Ergodicity

Definition: A measure μ for a dynamical system (X, T) is ergodic if

 $\mu(A) = 0 \text{ or } \mu(A^{c}) = 0$

for every measurable $A \subset X$ such that $T^{-1}(A) = A \mod \mu$.

- Here T⁻¹(A) = A mod µ means that the mass of the symmetric difference µ(T⁻¹(A)△A) = 0.
- If µ is a probability measure, the we can write µ(A) = 0 or 1 for every measurable A ⊂ X such that T⁻¹(A) = A mod µ. As stated, the definition also applies to infinite measures.
- Usually ergodicity is stated for invariant measures, but the definition wroks for non-invariant measures too.

Ergodicity

Ergodicity means that the space X doesn't fall apart in two separate parts.

Example 1: T is the doubling map on $X = \mathbb{S}^1$ and $\mu = \frac{1}{2}(\text{Leb} + \delta_0)$. This measure is not ergodic, because $A = \{0\}$ and $A^c = \mathbb{S}^1 \setminus \{0\}$ are both invariant mod μ , but $\mu(A) = \mu(A^c) = \frac{1}{2}$.

Example 2: X = [0, 1] and

$$T(x) = \begin{cases} \frac{1}{2} - 2x & \text{if } x \in [0, \frac{1}{4}];\\ 2x - \frac{1}{2} & \text{if } x \in [\frac{1}{4}, \frac{3}{4}];\\ \frac{5}{2} - 2x & \text{if } x \in [0, \frac{1}{4}]. \end{cases}$$

Lebesgue measure T-invariant but not ergodic, because $A = [0, \frac{1}{2}]$ and $A^c = (\frac{1}{2}, 1]$ are both invariant mod μ , but $\mu(A) = \mu(A^c) = \frac{1}{2}$. ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ergodicity

Proposition: Let μ be an invariant measure for (X, T). Then μ is ergodic if and only if the only *T*-invariant functions $\psi \in L^1(\mu)$ *i.e.*, $\psi \circ T = \psi \mu$ -a.e., are constant μ -a.e.

Proof: \Rightarrow Let $\psi : X \to \mathbb{R}$ be *T*-invariant μ -a.e., but not constant. Thus there exists $a \in \mathbb{R}$ such that

 $\mathsf{A}:=\psi^{-1}((-\infty,a]) \quad ext{ and } \quad \mathsf{A}^{\mathsf{c}}=\psi^{-1}((a,\infty))$

both have positive measure. By *T*-invariance, $T^{-1}A = A \pmod{\mu}$, and we have a contradiction to ergodicity.

 \leftarrow Let A be a set of positive measure such that $T^{-1}A = A$. Let $\psi = 1_A$ be its indicator function; it is T-invariant because A is T-invariant. By assumption, ψ is constant μ -a.e., but as $\psi(x) = 0$ for $x \in A^c$, it follows that $\mu(A^c) = 0$.

Proving Ergodicity

Proving that a measure is ergodic is not always simple. We illustrate two different proofs, applicable to different systems.

Lemma 1: Lebesgue measure ergodic for the doubling map $T : \mathbb{S}^1 \to \mathbb{S}^1$, $x \mapsto 2x \mod 1$.

Proof: Suppose by contradiction that A and B are disjoint T-invariant sets, both of positive measure.

Lebesgue measure has the property that if Leb(A) > 0, then Leb-a.e. $x \in A$ is a density point, which means that

$$\lim_{\varepsilon \to 0} \sup_{x \in J, \operatorname{diam}(J) < \varepsilon} \frac{\operatorname{Leb}(A \cap J)}{\operatorname{Leb}(J)} = 1.$$

That is, the closer to $x \in A$, the more points belong to A, relatively.

Invariant Measures

Take x and y density points of A and B respectively. Let $J_x \ni x$ and $J_y \ni y$ be dyadic intervals of length 2^{-n} where $n \in \mathbb{N}$ is so large that

$$\frac{\operatorname{Leb}(J_x \cap A)}{\operatorname{Leb}(J_x)} > \frac{2}{3} \quad \text{and} \quad \frac{\operatorname{Leb}(J_y \cap B)}{\operatorname{Leb}(J_y)} > \frac{2}{3}$$

By linearity and T-invariance of A and B also:

 $\frac{\operatorname{Leb}(\mathcal{T}^n(J_x \cap A))}{\operatorname{Leb}(\mathcal{T}^n(J_x)))} > \frac{2}{3} \quad \text{and} \quad \frac{\operatorname{Leb}((\mathcal{T}^n(J_y \cap B)))}{\operatorname{Leb}(\mathcal{T}^n(J_y)))} > \frac{2}{3}.$ But $\mathcal{T}^n(J_x) = \mathcal{T}^n(J_y) = \mathbb{S}^1$. Therefore $\operatorname{Leb}(A) > \frac{2}{3} \quad \text{and} \quad \operatorname{Leb}(B) > \frac{2}{3}.$ This contradicts that A and P are divisint. This concludes the

This contradicts that A and B are disjoint. This concludes this proof by contradiction.

