
Absolutely Continuous Measures

A transformation may have many invariant measures, but some are

more improtant than others.

Example 1: To �nd the digits in the standard continued fraction

expansion of a real number x :

x = a0 +
1

a1 +
1

a2+
1

a3+
1

...

= [ao : a1, a2, a3, . . . ]

we need the Gauÿ map G : [0, 1)→ (0, 1]:

G (x) = 1

x − b
1

x c.
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a0 = bxc x1 = x − a0.

ai = b1/xic xi+1 = G (xi ) (stop if xi+1 = 0).

For example:

π = [3; 7, 15, 1, 292, 1, 1, 1, . . . ]

and

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . . ]

Lebesgue measure is not G -invariant.



Absolutely Continuous Measures

De�nition: A measure µ is called absolutely continuous w.r.t. the

measure ν (notation: µ� ν) if ν(A) = 0 implies µ(A) = 0. If both

µ� ν and ν � µ, then µ and ν are called equivalent.

Theorem of Radon-Nikodym: If µ is a probability measure and

µ� ν then there is a function h ∈ L1(ν) (called Radon-Nikodym

derivative or density) such that µ(A) =
∫
A h(x) dν(x) for every

measurable set A.

Notation: h(x) = dµ(x)
dν(x) .

Example 1: Lebesgue measure is not G -invariant, but there is a

probability measure µG that is absolutely continuous w.r.t.

Lebesgue.

µG (A) =

∫
A
h(x) dx for h(x) =

1

log 2

1

1+ x
.



Absolutely Continuous Measures

Proposition 1. Suppose that µ� ν are both T -invariant

probability measures, with a common σ-algebra B of measurable

sets. If ν is ergodic, then µ = ν.

Proof: First we show that µ is ergodic. Indeed, otherwise there is a

T -invariant set A such that µ(A) > 0 and µ(Ac) > 0. By

ergodicity of ν at least one of A or Ac must have ν-measure 0, but

this would contradict that µ� ν.

Now let A ∈ B and let Y ⊂ X be the set of ν-typical points. Then
ν(Y c) = 0 and hence µ(Y c) = 0. Applying Birkho�'s Ergodic

Theorem to µ and ν separately for ψ = 1A and some µ-typical
y ∈ Y , we get

µ(A) = lim
n

1

n

n−1∑
i=0

ψ ◦ T (y) = ν(A).

But A ∈ B was arbitrary, so µ = ν.
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Exercise 4.1: Show that the condition of ergodicity is essential for

Proposition 1?

If µ� ν and µ is ergodic. Does it follow that µ = ν?

Proposition 2: Let T : U ⊂ Rn → U be (piecewise) di�erentiable,

and µ is absolutely continuous w.r.t. Lebesgue. Then µ is

T -invariant if and only if its density h = dµ
dx satis�es

h(x) =
∑

T (y)=x

h(y)

| detDT (y)|
(1)

for every x .
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Proof of Proposition 2: The T -invariance means that

dµ(x) = dµ(T−1(x)), but we need to be aware that T−1 is

multivalued. So it is more careful to split the space U into pieces

Un such that the restrictions Tn := T |Un are di�eomorphic (onto

their images) and write yn = T−1n (x) = T−1(x) ∩ Un. Then we

obtain (using the change of coordinates)

h(x) dx = dµ(x) = dµ(T−1(x)) =
∑
n

dµ ◦ T−1n (x)

=
∑
n

h(yn)| det(DT−1n )(x)|dyn =
∑
n

h(yn)

det |DT (yn)|
dyn.

Conversely, if (1) holds, then the above computation gives

dµ(x) = dµ ◦ T−1(x).
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Example 1 continued: The Gauÿ map has invariant density

h(x) = 1

log 2
1

1+x . Here
1

log 2 is just the normalising factor (so that∫
1

0
h(x)dx = 1).

Let In = ( 1

n+1
, 1n ] for n = 1, 2, 3, . . . be the domains of the

branches of G , and for x ∈ (0, 1), and yn := G−1(x) ∩ In = 1

x+n .

Also G ′(yn) = − 1

y2n
. Therefore

∑
n≥1

h(yn)

|G ′(yn)|
=

1

log 2

∑
n≥1

y2n
1+ yn

=
1

log 2

∑
n≥1

1

(x+n)2

1+ 1

x+n

=
1

log 2

∑
n≥1

1

x + n
· 1

x + n + 1

=
1

log 2

∑
n≥1

1

x + n
− 1

x + n + 1
telescoping series

=
1

log 2

1

x + 1
= h(x).
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Exercise 4.2: Compute the average frequency of the digit 1 for

points that are normal w.r.t. the standard continued fraction.

Exercise 4.3: Show that for each integer n ≥ 2, the interval map

given by

Tn(x) =

{
nx if 0 ≤ x ≤ 1

n ,
1

x − b
1

x c if 1

n < x ≤ 1,

has invariant density h(x) = 1

log 2
1

1+x .
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Example 2: The map T : R \ {0} → R, T (x) = x − 1

x is called the

Boole transformation. It is 2-to-1; the two preimages of x ∈ R are

y± = 1

2
(x ±

√
x2 + 4). Clearly T ′(x) = 1+ 1

x2
. It can be shown

that
1

|T ′(y−)|
+

1

|T ′(y+)|
= 1.

