
Ergodic Theory - A Summary

Ergodic Theory is the study of dynamical systems by means of

invariant measures.

De�nition: A measure is T -invariant if µ(T−1(A)) = µ(A) for

every set A in the algebra of µ-measurable sets.

Equivalently: for every measurable function f : X → R,∫
X

f dµ =

∫
X

f ◦ T dµ.

A measure is called non-atomic if µ({x}) = 0 for every x ∈ X .

A measure is called absolutely continuous (w.r.t. Lebesgue m) if

m(A) = 0 implies µ(A) = 0.



Existence of Invariant Measures

The existence of invariant measures is (usually) guaranteed by the:

Theorem of Krylov-Bogol'ubov: If T : X → X is a continuous map

on a nonempty compact metric space X , then the set of invariant

probability measuresM(X ,T ) 6= ∅.

Examples:

I If T p(x) = x , then the equidistribution 1

p

∑p−1
j=0

δT j (x) is an

invariant measure.

I If PT f (x) =
∑

Ty=x
f (y)
|DT (y)| is the transfer operator w.r.t.

Lebesgue measure, then

dµ = f dx is invariant if PT f = f .



Ergodicity

De�nition: A measure µ for a dynamical system (X ,T ) is ergodic if

µ(A) = 0 or µ(Ac) = 0

for every measurable set A ⊂ X such that T−1(A) = A mod µ.

This says that (modµ), the space doesn't decompose into parts

that don't communicate with each other.

Equivalent expression for ergodicity are:

I The only T -invariant functions ψ ∈ L1(µ) i.e.,

ψ ◦ T = ψ µ-a.e., are constant µ-a.e.

I 1

n

∑n
j=0

µ(A ∩ T jB)− µ(A)µ(B)→ 0 for all measurable sets

A,B ⊂ X .



Ergodicity

Examples:

I The doubling map T : S1 → S1, x 7→ 2x mod 1 preserves

Lebesgue measure m, and it is ergodic. However, 1

2
m + 1

2
δ0 is

invariant but not ergodic.

I The Gauÿ map G : [0, 1)→ (0, 1], x 7→ 1

x
− b 1

x
c preserves the

measure dµ = 1

log 2
dx
1+x

, and it is ergodic (Folklore Theorem).

I Circle rotations

Rα : S1 → S1, Rα(x) = x + α mod 1.

preserve Lebesgue measure.
I If α ∈ Q, then every orbit is periodic. Lebesgue measure is not

ergodic.
I If α /∈ Q, then every orbit is dense in S1. Lebesgue measure is

ergodic; in fact it is the only Rα-invariant probability measure.



Unique Ergodicity

De�nition: A system (X ,T ) is called uniquely ergodic if there is

exactly one T -invariant probability measure.

This measure is automatically ergodic.

Oxtoby's Theorem: Let X be a compact space and T : X → X

continuous. A transformation (X ,T ) is uniquely ergodic if and only

if, for every continuous function ψ and every point x ∈ X , the

Birkho� averages

1

n

n−1∑
i=0

ψ ◦ T i (x)

converge uniformly to a constant.



Birkho�'s Ergodic Theorem

Birkho�'s Ergodic Theorem formalizes a frequent observation in

physics:

Space Average = Time Average (for typical points).

This is expressed in:

Birkho�'s Ergodic Theorem: Let µ be a probability measure and

ψ ∈ L1(µ). Then the ergodic average

ψ∗(x) := lim
n→∞

1

n

n−1∑
i=0

ψ ◦ T i (x)

exists µ-a.e., and ψ∗ is T -invariant, i.e., ψ∗ ◦ T = ψ∗ µ-a.e.
If in addition µ is ergodic then

ψ∗ =

∫
X

ψ dµ µ-a.e.



Absolutely Continuous Measures

De�nition: A measure µ is called absolutely continuous w.r.t. the

measure ν (notation: µ� ν) if ν(A) = 0 implies µ(A) = 0. If both

µ� ν and ν � µ, then µ and ν are called equivalent.

