
Information Theory
Informatioon theory is concerned with coding messages for

transmission in the most economic way.

This �most frequent ⇔ shortest code� is the basic principle that

was developed mathematically in the 1940s. The pioneer of this

new area of information theory was Claude Shannon (1916�2001)

and his research greatly contributed to the mathematical notion of

entropy.

Figure: Claude Shannon (1916�2001) and Robert Fano (1917�2016).



Information Theory

Shannon set out the basic principles of information theory and

illustrated the notions of entropy and conditional entropy from this

point of view. The question is here how to e�ciently transmit

messages through a channel and more complicated cluster of

channels.

Signals are here strings of symbols, each with potentially

its own transmission time and conditions.

De�nition Let W (t) be the allowed number of di�erent signals that

can be transmitted in time t. The capacity of the channel is

de�ned as

Cap = lim
t→∞

1

t
logW (t). (1)
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Information Theory
If X = A∗ is the collection of signals, and every symbol takes τ
time units to be transmitted, then

W (t) = #Abt/τc and Cap =
1

τ
log#A.

This W (t) doesn't mean the number of signals can indeed be

transmitted together in a time interval of length t, just the total

number of signals each of which can be transmitted in a time

interval of length t.

Thus the capacity of a channel is the same as the entropy of the

language of signals, but only if each symbol needs the same unit

transmission time. If, on the other hand, the possible signals

s1, . . . , sn have transmission times t1, . . . , tn, then

W (t) = W (t − t1) + · · ·+W (t − tn),

where the j-th term on the right hand side indicates the possible

transmissions after �rst transmitting sj .
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Information Theory

Using the ansatz W (t) = ax t for some x ≥ 1, we get that the

leading solution λ of the equation

1 = x−t1 + · · ·+ x−tn ,

solves the ansatz, and therefore Cap = log λ.



Information Theory
Theorem: Suppose the transmission is done by an automaton with

d states, and from each state i any signal from a di�erent group

Si ,j can be transmitted with transmission time tsi ,j , after which the

automaton reaches state j , see Figure 2. Then the capacity of the

channel is Cap = log λ where λ is the leading root of the equation

det

∑
s∈Si,j

x
−ts

i,j − δi ,j

 = 0,

where δi ,j indicates the Kronecker delta.
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Figure: A transmission automaton.



Information Theory

It makes sense to expand this idea of transmission automaton to a

Markov chain, where each transmission s ∈ Si ,j happens with a

certain probability psi ,j such that
∑R

j=1

∑
s∈Si,j p

s
i ,j = 1 for every

1 ≤ i ≤ d .

For example, if the states i ∈ A are the letters in the

English alphabet, the transmissions are single letters j ∈ A and the

probabilities pji ,j are the diagram frequencies of ij , conditioned to

the �rst letter i . Ergodicity is guaranteed if the graph of this

automaton is strongly connected. Also, if πj is the stationary

probability of being in state j ∈ {1, . . . , d}, then

πj =
d∑
i=1

πi
∑
s∈Si,j

psi ,j for all j ∈ {1, . . . , d},

see the Perron-Frobenius Theorem.
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The Uncertainty Function

Shannon introduce an uncertainty function H = H(p1, . . . , pd ) as a
measure of the amount of uncertainty of the state we are in, if only

the probabilities p1, . . . , pd of the events leading to this state are

known. This function should satisfy the following rules:

(1) H is continuous in all of its arguments;

(2) If pi =
1
d
for all d ∈ N and i ∈ {1, . . . , d}, then

d 7→ E (d) := H( 1
d
, . . . , 1

d
) is increasing;



The Uncertainty Function

(3) If the tree of events leading to the present state is broken up

into subtrees, the uncertainty H is the weighted average of the

uncertainties of the subtrees:

H(p1, . . . , pd ) = H(p1 + p2, p3, . . . , pd ) + (p1 + p2)H(p, 1− p).

•

•p1
•p2
•p3

...
...

...

•pd−1

•pd

•

•p1 + p2

•p
•1− p

•p3

...
...

...

•pd−1

•pd



The Uncertainty Function
Theorem: Every uncertainty function satisfying rules (1)-(3) there

is c ≥ 0 such that

H(p1, . . . , pd ) = −c
d∑
i=1

pi log pi

In particular, E (d) = c log d and H(p1, . . . , pd ) = 0 if pi ∈ {0, 1}
for each i . If the total number of transmission words is d , then it is

a natural to normalize, i.e., take c = 1/ log d .