Indeed,

|T ′(y±)| = 1+
2

x2 + 2± x
√
x2 + 4

and
1

|T ′(y±)|
=

x2 + 2± x
√
x2 + 4

x2 + 4± x
√
x2 + 4

,

and
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1

|T ′(y−)|
+

1

|T ′(y+)|

=
x2 + 2− x

√
x2 + 4

x2 + 4− x
√
x2 + 4

+
x2 + 2+ x

√
x2 + 4

x2 + 4+ x
√
x2 + 4

=
(x2 + 2− x

√
x2 + 4)(x2 + 4+ x

√
x2 + 4)

(x2 + 4)2 − x2(x2 + 4)

+
(x2 + 2+ x

√
x2 + 4)(x2 + 4− x

√
x2 + 4)

(x2 + 4)2 − x2(x2 + 4)

=
(x2 + 2)2 − x2(x2 + 4) + 2(x2 + 2)− 2x

√
x2 + 4

4(x2 + 4)
+

(x2 + 2)2 − x2(x2 + 4) + 2(x2 + 2) + 2x
√
x2 + 4

4(x2 + 4)

=
4(x2 + 2) + 8

4(x2 + 4)
= 1.

Therefore h(x) ≡ 1 is an invariant density, so Lebesgue measure is

preserved.
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Example 3: If T : [0, 1]→ [0, 1] is (countably) piecewise linear, and

each branch T : In → [0, 1] (on which T is a�ne) is onto, then T
preserves Lebesgue measure. Indeed, the intervals In have pairwise

disjoint interiors, and their lengths add up to 1. If sn is the slope of

T : In → [0, 1], then sn = 1/|In|. Therefore∑
n

1

DT (yn)
=

∑
n

1

sn
=

∑
n

|In| = 1.

�Folklore� Theorem If T : S1 → S1 is a C 2 expanding circle map,

then it preserves a measure µ equivalent to Lebesgue, and µ is

ergodic.

Expanding means that there is λ > 1 such that |T ′(x)| ≥ λ for all

x ∈ S1. The above theorem can be proved in more generality, but

in the stated version it conveys the ideas more clearly.
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Proof: Using the Mean Value Theorem twice, we obtain

log
|T ′(x)|
|T ′(y)|

= log(1+
|T ′(x)| − |T ′(y)|

|T ′(y)|
) ≤ |T

′(x)| − |T ′(y)|
|T ′(y)|

=
|T ′′(ξ)| · |x − y |
|T ′(y)|

=
|T ′′(ξ)|
|T ′(y)|

|Tx − Ty |
T ′(ζ)

.

Since T is expanding, the denominators are ≥ λ and since T is C 2

on a compact space, also |T ′′(ξ)| is bounded. Therefore there is

some K ≤ sup |T ′′(ξ)|/λ2 such that

log
|T ′(x)|
|T ′(y)|

≤ K |T (x)− T (y)|.

The chain rule then gives:

log
|DT n(x)|
|DT n(y)|

=
n−1∑
i=0

log
|T ′(T ix)|
|T ′(T iy)|

≤ K
n∑

i=1

|T i (x)− T i (y)|.
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Since T is a continuous expanding map of the circle, it wraps the

circle d times around itself, and for each n, there are dn pairwise

disjoint intervals Zn such that T n : Zn → S1 is onto, with slope at

least λn. If we take x , y above in one such Zn, then

|x − y | ≤ λ−n|T n(x)− T n(y)|

and in fact

|T i (x)− T i (y)| ≤ λ−(n−i)|T n(x)− T n(y)|.
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Therefore we obtain

log
|DT n(x)|
|DT n(y)|

= K
n∑

i=1

λ−(n−i)|T n(x)− T n(y)|

≤ K

λ− 1
|T n(x)− T n(y)| ≤ logK ′

for some K ′ ∈ (1,∞). This means that if A ⊂ Zn (so

T n : A→ T n(A) is a bijection), then

1

K ′
m(A)

m(Zn)
≤ m(T nA)

m(T nZn)
=

m(T nA)

m(S1)
≤ K ′

m(A)

m(Zn)
, (2)

where m is Lebesgue measure.
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Construct the T -invariant measure µ. Take B ⊂ B arbitrary, and

set µn(B) =
1

n

∑n−1
i=0

m(T−iB). Then by (2),

1

K ′
m(B) ≤ µn(B) ≤ K ′m(B).

We can take a weak∗ limit of the µn's; call it µ. Then

1

K ′
m(B) ≤ µ(B) ≤ K ′m(B),

and therefore µ and m are equivalent. The T -invariance of µ
proven in the same way as in the Theorem of Krylov-Bogul'ubov.
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Now for the ergodicity of µ, we need the Lebesgue Density

Theorem, which says that if m(A) > 0, then for m-a.e. x ∈ A, the
limit

lim
ε→0

m(A ∩ Bε(x))

m(Bε(x))
= 1,

where Bε(x) is the ε-balls around x . Points x with this property are

called (Lebesgue) density points of A. (In fact, the above also

holds, if Bε(x) is just a one-sided ε-neighbourhood of x .)
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Assume by contradiction that µ is not ergodic. Take A ∈ B a

T -invariant set such that µ(A) > 0 and µ(Ac) > 0. By equivalence

of µ and m, also δ := m(Ac) > 0. Let x be a density point of A,
and Zn be a neighbourhood of x such that T n : Zn → S1 is a

bijection. As n→∞, Zn → {x}, and therefore we can choose n so

large (hence Zn so small) that

m(A ∩ Zn)

m(Zn)
> 1− δ/K ′.

Therefore m(Ac∩Zn)
m(Zn)

< δ/K ′, and using (2),

m(T n(Ac ∩ Zn))

m(T n(Zn))
≤ K ′

m(Ac ∩ Zn)

m(Zn)
< K ′δ/K ′ = δ.

Since T n : Ac ∩ Zn → Ac is a bijection, and

m(T nZn) = m(S1) = 1, we get δ = m(Ac) < δ, a contraction.

Therefore µ is ergodic.