Theorem of Radon-Nikodym: If µ is a probability measure and

µ� ν then there is a function h ∈ L1(ν) (called Radon-Nikodym

derivative or density) such that µ(A) =
∫
A
h(x) dν(x) for every

measurable set A.

Notation: h(x) = dµ(x)
dν(x) .

Suppose that µ� ν are both T -invariant probability measures,

with a common σ-algebra B of measurable sets. If ν is ergodic,

then µ = ν.



Poincaré Recurrence

The Poincaré Recurrence Theorem: If (X ,T , µ) is a measure

preserving system with µ(X ) = 1, then for every measurable set

Y ⊂ X of positive measure, µ-a.e. y ∈ Y returns to Y , i.e., the

�rst return time to Y : τY (y) <∞ µ-a.e.

De�nition: A system (X ,T ,B, µ) is called conservative if for every

set A ∈ B with µ(A) > 0, there is n ≥ 1 such that

µ(T n(A) ∩ A) > 0. The Poincaré Recurrence Theorem thus implies

that probability measure preserving systems are conservative.

If not conservative, then the system is called dissipative. It is called

totally dissipative if for every set A ∈ B,

µ({x ∈ A : T n(x) ∈ A in�nitely often}) = 0.



Kac' Lemma

Kac's Lemma quanti�es the expected value of the �rst return time

τY to Y ⊂ X .

Kac' Lemma: Let (X ,T ) preserve an ergodic measure µ. Take
Y ⊂ X measurable such that µ(Y ) > 0, and let τ : Y → N be the

�rst return time to Y . Take Y ⊂ X measurable such that

µ(Y ) > 0. Then

Eµ(τY ) =

∫
Y

τY dµ =
∑
n≥1

nµ(Yn) = µ(X )

for Yn := {y ∈ Y : τ(y) = n}.



Induced Systems

Proposition: Let (X ,B,T , µ) be an ergodic dynamical system and

Y ∈ B a set with µ(Y ) > 0. Let TY = T τY be the �rst return map

to Y .

If µ is T -invariant, then ν(A) := 1

µ(Y )µ(A ∩ Y ) is TY -invariant.

Conversely, if ν is TY -invariant, and

Λ :=

∫
Y

τ(y)dν <∞,

then

µ(A) =
1

Λ

∞∑
j=1

ν(T−j(A) ∩ {y ∈ Y : τ(y) ≥ j})

is a T -invariant probability measure. Moreover µ is ergodic for T if

and only if ν is ergodic for TY .



Isomorphic Systems

De�nition: Two measure preserving dynamical systems (X ,B,T , µ)
and (Y , C, S , ν) are called isomorphic if there are X ′ ∈ B, Y ′ ∈ C
and φ : Y ′ → X ′ such that

I µ(X ′) = 1, ν(Y ′) = 1;

I φ : Y ′ → X ′ is a bi-measurable bijection;

I φ is measure preserving: ν(φ−1(B)) = µ(B) for all B ∈ B.
I φ ◦ S = T ◦ φ.

That is, the below diagram commutes, and φ : Y → X is

one-to-one almost everywhere.

(Y , C, ν)
S−→ (Y , C, ν)

φ ↓ ↓ φ

(X ,B, µ)
T−→ (X ,B, µ)



The Bernoulli Property

De�nition: Let (X ,B, µ,T ) be a measure preserving dynamical

system.

1. If T is invertible, then the system is called Bernoulli if it is

isomorphic to a 2-sided Bernoulli shift.

2. If T is non-invertible, then the system is called one-sided

Bernoulli if it is isomorphic to a 1-sided Bernoulli shift.

3. If T is non-invertible, then the system is called Bernoulli if its

natural extension is isomorphic to a 2-sided Bernoulli shift.



