Spectral Theory for Dynamical Systems

Spectral Theory of a dynamical system refers to the properties of
eigenvalues and eigenfunctions of the Koopman operator of a
dynamical system.

We recall: Given (X, B, u, T), we can take the space of
complex-valued square-integrable observables L?(;1). This is a
Hilbert space, equipped with inner product

(f.8) = [ £(0-20) d.
The Koopman operator is defined as

Ut L2(p) — L?(p), Urf=foT.



The Koopman Operator

By T-invariance of p, it is a unitary operator (it preserves the inner
product). Indeed

(Urf,Urg) = /Xfo T(x)-goT(x)du

/(f~g>oT(x) du=/f~gdu=<ﬂg>7
X

X

and therefore U3 Ut = UT U7 = I.



The Koopman Operator

Theorem: The eigenvalues of Ut form a multiplicative group
subgroup of the unit circle. Eigenfunctions to different eigenvalues
are orthogonal, and if u is ergodic, then the eigenfunctions have
constant modulus and each eigenspace is one-dimensional.

Examples: A transformation is weakly mixing if 1 is the only
eigenvalue (and it has multiplicity 1, so constant functions are the
only eigenfunctions). This is not so easy to see from our earlier
definition of weak mixing, but we will not give the proof for now.

For rational circle rotations (S*, BB, Leb, Ry/q) the eigenvalues are
{ezm’r/q :re{0,1,...,9g—1}}, and each eigenvalue has infinite
multiplicity. Note: no ergodicity!

For irrational circle rotations (S!, B, Leb, R,) the eigenvalues are
{ezm”o‘ :n € Z}, and each eigenfunction of e2rina ig y y g2minx
up to a multiplicative constant.



The Koopman Operator

Proof: If X\ is the eigenvalue of eigenfunction v, then
<V7 V> = <UTV, UTV> = <)‘V>)\V> = |)‘|2<V7 V>a

so A lies on the unit circle. Assuming that A, i are eigenvalues with
eigenfunctions v and w respectively, we have

Ur(w)=(w)o T =(voT)-(woT)=Urv-Urw = Au(vw),
so Ay is an eigenvalue. Also
Ur(W)=voT=vo T =Urv=2Av =17,

so the eigenvalues form a multiplicative group of the unit circle. If
v and w are eigenfunctions to different eigenvalues A and p, then

(v,w) = (Urv,Urw) = (Av, uw) = A\i(v, w),

and this can only be true of (v, w) = 0.



The Koopman Operator

Assume now that u is ergodic, so the only eigenvectors of
eigenvalue 1 are constant p-a.e. If v is the eigenfunction of
eigenvalue A, then |v| is an eigenfunction of eigenvalue |A\| =1, so
|v| is constant; we can scale |v| = 1. If w is another eigenfunction
of A, scaled so that |w| =1 and independent of v, then v/w is an
eigenfunction of 1, so v = w p-a.e.



The Koopman Operator

Lemma If (Y, S,v) is a measure-theoretical factor of (X, T, p)
(with factor map m and v = po 7~ 1), then every eigenvalue of
(Y,S,v) is also an eigenvalues of (X, T, u).

In particular, the spectrum of (Y, S, v) is contained in the
spectrum of (X, T, i), and isomorphic systems have the same
eigenvalues and spectrum.

Proof: Let g be an eigenvalue of (Y, S, ), with eigenvalue 2™/,

Then f := g o is an eigenvector of (X, T, ), because

foT=gomroT=goSon= e2”i‘)‘go7r: e2miof [-a.e.
Hence f is an eigenfunction of (X, T, ) with the same eigenvalue
2mic

e,



Spectral Measures

Given a non-negative measure v € M(T) on the circle, the Fourier
coefficients of v are defined as

1
p(n) :/z” du:/ e>minx ) (2™X),
T 0

For every sequence (zj)jeny C C and N € N, we have

N N 1
E zizko(j — k) = E / zj-e2”UX zie2mikx dy
0

J,k=1 k=1

1 N N
= / sze%inZZkezmkx dv
0 j=1 k=1
1 N
= / Hszezﬂiijzduzo.
0

J=1



Spectral Measures

This property of (2(n))nez is called positive definiteness.