Proof: If we break up an equal choice of d2 possibilities into �rst d

equal possibilities followed by d equal possibilities, we obtain

E (d2) := H(
1

d2
, . . . ,

1

d2
)

= H(
1

d
, . . . ,

1

d
) +

d∑
i=1

1

n
H(

1

d
, . . . ,

1

d
) = 2E (d).

Induction gives E (d r ) = rE (d).
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The Uncertainty Function

Now choose 2 ≤ a, b ∈ N and r , s ∈ N such that ar ≤ bs < ar+1.

Taking logarithms gives r
s
≤ log b

log a
≤ r + 1s. The monotonicity of

rule (2) also gives

rE (a) = E (ar ) ≤ E (bs) = sE (b), (*)

Taking logarithms again: r
s
≤ E(b)

E(a) ≤ r + 1s. Combining the two,

we obtain ∣∣∣∣E (b)E (a)
− log b

log a

∣∣∣∣ ≤ 2

s
.

Since s ∈ N can be taken arbitrarily large, it follows that

E (b) = c log b for c =
E (a)

log a
.

The monotonicity of rule (2) implies that c ≥ 0.



The Uncertainty Function
Now assume that pi = ni/N for integers ni and N =

∑d
i=1 ni . By

splitting the choice into N equal possibilities into d possibilities

with probability pi , each of which is split into ni equal possibilities,

by (3), we get

E (N) = H(p1, . . . , pd ) +
d∑
i=1

piE (ni ).

Inserting (*), we obtain

H(p1, . . . , pd ) = −c
d∑
i=1

pi (log ni − logN)

= −c
d∑
i=1

pi log
ni

N
= −c

d∑
i=1

pi log pi .

This proves the theorem for all rational choices of (p1, . . . , pd ).
The continuity of rule (1) implies the result for all real probability

vectors. This concludes the proof.



Information Theory

Remark: Suppose we compose messages of n symbols in {0, 1},
and each symbol has probability p0 of being a 0 and p1 = 1− p0 of

being a 1, independently of everything else. Then the bulk of such

messages has np0 zeros and np1 ones. The exponential growth rate

of the number of such words is, by Stirling's formula

lim
n→∞

1

n
log

(
n

np0

)
= lim

n→∞

1

n
log

nne−n
√
2πn

(np0)np0e−np0
√
2πnp0 (np0)np0e−np0

√
2πnp0

= −p0 log p0 − p1 log p1 = H(p0, p1).



Information Theory
Recall the convenience of using logarithms base d if the alphabet

A = {1, 2, . . . , d} has d letters. In this base, the exponential

growth rate is H(p1, . . . , pd ) ≤ 1 with equality if and only if all

pa = 1/d . Thus the number of the most common words (in the

sense of the frequencies of a ∈ A deviating very little from pa) is

roughly dnH(p1,...,pd ). This suggests that one could recode the bulk

of the possible message with words of length nH(p1, . . . , pd ) rather
than n.

Said di�erently, the bulk of the words x1 . . . xn have

measure

p(x1, . . . xn) =
n∏

i=1

pxi ≈ e−nH(p1,...,pd ).

By the Strong Law of Large Numbers, for all ε, δ > 0 there is

N ∈ N such that for all n ≥ N, up to a set of measure ε, all words
x1 . . . xn satisfy∣∣∣∣−1

n
logd p(x1 . . . xn)− H(p1, . . . , pd )

∣∣∣∣ < δ.
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Shannon's Source Coding Theorem

Thus, such δ-typical words can be recoded using at most

n(H(p1, . . . , pd ) + o(1)) letters for large n, and the compression

rate is H(p1, . . . , pd ) + o(1) as n→∞. Stronger compression is

impossible. This is

Shannon's Source Coding Theorem: For a source code of entropy

H and a channel with capacity Cap, it is possible, for any ε > 0, to

design an encoding such that the transmission rate satis�es

Cap

H
− ε ≤ E(R) ≤ Cap

H
. (2)

No encoding achieves E(R) > Cap
H

.

That is, for every ε > 0 there is N0 such that for very N ≥ N0, we

can compress a message of N letter with negligible loss of

information into a message of N(H + ε) bits, but compressing it in

fewer bit is impossible without loss of information.
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Proof of Shannon's Source Coding Theorem

Proof: Assume that the source messages are in alphabet

{1, . . . , d} and letters si appear independently with probability pi ,

so the entropy of the source is H = −
∑

i pi log pi . For the uppoer

bound, assume that the ith letter from the source alphabet require

ti bits to be transmitted.