Mixing

De�nition: A probability measure preserving dynamical system

(X ,B, µ,T ) is mixing (or strong mixing) if

µ(T−n(A) ∩ B)→ µ(A)µ(B) as n→∞

for every A,B ∈ B.

This says that the �events� A and B are asymptotically independent.

Equivalently, a probability preserving dynamical system (X ,B,T , µ)
is mixing if and only if∫

X

f ◦ T n(x) · g(x) dµ→
∫
X

f (x) dµ ·
∫
X

g(x) dµ as n→∞

for all f , g ∈ L2(µ)



Measure-Theoretic Entropy

Given a �nite partition P of a probability space (X , µ), let

Hµ(P) = −
∑
P∈P

µ(P) log(µ(P)). (1)

For a T -invariant probability measure µ on (X ,B,T ), and a

partition P, de�ne the entropy of µ w.r.t. P as

hµ(T ,P) = lim
n→∞

1

n
Hµ(

n−1∨
k=0

T−kP). (2)

Finally, the measure theoretic entropy of µ is

hµ(T ) = sup{hµ(T ,P) : P is a �nite partition of X}. (3)



Measure-Theoretic Entropy

Remarks concerning measure-theoretic entropy

I The existence of the limit in (2) depends on:

Fekete's Lemma: If (an)n≥1 is subadditive, then

lim
n→∞

an
n

= inf
q≥1

aq
q
.

I By Sina��'s Theorem, instead of taking the supremum over all

partitions, it su�ces to take a generating partition.

I Entropy is preserved under isomorphism (and is non-increasing

under taking measure-theoretical factors).

I The entropy of the (p1, . . . , pn)-Bernoulli shift (both one-sided

and two-sided) is h(µp) = −
∑

i pi log pi .



The Shannon-Breiman-McMillan Theorem

The Shannon-Breiman-McMillan Theorem uses entropy to measure

how large sets in the n-th joint Pn are. Typically, they decrease

exponentially and the exponential rate is exactly the

measure-theoretical entropy.

Shannon-McMillan-Breiman Theorem: Let (X ,B, µ,T ) be a

measure-preserving transformation and P a (countable or �nite)

partition with H(P) <∞ Let Pn =
∨n−1

k=0
T−k(P) and Pn(x) the

element of Pn containing x . Then

− lim
n→∞

1

n
logµ(Pn(x)) = h(P,T ) µ-a.e.



Topological Entropy
De�nition: Topological entropy can be de�ned as the xponential

growth rate of the

I (Adler-Konheim-McAndrew) minimal cardinality of subcovers

of joints:

htop(T ) = lim
ε→0

sup
U

lim
n→∞

1

n
logN (Un), (4)

where the supremum is taken over all open ε-covers U .
I (Bowen) maximal cardinalty of n, ε-separated sets:

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε). (5)

I (Bowen) minimal cardinalty of n, ε-spanning sets:

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log rn(ε). (6)



Topological Entropy

For maps T on the interval we have:

Theorem of Szlenk & Misiurewicz Let T : [0, 1]→ [0, 1] has �nitely
many laps. Then

htop(T ) = lim
n→∞

1

n
log `(T n)

= lim sup
n→∞

1

n
log #{clusters of n-periodic points}

= max{0, lim
n→∞

1

n
logVar(T n)}.

where two n-periodic points are in the same cluster if they belong

to the same lap of T n.



The Variational Principle

Topological and measure-theoretical entropy are related by the

Variational Principle which say that (for continuous map on

compact metric space)

htop(T ) = sup{hµ(T ) : µ is T -invariant probability measure}

If µ is such that hµ(T ) = htop(T ), then µ is called a measure of

maximal entropy.

If there is a unique measure of maximal entropy µmax, then (X ,T )
is called intrinsically ergodic. In this case, µmax is ergodic.



The Variational Principle

I The full shift on N symbols (one-sided or two-sided) has

entropy logN, and the measure of maximal entropy is

then( 1

N
, . . . , 1

N
)-Bernoulli measure.