Conversely, the Bochner-Herglotz Theorem states that for every
positive definite sequence (a,)nez C C, there is a unique
non-negative measure v € M(T) such that (n) = a, for each n,

and v(T) = />, ]an]*



Spectral Measures

Let (X, B, u, T) be an invertible dynamical system. Givena
function f € L?(u), the sequence a, := (UFf,f) = [, fo T"fdu
is positive definite because

N N N
Z Zjzgaj | = Z ijk<UJT7kf, f> = Z <ZJUJTf,ZkU£,(—f>
Jk=1 J-k=1 Jrk=1
N N N .
— <szUfo,szU-krf> =Y zUf|> >0.
j=1 k=1 j=1

Therefore the Bochner-Herglotz Theorem associates a
non-negative measure vr € M(T) to f, which is called the spectral
measure of f.



Spectral Measures

Remarks

» If U is an invertible unitary operator, then
Pe(—n) = (UT"f,fy=(U"f,U"U")
= (f,U"f)y = (U"f,f)

= ﬁf(n)v

for every n € N. Therefore it makes sense to define
D¢(—n) := D¢(n) also for non-invertible unitary operators.
Most of the theory remains valid.



Spectral Measures

Remarks

» For U = Uy, the Koopman operator of an invertible dynamical
system (X, B, i, T), the Fourier coefficients
De(n) = (UL, f) = [, fo T" f dy are the autocorrelation
coefficients of the observable f € L?(y).

If o is mixing, then 7¢(n) — 0 for every f € L?(u1) with

fX fdu=0.

In fact, the correlation coefficients (U7f,g) = [ fo T"gdu
of two observables f, g € L2(u1) are the Fourier coefficients of
a complex measure o 4; this is an application of a somewhat
more general version of the Bochner-Herglotz Theorem.



Spectral Measures

Suppose the unitary operator U acts on a the Hilbert space H. We

can decompose H into subspaces that are the linear spans of
U-orbits of well-chosen functions in H:

Theorem: Let U be an invertible unitary operator acting on a
separable Hilbert space H. Then there is a (possibly finite)
sequence of functions h; € H such that

H = @jSpan(U”hj ne Z)
and if j # k, then
Span(U"h; : n € Z) L Span(U"hy : n € Z).

The corresponding spectral measures satisfies
Upy > Vpy > Vpg > ...

Moreover, if (h}) satisfy (1), then v, ~ vy for each j.



Spectral Measures

Definition: The spectral measure vy, of the leading function hy in
(1) is called the maximal spectral type. If U = Ut is the Koopman
operator of an invertible dynamical system, then we call vp, the
spectral measure of T and we will denote it as vT.

Example: If f is an eigenfunction of Ut to eigenvalue A scaled so
that ||f]|2 = 1, then v = §) is the Dirac measure at the
eigenvalue. Indeed,

ox(n) = / 2ddy = A" = (\"f, f) = (U}f, f).
T

For each eigenfunction f, Span(U%}f : n € Z) =: Span(f) is only a
one-dimensional subspace. However, closure of the span of all
eigenvalues Span(f : Urf = Af), called the Kronecker factor, can
be as large as the whole Hilbert space L?(1).




Pure Point Spectrum

The spectral measure of T decomposes as
VT = Vpp + Vac + Vsing

where

» vy is the discrete or pure point part of v7. It is an at most
countable linear combination of Dirac measures, namely at
every eigenvalue, so in particular at A = 1. For weak mixing
transformations vp, = cdo for some ¢ € (0, 1].

> v, is absolutely continuous w.r.t. Lebesgue measure.
» Using i non-atomic but singular w.r.t. Lebesgue measure.

Then parts vac + Using = Veont together are called the continuous
part of the spectral measure.



Pure Point Spectrum

Definition: A measure-preserving dynamical system (X, B, u, T) is
said to have a pure point spectrum (also called discrete spectrum if
the collection of eigenfunctions of the Koopman operator Ut spans
[?(p). That is: the Kronecker factor is L2(u).

Equivalently, the spectral measure v1 = vy, is a countable linear
combination of Dirac measures.



Pure Point Spectrum

We quote (without proof) two structure theorems due to Halmos &
von Neumann, that illustrate the use of pure point spectrum
transformations.

Theorem Two measure-preserving dynamical systems with pure
point spectra are isomorphic if and only if their eigenvalues are the
same.

Theorem An ergodic probability measure preserving system

(X, T, u) on compact metric space has pure point spectrum if and
only if it is isomorphic to a rotation on a compact metrizable
Abelian group G with Haar measure pg, so there is gg € G such
that Tx = ¢~1(¢(x) + go), where ¢ : X — G is the isomorphism.



Pure Point Spectrum

We give some examples to illustrate the second theorem. Assume
that (X, T, i) has pure point spectrum.

