Absolutely Continuous Measures

A transformation may have many invariant measures, but some are more improtant than others.

Example 1: To find the digits in the standard continued fraction expansion of a real number x :

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots}}}}=\left[a_{0}: a_{1}, a_{2}, a_{3}, \ldots\right]
$$

we need the Gauß map $G:[0,1) \rightarrow(0,1]:$

$$
G(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor .
$$

Absolutely Continuous Measures

$$
\begin{aligned}
a_{0}=\lfloor x\rfloor & x_{1}=x-a_{0} . \\
a_{i}=\left\lfloor 1 / x_{i}\right\rfloor & x_{i+1}=G\left(x_{i}\right) \quad\left(\text { stop if } x_{i+1}=0\right) .
\end{aligned}
$$

For example:

$$
\pi=[3 ; 7,15,1,292,1,1,1, \ldots]
$$

and

$$
e=[2 ; 1,2,1,1,4,1,1,6,1,1,8,1,1,10, \ldots]
$$

Lebesgue measure is not G-invariant.

Absolutely Continuous Measures

Definition: A measure μ is called absolutely continuous w.r.t. the measure ν (notation: $\mu \ll \nu$) if $\nu(A)=0$ implies $\mu(A)=0$. If both $\mu \ll \nu$ and $\nu \ll \mu$, then μ and ν are called equivalent.

Theorem of Radon-Nikodym: If μ is a probability measure and $\mu \ll \nu$ then there is a function $h \in L^{1}(\nu)$ (called Radon-Nikodym derivative or density) such that $\mu(A)=\int_{A} h(x) d \nu(x)$ for every measurable set A.
Notation: $h(x)=\frac{d \mu(x)}{d \nu(x)}$.
Example 1: Lebesgue measure is not G-invariant, but there is a probability measure μ_{G} that is absolutely continuous w.r.t. Lebesgue.

$$
\mu_{G}(A)=\int_{A} h(x) d x \quad \text { for } \quad h(x)=\frac{1}{\log 2} \frac{1}{1+x} .
$$

Absolutely Continuous Measures

Proposition 1. Suppose that $\mu \ll \nu$ are both T-invariant probability measures, with a common σ-algebra \mathcal{B} of measurable sets. If ν is ergodic, then $\mu=\nu$.

Proof: First we show that μ is ergodic. Indeed, otherwise there is a T-invariant set A such that $\mu(A)>0$ and $\mu\left(A^{c}\right)>0$. By ergodicity of ν at least one of A or A^{c} must have ν-measure 0 , but this would contradict that $\mu \ll \nu$.

Now let $A \in \mathcal{B}$ and let $Y \subset X$ be the set of ν-typical points. Then $\nu\left(Y^{c}\right)=0$ and hence $\mu\left(Y^{c}\right)=0$. Applying Birkhoff's Ergodic Theorem to μ and ν separately for $\psi=1_{A}$ and some μ-typical $y \in Y$, we get

$$
\mu(A)=\lim _{n} \frac{1}{n} \sum_{i=0}^{n-1} \psi \circ T(y)=\nu(A)
$$

But $A \in \mathcal{B}$ was arbitrary, so $\mu=\nu$.

Absolutely Continuous Measures

Exercise 4.1: Show that the condition of ergodicity is essential for Proposition 1?

If $\mu \ll \nu$ and μ is ergodic. Does it follow that $\mu=\nu$?
Proposition 2: Let $T: U \subset \mathbb{R}^{n} \rightarrow U$ be (piecewise) differentiable, and μ is absolutely continuous w.r.t. Lebesgue. Then μ is T-invariant if and only if its density $h=\frac{d \mu}{d x}$ satisfies

$$
\begin{equation*}
h(x)=\sum_{T(y)=x} \frac{h(y)}{|\operatorname{det} D T(y)|} \tag{1}
\end{equation*}
$$

for every x.

