
Ergodicity

De�nition: A measure µ for a dynamical system (X ,T ) is ergodic if

µ(A) = 0 or µ(Ac) = 0

for every measurable A ⊂ X such that T−1(A) = A mod µ.

I Here T−1(A) = A mod µ means that the mass of the

symmetric di�erence µ(T−1(A)4A) = 0.

I If µ is a probability measure, the we can write µ(A) = 0 or 1

for every measurable A ⊂ X such that T−1(A) = A mod µ.
As stated, the de�nition also applies to in�nite measures.

I Usually ergodicity is stated for invariant measures, but the

de�nition wroks for non-invariant measures too.



Ergodicity

Ergodicity means that the space X doesn't fall apart in two

separate parts.

Example 1: T is the doubling map on X = S1 and µ = 1

2
(Leb+δ0).

This measure is not ergodic, because A = {0} and Ac = S1 \ {0}
are both invariant modµ, but µ(A) = µ(Ac) = 1

2
.

Example 2: X = [0, 1] and
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− 2x if x ∈ [0, 1
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2
if x ∈ [1

4
, 3
4
];
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2
− 2x if x ∈ [0, 1

4
].

Lebesgue measure T -invariant but not ergodic, because A = [0, 1
2
]

and Ac = (1
2
, 1] are both invariant modµ, but µ(A) = µ(Ac) = 1

2
.



Ergodicity

Proposition: Let µ be an invariant measure for (X ,T ). Then µ is

ergodic if and only if the only T -invariant functions ψ ∈ L1(µ) i.e.,

ψ ◦ T = ψ µ-a.e., are constant µ-a.e.

Proof: ⇒ Let ψ : X → R be T -invariant µ-a.e., but not constant.
Thus there exists a ∈ R such that

A := ψ−1((−∞, a]) and Ac = ψ−1((a,∞))

both have positive measure. By T -invariance, T−1A = A (mod µ),
and we have a contradiction to ergodicity.

⇐ Let A be a set of positive measure such that T−1A = A. Let
ψ = 1A be its indicator function; it is T -invariant because A is

T -invariant. By assumption, ψ is constant µ-a.e., but as ψ(x) = 0

for x ∈ Ac , it follows that µ(Ac) = 0.



Proving Ergodicity

Proving that a measure is ergodic is not always simple. We

illustrate two di�erent proofs, applicable to di�erent systems.

Lemma 1: Lebesgue measure ergodic for the doubling map

T : S1 → S1, x 7→ 2x mod 1.

Proof: Suppose by contradiction that A and B are disjoint

T -invariant sets, both of positive measure.

Lebesgue measure has the property that if Leb(A) > 0, then

Leb-a.e. x ∈ A is a density point, which means that

lim
ε→0

sup
x∈J,diam(J)<ε

Leb(A ∩ J

Leb(J)
= 1.

That is, the closer to x ∈ A, the more points belong to A,
relatively.



Invariant Measures

Take x and y density points of A and B respectively. Let Jx 3 x
and Jy 3 y be dyadic intervals of length 2−n where n ∈ N is so

large that

Leb(Jx ∩ A)

Leb(Jx)
>

2

3
and

Leb(Jy ∩ B)

Leb(Jy )
>

2

3
.

By linearity and T -invariance of A and B also:

Leb(T n(Jx ∩ A))

Leb(T n(Jx)))
>

2

3
and

Leb((T n(Jy ∩ B))

Leb(T n(Jy )))
>

2

3
.

But T n(Jx) = T n(Jy ) = S1. Therefore

Leb(A) >
2

3
and Leb(B) >

2

3
.

This contradicts that A and B are disjoint. This concludes this

proof by contradiction.



Proving Ergodicity

Lemma 2: Let α ∈ R be irrational. Lebesgue measure ergodic for

the doubling map Rα : S1 → S1, x 7→ x + α mod 1.

Exercise 3.7: Show that Lebesgue measure is not ergodic if α ∈ Q.

Proof of Lemma 2: We show that every T -invariant function

ψ ∈ L2 must be constant. Indeed, write

ψ(x) =
∑
n∈Z

ane
2πinx

as a Fourier series. The T -invariance implies

ψ ◦ T (x) =
∑
n∈Z

ane
2πin(x+α) =

∑
n∈Z

ane
2πinαe2πinx = ψ(x)

so ane
2πinα = an for all n ∈ Z. Since α /∈ Q, we have an = 0 for all

n 6= 0, so ψ(x) ≡ a0 is indeed constant. Finally, L2 is dense in L1,
so the same conclusion holds for ψ ∈ L1.



Circle Rotations

Another Lebesgue preserving map that we will frequently use as

example is the circle rotation:

Rα : S1 → S1, Rα(x) = x + α mod 1.

I Lebesgue measure is always Rα-invariant, regardless what α is.

I If α ∈ Q, then every orbit is periodic. Hence for every x ∈ S1,
there is an atomic Rα-measure such that µ({x}) > 0.

I If α /∈ Q, then every orbit is dense in S1.

Exercise 3.2: If α /∈ Q and µ is an Rα-invariant atomic measure,

show that µ is an in�nite measure: µ(S1) =∞. Are all in�nite

Rα-invariant measure atomic?



