
Spectral Theory for Dynamical Systems

Spectral Theory of a dynamical system refers to the properties of

eigenvalues and eigenfunctions of the Koopman operator of a

dynamical system.

We recall: Given (X ,B, µ,T ), we can take the space of

complex-valued square-integrable observables L2(µ). This is a
Hilbert space, equipped with inner product

〈f , g〉 =

∫
X
f (x) · g(x) dµ.

The Koopman operator is de�ned as

UT : L2(µ)→ L2(µ), UT f = f ◦ T .



The Koopman Operator

By T -invariance of µ, it is a unitary operator (it preserves the inner

product). Indeed

〈UT f ,UTg〉 =

∫
X
f ◦ T (x) · g ◦ T (x) dµ

=

∫
X

(f · g) ◦ T (x) dµ =

∫
X
f · g dµ = 〈f , g〉,

and therefore U∗TUT = UTU
∗
T = I .



The Koopman Operator

Theorem: The eigenvalues of UT form a multiplicative group

subgroup of the unit circle. Eigenfunctions to di�erent eigenvalues

are orthogonal, and if µ is ergodic, then the eigenfunctions have

constant modulus and each eigenspace is one-dimensional.

Examples: A transformation is weakly mixing if 1 is the only

eigenvalue (and it has multiplicity 1, so constant functions are the

only eigenfunctions). This is not so easy to see from our earlier

de�nition of weak mixing, but we will not give the proof for now.

For rational circle rotations (S1,B, Leb,Rp/q) the eigenvalues are

{e2πir/q : r ∈ {0, 1, . . . , q − 1}}, and each eigenvalue has in�nite

multiplicity. Note: no ergodicity!

For irrational circle rotations (S1,B, Leb,Rα) the eigenvalues are

{e2πinα : n ∈ Z}, and each eigenfunction of e2πinα is x 7→ e2πinx ,
up to a multiplicative constant.



The Koopman Operator

Proof: If λ is the eigenvalue of eigenfunction v , then

〈v , v〉 = 〈UT v ,UT v〉 = 〈λv , λv〉 = |λ|2〈v , v〉,

so λ lies on the unit circle. Assuming that λ, µ are eigenvalues with

eigenfunctions v and w respectively, we have

UT (vw) = (vw) ◦ T = (v ◦ T ) · (w ◦ T ) = UT v · UTw = λµ(vw),

so λµ is an eigenvalue. Also

UT (v̄) = v̄ ◦ T = v ◦ T = UT v = λ̄v̄ = λ−1v̄ ,

so the eigenvalues form a multiplicative group of the unit circle. If

v and w are eigenfunctions to di�erent eigenvalues λ and µ, then

〈v ,w〉 = 〈UT v ,UTw〉 = 〈λv , µw〉 = λµ̄〈v ,w〉,

and this can only be true of 〈v ,w〉 = 0.



The Koopman Operator

Assume now that µ is ergodic, so the only eigenvectors of

eigenvalue 1 are constant µ-a.e. If v is the eigenfunction of

eigenvalue λ, then |v | is an eigenfunction of eigenvalue |λ| = 1, so

|v | is constant; we can scale |v | = 1. If w is another eigenfunction

of λ, scaled so that |w | = 1 and independent of v , then v/w is an

eigenfunction of 1, so v = w µ-a.e.



The Koopman Operator

Lemma If (Y ,S , ν) is a measure-theoretical factor of (X ,T , µ)
(with factor map π and ν = µ ◦ π−1), then every eigenvalue of

(Y ,S , ν) is also an eigenvalues of (X ,T , µ).

In particular, the spectrum of (Y ,S , ν) is contained in the

spectrum of (X ,T , µ), and isomorphic systems have the same

eigenvalues and spectrum.

Proof: Let g be an eigenvalue of (Y ,S , ν), with eigenvalue e2πiα.
Then f := g ◦ π is an eigenvector of (X ,T , µ), because

f ◦ T = g ◦ π ◦ T = g ◦ S ◦ π = e2πiαg ◦ π = e2πiαf µ-a.e.

Hence f is an eigenfunction of (X ,T , µ) with the same eigenvalue

e2πiα.



Spectral Measures

Given a non-negative measure ν ∈M(T) on the circle, the Fourier

coe�cients of ν are de�ned as

ν̂(n) =

∫
T
zn dν =

∫
1

0

e2πinxdν(e2πix).

For every sequence (zj)j∈N ⊂ C and N ∈ N, we have

N∑
j ,k=1

zj z̄k ν̂(j − k) =
N∑

j ,k=1

∫
1

0

zje
2πijx zke2πikx dν

=

∫
1

0

N∑
j=1

zje
2πijx

N∑
k=1

zke2πikx dν

=

∫
1

0

‖
N∑
j=1

zje
2πijx‖2 dν ≥ 0.



Spectral Measures

This property of (ν̂(n))n∈Z is called positive de�niteness.

Conversely, the Bochner-Herglotz Theorem states that for every

positive de�nite sequence (an)n∈Z ⊂ C, there is a unique

non-negative measure ν ∈M(T) such that ν̂(n) = an for each n,
and ν(T) =

√∑
n |an|2.



