Ergodicity

Definition: A measure p for a dynamical system (X, T) is ergodic if
w(A) =0 or u(A°) =0

for every measurable A C X such that T~1(A) = A mod p.

» Here T-!(A) = A mod i means that the mass of the
symmetric difference pu(T1(A)AA) = 0.

» If 11 is a probability measure, the we can write p(A) =0 or 1
for every measurable A C X such that T~1(A) = A mod p.
As stated, the definition also applies to infinite measures.

» Usually ergodicity is stated for invariant measures, but the
definition wroks for non-invariant measures too.



Ergodicity

Ergodicity means that the space X doesn't fall apart in two
separate parts.

Example 1: T is the doubling map on X = S! and ;1 = %(Leb +do).
This measure is not ergodic, because A = {0} and A =S\ {0}
are both invariant modp, but 1(A) = pu(A) = 3.

Example 2: X =10,1] and

L—2x ifxelo,1];
T(x) = 2x—% if x € [%,%];
2-2x ifxe[0,l]

Lebesgue measure T-invariant but not ergodic, because A = [0, %]
and A = (%, 1] are both invariant mody, but u(A) = u(A°) = %



Ergodicity

Proposition: Let u be an invariant measure for (X, T). Then p is
ergodic if and only if the only T-invariant functions ¢ € L*(p) i.e.,
Yo T =1 p-a.e., are constant p-a.e.

Proof: = Let ¢y : X — R be T-invariant u-a.e., but not constant.
Thus there exists a € R such that

A= Y (~00,a]) and A =1 1((a,00))

both have positive measure. By T-invariance, T"A = A (mod p),
and we have a contradiction to ergodicity.

< Let A be a set of positive measure such that T"'A = A. Let
1) = 14 be its indicator function; it is T-invariant because A is
T-invariant. By assumption, 1 is constant p-a.e., but as ¥(x) =0
for x € A, it follows that p(A°) = 0.



Proving Ergodicity

Proving that a measure is ergodic is not always simple. We
illustrate two different proofs, applicable to different systems.

Lemma 1: Lebesgue measure ergodic for the doubling map
T:S! > S x+— 2x mod 1.

Proof: Suppose by contradiction that A and B are disjoint
T-invariant sets, both of positive measure.

Lebesgue measure has the property that if Leb(A) > 0, then
Leb-a.e. x € Ais a density point, which means that

. Leb(ANJ
lim sup — =

e=0 v diam(J)<e Leb(J)

That is, the closer to x € A, the more points belong to A,
relatively.



Invariant Measures

Take x and y density points of A and B respectively. Let J, 3 x

and J, > y be dyadic intervals of length 27" where n € N is so
large that

Leb(Jx N A)

Leb(J, N B)
Leb(Jx)

> % and
3 Leb(Jy)

- 2
3
By linearity and T-invariance of A and B also:

Leb(T7(Jy N A))
Leb(T7(Jy)))

2 Leb((T"(J, N B)) _ 2
~3 Leb(T7(%,))) 3

But T"(Jyx) = T"(J,) = S. Therefore

Leb(A) > % and Leb(B) >

W[ N

This contradicts that A and B are disjoint.

This concludes this
proof by contradiction.



Proving Ergodicity
Lemma 2: Let « € R be irrational. Lebesgue measure ergodic for
the doubling map R, : S' — S!, x — x + a mod 1.

Exercise 3.7: Show that Lebesgue measure is not ergodic if a € Q.

Proof of Lemma 2: We show that every T-invariant function
) € L? must be constant. Indeed, write

Qb(X) _ Z ane27rinx

nez

as a Fourier series. The T-invariance implies

Yo T(X) _ Z ane27rin(><—0—oz) _ Z ane27rinaze27rinx _ w(x)

neZ nez

50 a,e>™" = 5, for all n € Z. Since a ¢ Q, we have a, = 0 for all
n#0, so ¢¥(x) = ag is indeed constant. Finally, L? is dense in L1,
so the same conclusion holds for ¢ € L.



Circle Rotations

Another Lebesgue preserving map that we will frequently use as
example is the circle rotation:

R, : St — st Ra(x) = x4+ o mod 1.

» Lebesgue measure is always R,-invariant, regardless what « is.

> If o € Q, then every orbit is periodic. Hence for every x € S1,
there is an atomic R,-measure such that u({x}) > 0.

» If a ¢ Q, then every orbit is dense in St.

Exercise 3.2: If « ¢ Q and p is an R,-invariant atomic measure,
show that s is an infinite measure: p(S') = co. Are all infinite
R,-invariant measure atomic?