More on Irrational Rotations
The rotation Rα : S1 → S1 is de�ned as Rα(x) = x + α (mod 1).
Let α be irrational.

Theorem (Poincaré): Every orbit is dense in S1, and for every

interval J and every x ∈ S1, the visit frequency

v(J) := lim
n→∞

1

n
#{0 ≤ i < n : R i

α(x) ∈ J} = |J|.

Figure: Henri Poicaré (1854-1912): pioneer of dynamical systems.



More on Irrational Rotations

Proof: As α /∈ Q, then x cannot be periodic, so its orbit is in�nite.

Let ε > 0. Since S1 is compact, there must be m < n such that

0 < δ := d(Rm
α (x),Rn

α(x)) < ε.

Since Rα is an isometry,

|Rk(n−m)
α (x)− R(k+1)(n−m)

α (x)| = δ

for every k ∈ Z, and

{Rk(n−m)
α (x) : k ∈ Z}

is a collection of points such that every two neighbours are exactly

δ apart. Since ε > δ is arbitrary, this shows that orb(x) is dense.



More on Irrational Rotations

Let J0δ = [Rm
α (x),Rn

α(x)) and Jkδ = R
k(n−m)
α (Jδ). Then for

K = b1/δc, {Jkδ }Kk=0
is a cover S1 of adjacent intervals, each of

length δ, and R
j(n−m)
α is an isometry from J iδ to J i+j

δ . Therefore the

visit frequencies

vk = lim inf
n

1

n
#{0 ≤ i < n : R i

α(x) ∈ Jkδ }

are all the same for 0 ≤ k ≤ K , and together they add up to at

most 1+ 1

K . This shows for example that

1

K + 1
≤ vk ≤ vk := lim sup

n

1

n
#{0 ≤ i < n : R i

α(x) ∈ Jkδ } ≤
1

K
,

and these inequalities are independent of the point x .



More on Irrational Rotations

Now an arbitrary interval J can be covered by b|J|/δc+ 2 such

adjacent Jkδ , so

v(J) ≤
(
|J|
δ

+ 2

)
1

K
≤ (|J|(K + 1) + 2)

1

K
≤ |J|+ 3

K
.

A similar computation gives v(J) ≥ |J| − 3

K .

Taking ε→ 0 (hence δ → 0 and K →∞), we �nd that the limit

v(J) indeed exists, and is equal to |J|. This concludes the proof.



More on Irrational Rotations

Example: Consider the �rst digits of the powers of 2.

1 16 256 4096

2 32 512 8192

4 64 1024 16384

8 128 2048 32768

etc.

Exercise 3.3: Does 9 ever appear as �rst digit?

Exercise 3.4: Does 2 appear in�nitely often?

Exercise 3.5: With which frequency does 1 appear?



More on Irrational Rotations
Hint for Solution: De�ne h : R+ → S1 as h(x) = log10 x mod 1.

Then

h(2x) = h(x) + log10 2.

so the following diagram commutes:

-R+ R+×2

-S1 S1+ log10 2
?

h

?

h

and note also that log10 2 6= Q.

The �rst digit of 2n is b ∈ {1, . . . , 9} if and only if

n log10 2 ∈ [log10 b, log10 b + 1).



Unique ergodicity

De�nition: A system (X ,T ) is called uniquely ergodic if there is

exactly one T -invariant probability measure.

Irrational rotations Rα are uniquely ergodic, with Lebesgue as

unique Rα-invariant probability measure.

Exercise 3.6: Show that the unique invariant meaure of a uniquely

ergodic system is necessarily ergodic.



Unique ergodicity

Oxtoby's Theorem: Let X be a compact space and T : X → X
continuous. A transformation (X ,T ) is uniquely ergodic if and only

if, for every continuous function ψ and every point x ∈ X , the

Birkho� averages

1

n

n−1∑
i=0

ψ ◦ T i (x)

converge uniformly to a constant function.



Unique ergodicity

Proof: If µ and ν were two di�erent ergodic measures, then we

can �nd a continuous function f : X → R such that
∫
fdµ 6=

∫
fdν.

Using Birkho�'s Ergodic Theorem for both measures (with their

own typical points x and y), we see that

lim
n

1

n

n−1∑
k=0

f ◦ T k(x) =

∫
fdµ 6=

∫
fdν = lim

n

1

n

n−1∑
k=0

f ◦ T k(y),

so there is not even convergence to a constant function.



Unique ergodicity

Conversely, we know by the Ergodic Theorem that

limn
1

n

∑n−1
k=0

f ◦ T k(x) =
∫
fdµ is constant µ-a.e. But if the

convergence is not uniform, then there is a sequence (yi ) ⊂ X and

(ni ) ⊂ N, such that

lim
i

1

ni

ni−1∑
k=0

f ◦ T k(yi ) 6=
∫
X
f dµ.

De�ne probability measures νi :=
1

ni

∑ni−1
k=0

δT k (xi ). This sequence

(νi ) has a weak accumulation points ν which is shown to be

T -invariant measures in the same way as in the proof of

Krylov-Bogol'ubov Theorem. But ν 6= µ because
∫
f dν 6=

∫
f dµ.

Hence (X ,T ) cannot be uniquely ergodic.