Absolutely Continuous Measures

Proof of Proposition 2: The T-invariance means that $d \mu(x)=d \mu\left(T^{-1}(x)\right)$, but we need to be aware that T^{-1} is multivalued. So it is more careful to split the space U into pieces U_{n} such that the restrictions $T_{n}:=T \mid U_{n}$ are diffeomorphic (onto their images) and write $y_{n}=T_{n}^{-1}(x)=T^{-1}(x) \cap U_{n}$. Then we obtain (using the change of coordinates)

$$
\begin{aligned}
h(x) d x & =d \mu(x)=d \mu\left(T^{-1}(x)\right)=\sum_{n} d \mu \circ T_{n}^{-1}(x) \\
& =\sum_{n} h\left(y_{n}\right)\left|\operatorname{det}\left(D T_{n}^{-1}\right)(x)\right| d y_{n}=\sum_{n} \frac{h\left(y_{n}\right)}{\operatorname{det}\left|D T\left(y_{n}\right)\right|} d y_{n} .
\end{aligned}
$$

Conversely, if (1) holds, then the above computation gives $d \mu(x)=d \mu \circ T^{-1}(x)$.

Absolutely Continuous Measures

Example 1 continued: The Gauß map has invariant density $h(x)=\frac{1}{\log 2} \frac{1}{1+x}$. Here $\frac{1}{\log 2}$ is just the normalising factor (so that $\left.\int_{0}^{1} h(x) d x=1\right)$.
Let $I_{n}=\left(\frac{1}{n+1}, \frac{1}{n}\right]$ for $n=1,2,3, \ldots$ be the domains of the branches of G, and for $x \in(0,1)$, and $y_{n}:=G^{-1}(x) \cap I_{n}=\frac{1}{x+n}$. Also $G^{\prime}\left(y_{n}\right)=-\frac{1}{y_{n}^{2}}$. Therefore

$$
\begin{aligned}
\sum_{n \geq 1} \frac{h\left(y_{n}\right)}{\left|G^{\prime}\left(y_{n}\right)\right|} & =\frac{1}{\log 2} \sum_{n \geq 1} \frac{y_{n}^{2}}{1+y_{n}}=\frac{1}{\log 2} \sum_{n \geq 1} \frac{\frac{1}{(x+n)^{2}}}{1+\frac{1}{x+n}} \\
& =\frac{1}{\log 2} \sum_{n \geq 1} \frac{1}{x+n} \cdot \frac{1}{x+n+1} \\
& =\frac{1}{\log 2} \sum_{n \geq 1} \frac{1}{x+n}-\frac{1}{x+n+1} \quad \text { telescoping series } \\
& =\frac{1}{\log 2} \frac{1}{x+1}=h(x) .
\end{aligned}
$$

Absolutely Continuous Measures

Exercise 4.2: Compute the average frequency of the digit 1 for points that are normal w.r.t. the standard continued fraction.

Exercise 4.3: Show that for each integer $n \geq 2$, the interval map given by

$$
T_{n}(x)= \begin{cases}n x & \text { if } 0 \leq x \leq \frac{1}{n} \\ \frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor & \text { if } \frac{1}{n}<x \leq 1\end{cases}
$$

has invariant density $h(x)=\frac{1}{\log 2} \frac{1}{1+x}$.

Absolutely Continuous Measures

Example 2: The map $T: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, T(x)=x-\frac{1}{x}$ is called the Boole transformation. It is 2-to-1; the two preimages of $x \in \mathbb{R}$ are $y_{ \pm}=\frac{1}{2}\left(x \pm \sqrt{x^{2}+4}\right)$. Clearly $T^{\prime}(x)=1+\frac{1}{x^{2}}$. It can be shown that

$$
\frac{1}{\left|T^{\prime}\left(y_{-}\right)\right|}+\frac{1}{\left|T^{\prime}\left(y_{+}\right)\right|}=1
$$

Indeed,

$$
\left|T^{\prime}\left(y_{ \pm}\right)\right|=1+\frac{2}{x^{2}+2 \pm x \sqrt{x^{2}+4}}
$$

and

$$
\frac{1}{\left|T^{\prime}\left(y_{ \pm}\right)\right|}=\frac{x^{2}+2 \pm x \sqrt{x^{2}+4}}{x^{2}+4 \pm x \sqrt{x^{2}+4}}
$$

