A transformation may have many invariant measures, but some are more improtant than others.

Example 1: To find the digits in the standard continued fraction expansion of a real number x:

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 +$$

 $G(x) = \frac{1}{x} - \left| \frac{1}{x} \right|.$

we need the Gauß map $G:[0,1) \rightarrow (0,1]$:

$$a_0 = \lfloor x \rfloor$$
 $x_1 = x - a_0.$
 $a_i = \lfloor 1/x_i \rfloor$ $x_{i+1} = G(x_i)$ (stop if $x_{i+1} = 0$).

For example:

$$\pi = [3; 7, 15, 1, 292, 1, 1, 1, \ldots]$$

and

$$e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, \dots]$$

Lebesgue measure is not G-invariant.

Definition: A measure μ is called absolutely continuous w.r.t. the measure ν (notation: $\mu \ll \nu$) if $\nu(A) = 0$ implies $\mu(A) = 0$. If both $\mu \ll \nu$ and $\nu \ll \mu$, then μ and ν are called equivalent.

Theorem of Radon-Nikodym: If μ is a probability measure and $\mu \ll \nu$ then there is a function $h \in L^1(\nu)$ (called Radon-Nikodym derivative or density) such that $\mu(A) = \int_A h(x) d\nu(x)$ for every measurable set A.

Notation: $h(x) = \frac{d\mu(x)}{d\nu(x)}$.

Example 1: Lebesgue measure is not *G*-invariant, but there is a probability measure μ_G that is absolutely continuous w.r.t. Lebesgue.

$$\mu_G(A) = \int_A h(x) \, dx \quad \text{for} \quad h(x) = \frac{1}{\log 2} \frac{1}{1+x}.$$

Proposition 1. Suppose that $\mu \ll \nu$ are both *T*-invariant probability measures, with a common σ -algebra \mathcal{B} of measurable sets. If ν is ergodic, then $\mu = \nu$.

Proof: First we show that μ is ergodic. Indeed, otherwise there is a *T*-invariant set *A* such that $\mu(A) > 0$ and $\mu(A^c) > 0$. By ergodicity of ν at least one of *A* or A^c must have ν -measure 0, but this would contradict that $\mu \ll \nu$.

Now let $A \in \mathcal{B}$ and let $Y \subset X$ be the set of ν -typical points. Then $\nu(Y^c) = 0$ and hence $\mu(Y^c) = 0$. Applying Birkhoff's Ergodic Theorem to μ and ν separately for $\psi = 1_A$ and some μ -typical $y \in Y$, we get

$$\mu(A) = \lim_n \frac{1}{n} \sum_{i=0}^{n-1} \psi \circ T(y) = \nu(A).$$

But $A \in \mathcal{B}$ was arbitrary, so $\mu = \nu$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Exercise 4.1: Show that the condition of ergodicity is essential for Proposition 1?

If $\mu \ll \nu$ and μ is ergodic. Does it follow that $\mu = \nu$?

Proposition 2: Let $T : U \subset \mathbb{R}^n \to U$ be (piecewise) differentiable, and μ is absolutely continuous w.r.t. Lebesgue. Then μ is *T*-invariant if and only if its density $h = \frac{d\mu}{dx}$ satisfies

$$h(x) = \sum_{T(y)=x} \frac{h(y)}{|\det DT(y)|}$$
(1)

for every x.

Proof of Proposition 2: The *T*-invariance means that $d\mu(x) = d\mu(T^{-1}(x))$, but we need to be aware that T^{-1} is multivalued. So it is more careful to split the space *U* into pieces U_n such that the restrictions $T_n := T|U_n$ are diffeomorphic (onto their images) and write $y_n = T_n^{-1}(x) = T^{-1}(x) \cap U_n$. Then we obtain (using the change of coordinates)

$$h(x) dx = d\mu(x) = d\mu(T^{-1}(x)) = \sum_{n} d\mu \circ T_{n}^{-1}(x)$$
$$= \sum_{n} h(y_{n}) |\det(DT_{n}^{-1})(x)| dy_{n} = \sum_{n} \frac{h(y_{n})}{\det|DT(y_{n})|} dy_{n}.$$

Conversely, if (1) holds, then the above computation gives $d\mu(x) = d\mu \circ T^{-1}(x)$.

Example 1 continued: The Gauß map has invariant density $h(x) = \frac{1}{\log 2} \frac{1}{1+x}$. Here $\frac{1}{\log 2}$ is just the normalising factor (so that $\int_0^1 h(x) dx = 1$).

Let $I_n = (\frac{1}{n+1}, \frac{1}{n}]$ for n = 1, 2, 3, ... be the domains of the branches of G, and for $x \in (0, 1)$, and $y_n := G^{-1}(x) \cap I_n = \frac{1}{x+n}$. Also $G'(y_n) = -\frac{1}{y_n^2}$. Therefore

$$\sum_{n\geq 1} \frac{h(y_n)}{|G'(y_n)|} = \frac{1}{\log 2} \sum_{n\geq 1} \frac{y_n^2}{1+y_n} = \frac{1}{\log 2} \sum_{n\geq 1} \frac{\frac{1}{(x+n)^2}}{1+\frac{1}{x+n}}$$
$$= \frac{1}{\log 2} \sum_{n\geq 1} \frac{1}{x+n} \cdot \frac{1}{x+n+1}$$
$$= \frac{1}{\log 2} \sum_{n\geq 1} \frac{1}{x+n} - \frac{1}{x+n+1}$$
telescoping series
$$= \frac{1}{\log 2} \frac{1}{x+1} = h(x).$$

Exercise 4.2: Compute the average frequency of the digit 1 for points that are normal w.r.t. the standard continued fraction.