Spectral Measures

Let (X ,B, µ,T ) be an invertible dynamical system. Given a

function f ∈ L2(µ), the sequence an := 〈Un
T f , f 〉 =

∫
X f ◦ T n f dµ

is positive de�nite because

N∑
j ,k=1

zj z̄kaj−k =
N∑

j ,k=1

zjzk〈U j−k
T f , f 〉 =

N∑
j ,k=1

〈zjU j
T f , zkU

k
T f 〉

=

〈
N∑
j=1

zjU
j
T f ,

N∑
k=1

zkU
k
T f

〉
= ‖

N∑
j=1

zjU
j
T f ‖

2 ≥ 0.

Therefore the Bochner-Herglotz Theorem associates a

non-negative measure νf ∈M(T) to f , which is called the spectral

measure of f .



Spectral Measures

Remarks

I If U is an invertible unitary operator, then

ν̂f (−n) = 〈U−nf , f 〉 = 〈U−nf ,U−nUnf 〉
= 〈f ,Unf 〉 = 〈Unf , f 〉
= ν̂f (n),

for every n ∈ N. Therefore it makes sense to de�ne

ν̂f (−n) := ν̂f (n) also for non-invertible unitary operators.

Most of the theory remains valid.



Spectral Measures

Remarks

I For U = UT , the Koopman operator of an invertible dynamical

system (X ,B, µ,T ), the Fourier coe�cients

ν̂f (n) = 〈Un
T f , f 〉 =

∫
X f ◦ T n f̄ dµ are the autocorrelation

coe�cients of the observable f ∈ L2(µ).

If µ is mixing, then ν̂f (n)→ 0 for every f ∈ L2(µ) with∫
X f dµ = 0.

In fact, the correlation coe�cients 〈Un
T f , g〉 =

∫
X f ◦ T n ḡ dµ

of two observables f , g ∈ L2(µ) are the Fourier coe�cients of

a complex measure σf ,g ; this is an application of a somewhat

more general version of the Bochner-Herglotz Theorem.



Spectral Measures

Suppose the unitary operator U acts on a the Hilbert space H. We

can decompose H into subspaces that are the linear spans of

U-orbits of well-chosen functions in H:

Theorem: Let U be an invertible unitary operator acting on a

separable Hilbert space H. Then there is a (possibly �nite)

sequence of functions hj ∈ H such that

H = ⊕jSpan(Unhj : n ∈ Z)

and if j 6= k , then (1)

Span(Unhj : n ∈ Z) ⊥ Span(Unhk : n ∈ Z).

The corresponding spectral measures satis�es

νh1 � νh2 � νh3 � . . .

Moreover, if (h′j) satisfy (1), then νhj ∼ νh′j for each j .



Spectral Measures

De�nition: The spectral measure νh1 of the leading function h1 in

(1) is called the maximal spectral type. If U = UT is the Koopman

operator of an invertible dynamical system, then we call νh1 the

spectral measure of T and we will denote it as νT .

Example: If f is an eigenfunction of UT to eigenvalue λ scaled so

that ‖f ‖2 = 1, then νf = δλ is the Dirac measure at the

eigenvalue. Indeed,

δ̂λ(n) =

∫
T
zndδλ = λn = 〈λnf , f 〉 = 〈Un

T f , f 〉.

For each eigenfunction f , Span(Un
T f : n ∈ Z) =: Span(f ) is only a

one-dimensional subspace. However, closure of the span of all

eigenvalues Span(f : UT f = λf ), called the Kronecker factor, can

be as large as the whole Hilbert space L2(µ).



Pure Point Spectrum

The spectral measure of T decomposes as

νT = νpp + νac + νsing

where

I νpp is the discrete or pure point part of νT . It is an at most

countable linear combination of Dirac measures, namely at

every eigenvalue, so in particular at λ = 1. For weak mixing

transformations νpp = cδ0 for some c ∈ (0, 1].

I νac is absolutely continuous w.r.t. Lebesgue measure.

I νsing is non-atomic but singular w.r.t. Lebesgue measure.

Then parts νac + νsing = νcont together are called the continuous

part of the spectral measure.



Pure Point Spectrum

De�nition: A measure-preserving dynamical system (X ,B, µ,T ) is

said to have a pure point spectrum (also called discrete spectrum if

the collection of eigenfunctions of the Koopman operator UT spans

L2(µ). That is: the Kronecker factor is L2(µ).

Equivalently, the spectral measure νT = νpp is a countable linear

combination of Dirac measures.



Pure Point Spectrum

We quote (without proof) two structure theorems due to Halmos &

von Neumann, that illustrate the use of pure point spectrum

transformations.

Theorem Two measure-preserving dynamical systems with pure

point spectra are isomorphic if and only if their eigenvalues are the

same.

Theorem An ergodic probability measure preserving system

(X ,T , µ) on compact metric space has pure point spectrum if and

only if it is isomorphic to a rotation on a compact metrizable

Abelian group G with Haar measure µG , so there is g0 ∈ G such

that Tx = φ−1(φ(x) + g0), where φ : X → G is the isomorphism.