Example: Let o be irrational suppose that the set of eigenvalues of

Ut is {€>™ne . p € 7}.

Then the system is isomorphic to (S, R, Leb), with eigenfunctions
2minx

Vp= e

These are the usual Fourier modes, and they span L?(S', Leb).



Pure Point Spectrum

Example: Let o and 3 two irrationals that are rationally
independent, i.e., xa +yB + z =0 for x,y,z € Q implies
x=y=z=0.

Then the “group” rotation

Rap: T2 — T2, (x,y) = (x+a,y + 5).

2mi(ma+nB) .

has spectrum {e :m,n € Z}. The eigenfunctions are

Vinn = e27rl(mx+ny)‘

These are the two-dimensional Fourier modes, and they span
L2(T?, Leb).



The dyadic odometer
The following example, called dyadic odometer or dyadic adding

machine has spectrum {e?™™2"" : m n € N}.
It is a map a: {0,1}" — {0,1}" defined by “add-and-carry”.

x = 01110001101101010100...
+1 = 10000000000000000000...

a(x) = 11110001101101010100...
+1 = 10000000000000000000...

a*(x) = 00001001101101010100. ..



The dyadic odometer

Let us write the map a down as a computer algorithm:

ci=1 : k:=1

Repeat
S =X, + C;
fs>2thenc:=1lelse c:=0
Xe:=smod2; k:=k+1
Until c=0

Check that this algorithm indeed gives

a(11111111111...) = 00000000000 . ..



The dyadic odometer

Let us also generalize this to show that the odometer is a
topological group under addition.

The addition z = x + y of two sequences x, y € X with
add-and-carry goes according to the algorithm:

c=0 ; k=1

Repeat for all k e N
S =Xk + Yk +C;
f s>2thenc:=1else c:=0
zk:=smod2; ki=k+1

One can check that this is continuous in x and y.



The dyadic odometer

As an interval map, the odometer has the form
a(x)=x—(1-3-21"") fxe[l-2""1-27"), n>1,

It preserves Lebesgue measure.

Figure: The dyadic odometer represented as a map a on the interval (von
Neumann-Kakutani map).



The dyadic odometer

The map a permutes the n-cylinders cyclically, so if we define
Vmn o {0, 1}V — C as

n
Vinn(x) = 27MK/2" if x € [ay ... ap], k = Z a2t
j=1

then

H n
Vmn©a= e271'1m/2 Vin-

This shows that €2™™/2" are indeed all eigenvalues.

Exercise: Verify that these eigenfunctions form a orthonormal
system. Show that the dyadic adding machine is uniquely ergodic.



The dyadic odometer

Theorem The dyadic odometer has pure point spectrum.

Proof: Let (X, a) be the odometer, with a-invariant measure .
The n-cylinder Zjgm = [0...0] (n zeros) is periodic with period 2"
under the map a. Abbreviate Z = @(Zjon)). Now

Ap = e2mim/2" £or 0 < m < 27

is an eigenvalue, because we can construct a corresponding
eigenfunction vy, , of the Koopman operator as

Vm,n’Zj" = e=27mim/2" |n particular,

(Vm,n)neN,0<m<2n forms an orthogonal system,

and it is also easy to check that the L2(p1)-norms ||vi nll2 = 1 for
all neN,0 < m<2".



The dyadic odometer

Proof continued: To show that it is a complete orthonormal
system, i.e.,

Span({Vm,:n € N,0 < m < 2"}) is dense in L?(p),

it suffices to show that if g € L?(u) is such that fXg Vmndp =0
forall n € N,0 < m < 2", then g =0 p-a.e. Since C(X) is dense
in L2(11), we can assume that g is continuous.

Assume that there is a cylinder set Z" such that Jongdu#0. Let
J

w, =¢+ (1 — 5)e727”'j/2"v17,,,



The dyadic odometer

Proof continued: Then w.|z» =1 and [n.(x)| <1 - g2 <1 for

X ¢ 44 for € > 0 sufficiently small. Clearly w. is a linear
combination of eigenfunctions, so

/g%duzo.
X

The algebraic power w/ is a linear combination of eigenfunctions

too, and hence also
/ gwl du=0.
X

But since |w/(x)| < (1 —&2)" — 0 for each x ¢ ZJ', we get
lim, oo [y @WI dp= [, g dp # 0. This contradiction shows that
J

(Vm,n)neN,0<m<2n is indeed a complete orthonormal system,