and

Absolutely Continuous Measures

$$
\begin{aligned}
& \frac{1}{\left|T^{\prime}(y-)\right|}+\frac{1}{\left|T^{\prime}(y+)\right|} \\
&= \frac{x^{2}+2-x \sqrt{x^{2}+4}}{x^{2}+4-x \sqrt{x^{2}+4}}+\frac{x^{2}+2+x \sqrt{x^{2}+4}}{x^{2}+4+x \sqrt{x^{2}+4}} \\
&= \frac{\left(x^{2}+2-x \sqrt{x^{2}+4}\right)\left(x^{2}+4+x \sqrt{x^{2}+4}\right)}{\left(x^{2}+4\right)^{2}-x^{2}\left(x^{2}+4\right)} \\
& \quad+\frac{\left(x^{2}+2+x \sqrt{x^{2}+4}\right)\left(x^{2}+4-x \sqrt{x^{2}+4}\right)}{\left(x^{2}+4\right)^{2}-x^{2}\left(x^{2}+4\right)} \\
&= \frac{\left(x^{2}+2\right)^{2}-x^{2}\left(x^{2}+4\right)+2\left(x^{2}+2\right)-2 x \sqrt{x^{2}+4}}{4\left(x^{2}+4\right)}+ \\
&=\frac{\left(x^{2}+2\right)^{2}-x^{2}\left(x^{2}+4\right)+2\left(x^{2}+2\right)+2 x \sqrt{x^{2}+4}}{4\left(x^{2}+4\right)} \\
&= \frac{4\left(x^{2}+2\right)+8}{4\left(x^{2}+4\right)}=1 .
\end{aligned}
$$

Therefore $h(x) \equiv 1$ is an invariant density, so Lebesgue measure is

The Folklore Theorem

Example 3: If $T:[0,1] \rightarrow[0,1]$ is (countably) piecewise linear, and each branch $T: I_{n} \rightarrow[0,1]$ (on which T is affine) is onto, then T preserves Lebesgue measure. Indeed, the intervals I_{n} have pairwise disjoint interiors, and their lengths add up to 1 . If s_{n} is the slope of $T: I_{n} \rightarrow[0,1]$, then $s_{n}=1 /\left|I_{n}\right|$. Therefore

$$
\sum_{n} \frac{1}{D T\left(y_{n}\right)}=\sum_{n} \frac{1}{s_{n}}=\sum_{n}\left|I_{n}\right|=1
$$

"Folklore" Theorem If $T: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is a C^{2} expanding circle map, then it preserves a measure μ equivalent to Lebesgue, and μ is ergodic.

Expanding means that there is $\lambda>1$ such that $\left|T^{\prime}(x)\right| \geq \lambda$ for all $x \in \mathbb{S}^{1}$. The above theorem can be proved in more generality, but in the stated version it conveys the ideas more clearly.

The Folklore Theorem

Proof: Using the Mean Value Theorem twice, we obtain

$$
\begin{aligned}
\log \frac{\left|T^{\prime}(x)\right|}{\left|T^{\prime}(y)\right|} & =\log \left(1+\frac{\left|T^{\prime}(x)\right|-\left|T^{\prime}(y)\right|}{\left|T^{\prime}(y)\right|}\right) \leq \frac{\left|T^{\prime}(x)\right|-\left|T^{\prime}(y)\right|}{\left|T^{\prime}(y)\right|} \\
& =\frac{\left|T^{\prime \prime}(\xi)\right| \cdot|x-y|}{\left|T^{\prime}(y)\right|}=\frac{\left|T^{\prime \prime}(\xi)\right|}{\left|T^{\prime}(y)\right|} \frac{|T x-T y|}{T^{\prime}(\zeta)} .
\end{aligned}
$$

Since T is expanding, the denominators are $\geq \lambda$ and since T is C^{2} on a compact space, also $\left|T^{\prime \prime}(\xi)\right|$ is bounded. Therefore there is some $K \leq \sup \left|T^{\prime \prime}(\xi)\right| / \lambda^{2}$ such that

$$
\log \frac{\left|T^{\prime}(x)\right|}{\left|T^{\prime}(y)\right|} \leq K|T(x)-T(y)|
$$

The chain rule then gives:

$$
\log \frac{\left|D T^{n}(x)\right|}{\left|D T^{n}(y)\right|}=\sum_{i=0}^{n-1} \log \frac{\left|T^{\prime}\left(T^{i} x\right)\right|}{\left|T^{\prime}\left(T^{i} y\right)\right|} \leq K \sum_{i=1}^{n}\left|T^{i}(x)-T^{i}(y)\right|
$$

The Folklore Theorem

Since T is a continuous expanding map of the circle, it wraps the circle d times around itself, and for each n, there are d^{n} pairwise disjoint intervals Z_{n} such that $T^{n}: Z_{n} \rightarrow \mathbb{S}^{1}$ is onto, with slope at least λ^{n}. If we take x, y above in one such Z_{n}, then

$$
|x-y| \leq \lambda^{-n}\left|T^{n}(x)-T^{n}(y)\right|
$$

and in fact

$$
\left|T^{i}(x)-T^{i}(y)\right| \leq \lambda^{-(n-i)}\left|T^{n}(x)-T^{n}(y)\right| .
$$