I A subshift of �nite type with transition matrix A has the

logarithm of the leading eigenvalue as entropy. The Parry

measure is the measure of maximal entropy.

I Interval maps with constant slope ±s for s > 1 have an

absolutely continuou smeasure, which is the measure of

maximal entropy.



Mixing

Review of ergodic properties:

I Bernoulli if it is isomorphic to a two-sided Bernoulli shift.

I strong mixing if for all A,B ∈ B

µ(T−n(A) ∩ B)− µ(A)µ(B)→ 0.

I weak mixing if for all A,B ∈ B the average

1

n

n−1∑
i=0

|µ(T−i (A) ∩ B)− µ(A)µ(B)| → 0.

I ergodic if T−1(A) = A mod µ implies µ(A) = 0 or µ(Ac) = 0.

I conservative if for all A ∈ B with µ(A) > 0 there is n ≥ 1 such

that µ(T n(A) ∩ A) > 0.



Bernoulli - Mixing - Ergodic - Conservative

Theorem We have the implications:

Bernoulli ⇒ mixing ⇒ weak mixing ⇒ ergodic ⇒ conser-

vative.

None of the reverse implications holds.



Classifying Systems up to Isomorphism

De�nition: Two dynamical systems (X ,T ) and (Y , S) are

topologically conjugate if there is a homeomorphism φ : Y → X

such that φ ◦ S = T ◦ φ.

We can classify dynamical systems up to conjugacy, and measure

preserving systems up to isomorphism.

The one does not imply the other or vice versa:

I The doubling map (with Lebesgue measure) and the one-sided

(1
2
, 1
2

)-Bernoulli shift are isomorphic. They are not conjugate

(note: they are de�ned on non-homeomorphic spaces).

I The doubling map with Lebesgue measure is conjugate to the

doubling map with δ0, but they are not isomorphic.

(Conjugacies are topological objects; they don't care about

measures).



Classifying Systems up to Isomorphism

The following properties and quantities are preserved under

isomorphisms.

I ergodicity, weak and strong mixing, the Bernoulli property

I measure-theoretic entropy. Moreover,

Ornstein's Theorem: Two two-sided Bernoulli shifts (X , µp, σ)
and (X ′, µp′ , σ) are isomorphic if and only if h(µp) = h(µp′).

This fails for one-sided Bernoulli shifts.

I eigenvalues of the Koopman operator UT f = f ◦ T . Moreover,

Theorem (Halmos & Von Neumann) Two measure-preserving

dynamical systems with pure point spectra are isomorphic if

and only if their eigenvalues are the same.

This fails without the assumption of pure point spectrum.



Toral Automorphims

De�nition: A toral automorphism T : Td → Td is an invertible

linear map on the (d -dimensional) torus Td . Each such T is of the

form TA(x) = Ax (mod 1), where the matrix A satis�es:

I A is an integer matrix with det(A) = ±1;
I To avoid degenerate examples including A = Id , we assume

that A is primitive, i.e., An is strictly positive for some n ≥ 1.

I If the eigenvalues of A are not on the unit circle, then the toral

automorphism is called hyperbolic.



Toral Automorphims

Properties of the toral automorphisms TA:

I A preserves the integer lattice Zd , so TA is well-de�ned and

continuous.

I det(A) = ±1, so Lebesgue measure m is preserved (both by A

and TA). Also A and TA are invertible, and A−1 is still an

integer matrix (so T−1A is well-de�ned and continuous too).

I One can show that Lebesgue measure is ergodic if and only if

A has no eigenvalues that are roots of unity.

I Hyperbolic toral automorphisms have a Markov partition w.r.t.

which the symbolic dynamics is a subshift of �nite type, and

Lebesgue measure is the measure of maximal entropy.

I Hyperbolic toral automorphisms are mixing w.r.t. Lebesgue.