Pure Point Spectrum

We give some examples to illustrate the second theorem. Assume

that (X ,T , µ) has pure point spectrum.

Example: Let α be irrational suppose that the set of eigenvalues of

UT is {e2πinα : n ∈ Z}.
Then the system is isomorphic to (S1,Rα, Leb), with eigenfunctions

vn = e2πinx

These are the usual Fourier modes, and they span L2(S1, Leb).



Pure Point Spectrum

Example: Let α and β two irrationals that are rationally

independent, i.e., xα + yβ + z = 0 for x , y , z ∈ Q implies

x = y = z = 0.

Then the �group� rotation

Rα,β : T2 → T2, (x , y) 7→ (x + α, y + β).

has spectrum {e2πi(mα+nβ) : m, n ∈ Z}. The eigenfunctions are

vm,n = e2πi(mx+ny).

These are the two-dimensional Fourier modes, and they span

L2(T2, Leb).



The dyadic odometer
The following example, called dyadic odometer or dyadic adding

machine has spectrum {e2πim2
−n

: m, n ∈ N}.
It is a map a : {0, 1}N → {0, 1}N de�ned by �add-and-carry�.

x = 01110001101101010100 . . .

+1 = 10000000000000000000 . . .
a(x) = 11110001101101010100 . . .

+1 = 10000000000000000000 . . .

a2(x) = 00001001101101010100 . . .



The dyadic odometer

Let us write the map a down as a computer algorithm:

c := 1 ; k := 1

Repeat

s := xk + c ;

If s ≥ 2 then c := 1 else c := 0

xk := s mod 2 ; k := k + 1

Until c = 0

Check that this algorithm indeed gives

a(11111111111 . . . ) = 00000000000 . . .



The dyadic odometer

Let us also generalize this to show that the odometer is a

topological group under addition.

The addition z = x + y of two sequences x , y ∈ X with

add-and-carry goes according to the algorithm:

c := 0 ; k := 1

Repeat for all k ∈ N
s := xk + yk + c;

If s ≥ 2 then c := 1 else c := 0

zk := s mod 2 ; k := k + 1

One can check that this is continuous in x and y .



The dyadic odometer
As an interval map, the odometer has the form

a(x) = x − (1− 3 · 21−n) if x ∈ [1− 21−n, 1− 2−n), n ≥ 1,

It preserves Lebesgue measure.

Figure: The dyadic odometer represented as a map a on the interval (von
Neumann-Kakutani map).



The dyadic odometer

The map a permutes the n-cylinders cyclically, so if we de�ne

vm,n : {0, 1}N → C as

vm,n(x) = e2πimk/2n if x ∈ [a1 . . . an], k =
n∑

j=1

aj2
j−1,

then

vm,n ◦ a = e2πim/2
n
vm,n.

This shows that e2πim/2
n
are indeed all eigenvalues.

Exercise: Verify that these eigenfunctions form a orthonormal

system. Show that the dyadic adding machine is uniquely ergodic.



The dyadic odometer

Theorem The dyadic odometer has pure point spectrum.

Proof: Let (X , a) be the odometer, with a-invariant measure µ.
The n-cylinder Z[0n] = [0 . . . 0] (n zeros) is periodic with period 2n

under the map a. Abbreviate Zn
j = aj(Z[0n]). Now

λnm := e2πim/2
n
for 0 ≤ m < 2n

is an eigenvalue, because we can construct a corresponding

eigenfunction vm,n of the Koopman operator as

vm,n|Zn
j

= e−2πijm/2
n
. In particular,

(vm,n)n∈N,0≤m<2n forms an orthogonal system,

and it is also easy to check that the L2(µ)-norms ‖vm,n‖2 = 1 for

all n ∈ N, 0 ≤ m < 2n.



The dyadic odometer

Proof continued: To show that it is a complete orthonormal

system, i.e.,

Span({vm,n : n ∈ N, 0 ≤ m < 2n}) is dense in L2(µ),

it su�ces to show that if g ∈ L2(µ) is such that
∫
X g vm,n dµ = 0

for all n ∈ N, 0 ≤ m < 2n, then g ≡ 0 µ-a.e. Since C (X ) is dense

in L2(µ), we can assume that g is continuous.

Assume that there is a cylinder set Zn
j such that

∫
Zn
j
g dµ 6= 0. Let

wε = ε+ (1− ε)e−2πij/2
n
v1,n,



The dyadic odometer

Proof continued: Then wε|Zn
j

= 1 and |wε(x)| ≤ 1− ε2 < 1 for

x /∈ Zn
j for ε > 0 su�ciently small. Clearly wε is a linear

combination of eigenfunctions, so∫
X
g wε dµ = 0.

The algebraic power w r
ε is a linear combination of eigenfunctions

too, and hence also ∫
X
g w r

ε dµ = 0.

But since |w r
ε (x)| < (1− ε2)r → 0 for each x /∈ Zn

j , we get

limr→∞
∫
X g w r

ε dµ =
∫
Zn
j
g dµ 6= 0. This contradiction shows that

(vm,n)n∈N,0≤m<2n is indeed a complete orthonormal system,