The expected rate E(R) should be interpreted as the average

number of bits that a bit of a �typical� source message requires to

be transmitted. Let LN be the collection of N-letter words in the

source, and µN be the N-fold Bernoulli product measures with

probability vector p = (p1, . . . , pd}.
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Proof of Shannon's Source Coding Theorem

Let

AN,p,ε = {s ∈ LN : | |s|i
N
− pi | < ε for i = 1, . . . , d}.

By the Law of Large Numbers, for any δ, ε > 0 there is N0 such

that µN(AN,p,ε) > 1− δ for all N ≥ N0. This suggests that a

source message s being �typical� means s ∈ AN,p,ε, and the

transmission length of s is therefore approximately
∑

i pi tiN. Thus

typical words s ∈ LN require approximately t =
∑

i pi tiN bits

transmission time, and the expected rate is E(R) =
∑

i pi ti )
−1.
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Proof of Shannon's Source Coding Theorem

For the capacity, the number of possible transmissions of t bits is at

least the cardinality of AN,p,ε, which is the multinomial coe�cient(
N

p1N,...,pdN

)
. Therefore, by Stirling's Formula,

Cap ≥ 1

t
log

(
N

p1N, . . . , pdN

)
≥ 1∑

i pi tiN
log

(
(
√
2πN)1−d

d∏
i=1

p
−(piN+ 1

2

i )

)

=
−
∑

i pi log pi∑
i pi ti

−
∑

i log pi
2
∑

i pi tiN
−

d−1
2

log 2πN∑
i pi tiN

≥ RH,

proving the upper bound.



Proof of Shannon's Source Coding Theorem

The coding achieving the lower bound in (2) that was used in

Shannon's proof resembled one designed by Fano. It is now known

as the Shannon-Fano code and works as follows:

For the lower bound, let again LN be the collection of words B of

length N in the source, occurring with probability pB . The

Shannon-McMillan-Breiman Theorem implies that for every ε > 0

there is N0 such that for all N ≥ N0,

| − 1

N
log pB − H| < ε for all B ∈ LN except for a set of measure < ε.

Thus the average

GN := − 1

N

∑
B∈LN

pB log pB → H as N →∞.



Proof of Shannon's Source Coding Theorem

If we de�ne the condition entropy of symbol a in the source

alphabet following a word in LN as

FN+1 = H(Ba|B) = −
∑
B∈LN

∑
a∈S

pBa log2
pBa

pB
,

then after rewriting the logarithms, we get

FN+1 = (N + 1)GN+1 − NGN , so GN =
∑N−1

n=0 Fn+1. Because the

conditional entropy is decreasing as the words B get longer. Thus

FN is decreases in N and GN is a decreasing sequence as well.



Proof of Shannon's Source Coding Theorem
Assume that the words B1,B2, . . . ,Bn ∈ LN are arranged such that

pB1
≥ pB2

≥ · · · ≥ pBn
. Shannon encodes the words Bi in binary as

follows. Let Ps =
∑

i<s pBi
, and choose ms = d− log pBs

e, encode
ms as the �rst ms digit of the binary expansion of Ps , see Table 1.

pBs
Ps ms Shannon Fano

8
36

28
36

3 110 11
7
36

21
36

3 101 101
6
36

21
36

3 011 100
5
36

15
36

3 010 011
4
36

6
36

4 0010 010
3
36

3
36

4 0001 001
2
36

1
36

5 00001 0001
1
36

0
36

6 00000(0) 0000

Table: An example of encoding using Shannon code and Fano code.



Proof of Shannon's Source Coding Theorem

Because Ps+1 ≥ Ps + 2−ms , the encoding of Bs+1 di�ers by at least

one in the digits of the encoding of Bs . Therefore all codes are

di�erent.

The average number of bits per symbol is H ′ = 1
N

∑
s mspBs

, so

GN = − 1

N

∑
s

pBs
log pBs

≤ H ′ < − 1

N

∑
s

pBs
(log pBs

− 1) = GN +
1

N
.

Therefore the average rate of transmission is

Cap

H ′
∈

[
Cap

GN + 1
N

,
Cap

GN

]
.

Since GN decreases to the entropy H, the above tends to Cap /H
as required.
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Proof of Shannon's Source Coding Theorem

Fano used a di�erent and slightly more e�cient encoding, but with

the same e�ect (the di�erence negligible for large values of N). He

divides LN into two groups of mass as equal to 1/2 as possible.

The �rst group gets �rst symbol 1 in its code, the other group 0.

Next divide each group into two subgroups of mass as equal to 1/4
as possible. The �rst subgroups get second symbol 1, the other

subgroup 0, etc. See Table 1.