Proving Ergodicity

Lemma 2: Let $\alpha \in \mathbb{R}$ be irrational. Lebesgue measure ergodic for the doubling map $R_{\alpha} : \mathbb{S}^1 \to \mathbb{S}^1$, $x \mapsto x + \alpha \mod 1$.

Exercise 3.7: Show that Lebesgue measure is not ergodic if $\alpha \in \mathbb{Q}$.

Proof of Lemma 2: We show that every T-invariant function $\psi \in L^2$ must be constant. Indeed, write

$$\psi(x) = \sum_{n \in \mathbb{Z}} a_n e^{2\pi i n x}$$

as a Fourier series. The T-invariance implies

$$\psi \circ T(x) = \sum_{n \in \mathbb{Z}} a_n e^{2\pi i n(x+\alpha)} = \sum_{n \in \mathbb{Z}} a_n e^{2\pi i n \alpha} e^{2\pi i n x} = \psi(x)$$

so $a_n e^{2\pi i n \alpha} = a_n$ for all $n \in \mathbb{Z}$. Since $\alpha \notin \mathbb{Q}$, we have $a_n = 0$ for all $n \neq 0$, so $\psi(x) \equiv a_0$ is indeed constant. Finally, L^2 is dense in L^1 , so the same conclusion holds for $\psi \in L^1$.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Circle Rotations

Another Lebesgue preserving map that we will frequently use as example is the circle rotation:

 $R_{\alpha}: \mathbb{S}^1 \to \mathbb{S}^1, \qquad R_{\alpha}(x) = x + \alpha \mod 1.$

- \blacktriangleright Lebesgue measure is always R_{lpha} -invariant, regardless what lpha is.
- If α ∈ Q, then every orbit is periodic. Hence for every x ∈ S¹, there is an atomic R_α-measure such that μ({x}) > 0.
- If $\alpha \notin \mathbb{Q}$, then every orbit is dense in \mathbb{S}^1 .

Exercise 3.2: If $\alpha \notin \mathbb{Q}$ and μ is an R_{α} -invariant atomic measure, show that μ is an infinite measure: $\mu(\mathbb{S}^1) = \infty$. Are all infinite R_{α} -invariant measure atomic?

The rotation $R_{\alpha} : \mathbb{S}^1 \to \mathbb{S}^1$ is defined as $R_{\alpha}(x) = x + \alpha \pmod{1}$. Let α be irrational.

Theorem (Poincaré): Every orbit is dense in \mathbb{S}^1 , and for every interval J and every $x \in \mathbb{S}^1$, the visit frequency

$$v(J) := \lim_{n \to \infty} \frac{1}{n} \# \{ 0 \le i < n : R^i_\alpha(x) \in J \} = |J|.$$

Figure: Henri Poicaré (1854-1912): pioneer of dynamical systems.

Proof: As $\alpha \notin \mathbb{Q}$, then x cannot be periodic, so its orbit is infinite. Let $\varepsilon > 0$. Since \mathbb{S}^1 is compact, there must be m < n such that

 $0 < \delta := d(R^m_{\alpha}(x), R^n_{\alpha}(x)) < \varepsilon.$

Since R_{lpha} is an isometry,

$$|R_{\alpha}^{k(n-m)}(x) - R_{\alpha}^{(k+1)(n-m)}(x)| = \delta$$

for every $k \in \mathbb{Z}$, and

 $\{R^{k(n-m)}_{\alpha}(x): k \in \mathbb{Z}\}$

is a collection of points such that every two neighbours are exactly δ apart. Since $\varepsilon > \delta$ is arbitrary, this shows that $\operatorname{orb}(x)$ is dense.

