic to the ( 1

10 , . . . ,
1
10)-Bernoulli shift.

The entropy hµ(G ) = π2

6 log 2 is trickier to prove, but it can be done
as follows. The Rokhlin formula says that for absolutely continuous
measures

hµ(T ) =

∫
X
log |T ′| dµ.

Recalling that dµ
dx = 1

log 2
1

1+x , we get

hµ(G ) =
2

log 2

∫ 1

0

log 1/x
1 + x

dx .



Proof of Lochs’ Theorem

Use 1
1+x =

∑∞
k=0(−x)k and integration by parts:∫ 1

0

log x
1 + x

dx =
∞∑
k=0

∫ 1

0
(−x)k log x dx

=
∞∑
k=0

[
−(−x)k+1

k + 1
log x

]1

0
+

∫ 1

0

(−x)k

k + 1
dx

=
∞∑
k=0

(−1)k+1

(k + 1)2

=
∞∑
k=1

1
(2k)2 −

∞∑
k=1

1
(2k − 1)2

= 2
∞∑
k=1

1
(2k)2 −

∞∑
k=1

1
k2 = −1

2

∞∑
k=1

1
k2 = −π

2

12
.



Lochs’ Theorem

Inserting
∫ 1
0

log x
1+x dx = −π2

12 in

hµ(G ) = − 2
log 2

∫ 1

0

log x
1 + x

dx .

we arrive at hµ(G ) = π2

6 log 2 . This concludes the proof.

This number π2

6 log 2 is sometimes called Khinchin-Lévy’s constant.
The original proof by Paul Lévy from 1936 which doesn’t use
Rokhlin’s formula, was adjusted by Khinchin.