More on Irrational Rotations

The rotation R, : S' — S! is defined as R,(x) = x + a (mod 1).
Let « be irrational.

Theorem (Poincaré): Every orbit is dense in S, and for every
interval J and every x € St, the visit frequency

v(J) = lim l#{O <i<n:R(x)eJ}=J.

n—oo N

Figure: Henri Poicaré (1854-1912): pioneer of dynamical systems.



More on lIrrational Rotations
Proof: As a ¢ Q, then x cannot be periodic, so its orbit is infinite.
Let £ > 0. Since S! is compact, there must be m < n such that
0<0:=d(RJ(x),Ri(x)) <e.
Since R, is an isometry,
R (x) = REFDI=M ()] = 6
for every k € Z, and
[RE=m () : k € 7

is a collection of points such that every two neighbours are exactly
J apart. Since € > § is arbitrary, this shows that orb(x) is dense.



More on Irrational Rotations

Let J2 = [R™(x), R(x)) and J& = RE(™™(J5). Then for

K = [1/68], {JE}K_, is a cover St of adjacent intervals, each of
length §, and Ré("_m) is an isometry from J} to J(';H. Therefore the
visit frequencies

1 .
v = liminf Z#{0 < i< n: R (x) e J}
non
are all the same for 0 < k < K, and together they add up to at
most 1 + % This shows for example that

1

1 1 i
< v <Vpo=limsup Z#{0< i< n:Ri(x) € JE} < e
non

K+1™~

and these inequalities are independent of the point x.



More on Irrational Rotations

Now an arbitrary interval J can be covered by ||J|/d] + 2 such
adjacent Jé‘, o)

V() < (g‘+2>}1(<(|J|(K+1)+2)}1(<|J|+Z.

s

A similar computation gives v(J) > |J| —

Taking ¢ — 0 (hence 6 — 0 and K — o0), we find that the limit
v(J) indeed exists, and is equal to |J|. This concludes the proof.



More on Irrational Rotations

Example: Consider the first digits of the powers of 2.

16 256 4096
32 512 8192
64 1024 16384
128 2048 32768

etc.

O B~ N =

Exercise 3.3: Does 9 ever appear as first digit?
Exercise 3.4: Does 2 appear infinitely often?

Exercise 3.5: With which frequency does 1 appear?



More on Irrational Rotations

Hint for Solution: Define h: RT — S! as h(x) = log;g x mod 1.
Then
h(2x) = h(x) + logo 2.

so the following diagram commutes:

R+ X2 _ R+
h h
st +logy 2 gt

and note also that log;q2 # Q.
The first digit of 2" is b € {1,...,9} if and only if

n |Og10 2 S [|Og10 b, |Og10 b + 1)



Unique ergodicity

Definition: A system (X, T) is called uniquely ergodic if there is
exactly one T-invariant probability measure.

Irrational rotations R, are uniquely ergodic, with Lebesgue as
unique R,-invariant probability measure.

Exercise 3.6: Show that the unique invariant meaure of a uniquely
ergodic system is necessarily ergodic.



Unique ergodicity

Oxtoby's Theorem: Let X be a compact space and T : X — X
continuous. A transformation (X, T) is uniquely ergodic if and only
if, for every continuous function 1 and every point x € X, the
Birkhoff averages

1n71 .
n;’l/]O T'(x)

converge uniformly to a constant function.



Unique ergodicity

Proof: If ;1 and v were two different ergodic measures, then we
can find a continuous function f : X — R such that [ fdu # [ fdv.
Using Birkhoff’s Ergodic Theorem for both measures (with their
own typical points x and y), we see that

n—1 n—1
1 1
Iim; E fo Tk(x):/fd,u;é/fdyzlimn E foTK(y),
k=0 k=0

so there is not even convergence to a constant function.



Unique ergodicity

Conversely, we know by the Ergodic Theorem that

lim, 2 302 tfoTk(x) = [ fdu is constant y-a.e. But if the
convergence is not unlform then there is a sequence (y;) C X and
(ni) C N, such that

1n,~—1
lim — foTky fdyu.
n s 3 fo ) # [ 7

Define probability measures v; := = Zk' 5Tk(x This sequence
(vi) has a weak accumulation pomts v WhICh is shown to be
T-invariant measures in the same way as in the proof of
Krylov-Bogol'ubov Theorem. But v # 1 because [ fdv # [ fdp.
Hence (X, T) cannot be uniquely ergodic.