Let $J_{\delta}^{0} = [R_{\alpha}^{m}(x), R_{\alpha}^{n}(x))$ and $J_{\delta}^{k} = R_{\alpha}^{k(n-m)}(J_{\delta})$. Then for $K = \lfloor 1/\delta \rfloor$, $\{J_{\delta}^{k}\}_{k=0}^{K}$ is a cover \mathbb{S}^{1} of adjacent intervals, each of length δ , and $R_{\alpha}^{j(n-m)}$ is an isometry from J_{δ}^{i} to J_{δ}^{i+j} . Therefore the visit frequencies

$$\underline{v}_k = \liminf_n \frac{1}{n} \# \{ 0 \le i < n : R^i_\alpha(x) \in J^k_\delta \}$$

are all the same for $0 \le k \le K$, and together they add up to at most $1 + \frac{1}{K}$. This shows for example that

$$\frac{1}{K+1} \leq \underline{v}_k \leq \overline{v}_k := \limsup_n \frac{1}{n} \# \{ 0 \leq i < n : R^i_\alpha(x) \in J^k_\delta \} \leq \frac{1}{K},$$

and these inequalities are independent of the point x.

Now an arbitrary interval J can be covered by $\lfloor |J|/\delta \rfloor + 2$ such adjacent J_{δ}^k , so

$$v(J) \leq \left(\frac{|J|}{\delta}+2
ight) \frac{1}{K} \leq \left(|J|(K+1)+2
ight) \frac{1}{K} \leq |J|+\frac{3}{K}.$$

A similar computation gives $v(J) \ge |J| - \frac{3}{K}$.

Taking $\varepsilon \to 0$ (hence $\delta \to 0$ and $K \to \infty$), we find that the limit v(J) indeed exists, and is equal to |J|. This concludes the proof.

Example: Consider the first digits of the powers of 2.

1	1 6	<mark>2</mark> 56	4 096	
2	<mark>3</mark> 2	<mark>5</mark> 12	<mark>8</mark> 192	
4	<mark>6</mark> 4	<mark>1</mark> 024	<mark>1</mark> 6384	etc.
8	<mark>1</mark> 28	<mark>2</mark> 048	<mark>3</mark> 2768	

Exercise 3.3: Does 9 ever appear as first digit?

Exercise 3.4: Does 2 appear infinitely often?

Exercise 3.5: With which frequency does 1 appear?

Hint for Solution: Define $h : \mathbb{R}^+ \to \mathbb{S}^1$ as $h(x) = \log_{10} x \mod 1$. Then

 $h(2x)=h(x)+\log_{10}2.$

so the following diagram commutes:

and note also that $\log_{10} 2 \neq \mathbb{Q}$.

The first digit of 2^n is $b \in \{1, \ldots, 9\}$ if and only if

 $n \log_{10} 2 \in [\log_{10} b, \log_{10} b + 1).$

Definition: A system (X, T) is called uniquely ergodic if there is exactly one T-invariant **probability** measure.

Irrational rotations R_{α} are uniquely ergodic, with Lebesgue as unique R_{α} -invariant probability measure.

Exercise 3.6: Show that the unique invariant meaure of a uniquely ergodic system is necessarily ergodic.

Oxtoby's Theorem: Let X be a compact space and $T: X \to X$ continuous. A transformation (X, T) is uniquely ergodic if and only if, for every continuous function ψ and every point $x \in X$, the Birkhoff averages

$$\frac{1}{n}\sum_{i=0}^{n-1}\psi\circ T^{i}(x)$$

converge uniformly to a constant function.

Proof: If μ and ν were two different ergodic measures, then we can find a continuous function $f : X \to \mathbb{R}$ such that $\int f d\mu \neq \int f d\nu$. Using Birkhoff's Ergodic Theorem for both measures (with their own typical points x and y), we see that

$$\lim_{n}\frac{1}{n}\sum_{k=0}^{n-1}f\circ T^{k}(x)=\int fd\mu\neq\int fd\nu=\lim_{n}\frac{1}{n}\sum_{k=0}^{n-1}f\circ T^{k}(y),$$

so there is not even convergence to a constant function.

Unique ergodicity

Conversely, we know by the Ergodic Theorem that $\lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} f \circ T^{k}(x) = \int f d\mu$ is constant μ -a.e. But if the convergence is not uniform, then there is a sequence $(y_{i}) \subset X$ and $(n_{i}) \subset \mathbb{N}$, such that

$$\lim_{i} \frac{1}{n_i} \sum_{k=0}^{n_i-1} f \circ T^k(y_i) \neq \int_X f d\mu$$

Define probability measures $\nu_i := \frac{1}{n_i} \sum_{k=0}^{n_i-1} \delta_{\mathcal{T}^k(x_i)}$. This sequence (ν_i) has a weak accumulation points ν which is shown to be \mathcal{T} -invariant measures in the same way as in the proof of Krylov-Bogol'ubov Theorem. But $\nu \neq \mu$ because $\int f \, d\nu \neq \int f \, d\mu$. Hence (X, \mathcal{T}) cannot be uniquely ergodic.