The Folklore Theorem

Therefore we obtain

$$
\begin{aligned}
\log \frac{\left|D T^{n}(x)\right|}{\left|D T^{n}(y)\right|} & =K \sum_{i=1}^{n} \lambda^{-(n-i)}\left|T^{n}(x)-T^{n}(y)\right| \\
& \leq \frac{K}{\lambda-1}\left|T^{n}(x)-T^{n}(y)\right| \leq \log K^{\prime}
\end{aligned}
$$

for some $K^{\prime} \in(1, \infty)$. This means that if $A \subset Z_{n}$ (so $T^{n}: A \rightarrow T^{n}(A)$ is a bijection), then

$$
\begin{equation*}
\frac{1}{K^{\prime}} \frac{m(A)}{m\left(Z_{n}\right)} \leq \frac{m\left(T^{n} A\right)}{m\left(T^{n} Z_{n}\right)}=\frac{m\left(T^{n} A\right)}{m\left(\mathbb{S}^{1}\right)} \leq K^{\prime} \frac{m(A)}{m\left(Z_{n}\right)} \tag{2}
\end{equation*}
$$

where m is Lebesgue measure.

The Folklore Theorem

Construct the T-invariant measure μ. Take $B \subset \mathcal{B}$ arbitrary, and set $\mu_{n}(B)=\frac{1}{n} \sum_{i=0}^{n-1} m\left(T^{-i} B\right)$. Then by (2),

$$
\frac{1}{K^{\prime}} m(B) \leq \mu_{n}(B) \leq K^{\prime} m(B)
$$

We can take a weak* limit of the μ_{n} 's; call it μ. Then

$$
\frac{1}{K^{\prime}} m(B) \leq \mu(B) \leq K^{\prime} m(B)
$$

and therefore μ and m are equivalent. The T-invariance of μ proven in the same way as in the Theorem of Krylov-Bogul'ubov.

The Folklore Theorem

Now for the ergodicity of μ, we need the Lebesgue Density Theorem, which says that if $m(A)>0$, then for m-a.e. $x \in A$, the limit

$$
\lim _{\varepsilon \rightarrow 0} \frac{m\left(A \cap B_{\varepsilon}(x)\right)}{m\left(B_{\varepsilon}(x)\right)}=1
$$

where $B_{\varepsilon}(x)$ is the ε-balls around x. Points x with this property are called (Lebesgue) density points of A. (In fact, the above also holds, if $B_{\varepsilon}(x)$ is just a one-sided ε-neighbourhood of x.)

The Folklore Theorem

Assume by contradiction that μ is not ergodic. Take $A \in \mathcal{B}$ a T-invariant set such that $\mu(A)>0$ and $\mu\left(A^{c}\right)>0$. By equivalence of μ and m, also $\delta:=m\left(A^{c}\right)>0$. Let x be a density point of A, and Z_{n} be a neighbourhood of x such that $T^{n}: Z_{n} \rightarrow \mathbb{S}^{1}$ is a bijection. As $n \rightarrow \infty, Z_{n} \rightarrow\{x\}$, and therefore we can choose n so large (hence Z_{n} so small) that

$$
\frac{m\left(A \cap Z_{n}\right)}{m\left(Z_{n}\right)}>1-\delta / K^{\prime}
$$

Therefore $\frac{m\left(A^{c} \cap Z_{n}\right)}{m\left(Z_{n}\right)}<\delta / K^{\prime}$, and using (2),

$$
\frac{m\left(T^{n}\left(A^{c} \cap Z_{n}\right)\right)}{m\left(T^{n}\left(Z_{n}\right)\right)} \leq K^{\prime} \frac{m\left(A^{c} \cap Z_{n}\right)}{m\left(Z_{n}\right)}<K^{\prime} \delta / K^{\prime}=\delta
$$

Since $T^{n}: A^{c} \cap Z_{n} \rightarrow A^{c}$ is a bijection, and $m\left(T^{n} Z_{n}\right)=m\left(\mathbb{S}^{1}\right)=1$, we get $\delta=m\left(A^{c}\right)<\delta$, a contraction.
Therefore μ is ergodic.