Exercise 4.3: Show that for each integer $n \ge 2$, the interval map given by

$$T_n(x) = \begin{cases} nx & \text{if } 0 \le x \le \frac{1}{n}, \\ \frac{1}{x} - \lfloor \frac{1}{x} \rfloor & \text{if } \frac{1}{n} < x \le 1, \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

has invariant density $h(x) = \frac{1}{\log 2} \frac{1}{1+x}$.

Example 2: The map $T : \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ T(x) = x - \frac{1}{x}$ is called the Boole transformation. It is 2-to-1; the two preimages of $x \in \mathbb{R}$ are $y_{\pm} = \frac{1}{2}(x \pm \sqrt{x^2 + 4})$. Clearly $T'(x) = 1 + \frac{1}{x^2}$. It can be shown that $\frac{1}{|T'(y_-)|} + \frac{1}{|T'(y_+)|} = 1$.

Indeed,

$$|T'(y_{\pm})| = 1 + \frac{2}{x^2 + 2 \pm x\sqrt{x^2 + 4}}$$

and

$$\frac{1}{|T'(y_{\pm})|} = \frac{x^2 + 2 \pm x\sqrt{x^2 + 4}}{x^2 + 4 \pm x\sqrt{x^2 + 4}},$$

A D > 4 回 > 4 回 > 4 回 > 1 回 9 Q Q

and

$$\begin{aligned} \frac{1}{|T'(y_-)|} + \frac{1}{|T'(y_+)|} \\ &= \frac{x^2 + 2 - x\sqrt{x^2 + 4}}{x^2 + 4 - x\sqrt{x^2 + 4}} + \frac{x^2 + 2 + x\sqrt{x^2 + 4}}{x^2 + 4 + x\sqrt{x^2 + 4}} \\ &= \frac{(x^2 + 2 - x\sqrt{x^2 + 4})(x^2 + 4 + x\sqrt{x^2 + 4})}{(x^2 + 4)^2 - x^2(x^2 + 4)} \\ &+ \frac{(x^2 + 2 + x\sqrt{x^2 + 4})(x^2 + 4 - x\sqrt{x^2 + 4})}{(x^2 + 4)^2 - x^2(x^2 + 4)} \\ &= \frac{(x^2 + 2)^2 - x^2(x^2 + 4) + 2(x^2 + 2) - 2x\sqrt{x^2 + 4}}{4(x^2 + 4)} + \frac{(x^2 + 2)^2 - x^2(x^2 + 4) + 2(x^2 + 2) + 2x\sqrt{x^2 + 4}}{4(x^2 + 4)} \\ &= \frac{4(x^2 + 2) + 8}{4(x^2 + 4)} = 1. \end{aligned}$$

Therefore $h(x) \equiv 1$ is an invariant density, so Lebesgue measure is 220

Example 3: If $T : [0, 1] \rightarrow [0, 1]$ is (countably) piecewise linear, and each branch $T : I_n \rightarrow [0, 1]$ (on which T is affine) is onto, then Tpreserves Lebesgue measure. Indeed, the intervals I_n have pairwise disjoint interiors, and their lengths add up to 1. If s_n is the slope of $T : I_n \rightarrow [0, 1]$, then $s_n = 1/|I_n|$. Therefore

$$\sum_{n} \frac{1}{DT(y_n)} = \sum_{n} \frac{1}{s_n} = \sum_{n} |I_n| = 1.$$

"Folklore" Theorem If $T : \mathbb{S}^1 \to \mathbb{S}^1$ is a C^2 expanding circle map, then it preserves a measure μ equivalent to Lebesgue, and μ is ergodic.

Expanding means that there is $\lambda > 1$ such that $|T'(x)| \ge \lambda$ for all $x \in \mathbb{S}^1$. The above theorem can be proved in more generality, but in the stated version it conveys the ideas more clearly.

Proof: Using the Mean Value Theorem twice, we obtain

$$\begin{aligned} \log \frac{|T'(x)|}{|T'(y)|} &= \log(1 + \frac{|T'(x)| - |T'(y)|}{|T'(y)|}) \le \frac{|T'(x)| - |T'(y)|}{|T'(y)|} \\ &= \frac{|T''(\xi)| \cdot |x - y|}{|T'(y)|} = \frac{|T''(\xi)|}{|T'(y)|} \frac{|Tx - Ty|}{|T'(\zeta)}. \end{aligned}$$

Since T is expanding, the denominators are $\geq \lambda$ and since T is C^2 on a compact space, also $|T''(\xi)|$ is bounded. Therefore there is some $K \leq \sup |T''(\xi)|/\lambda^2$ such that

$$\log \frac{|T'(x)|}{|T'(y)|} \leq K|T(x) - T(y)|.$$

The chain rule then gives:

$$\log \frac{|DT^{n}(x)|}{|DT^{n}(y)|} = \sum_{i=0}^{n-1} \log \frac{|T'(T^{i}x)|}{|T'(T^{i}y)|} \le K \sum_{i=1}^{n} |T^{i}(x) - T^{i}(y)|.$$

Since T is a continuous expanding map of the circle, it wraps the circle d times around itself, and for each n, there are d^n pairwise disjoint intervals Z_n such that $T^n : Z_n \to \mathbb{S}^1$ is onto, with slope at least λ^n . If we take x, y above in one such Z_n , then

$$|x-y| \le \lambda^{-n} |T^n(x) - T^n(y)|$$

and in fact

$$|T^{i}(x) - T^{i}(y)| \leq \lambda^{-(n-i)}|T^{n}(x) - T^{n}(y)|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Therefore we obtain

$$\log \frac{|DT^n(x)|}{|DT^n(y)|} = K \sum_{i=1}^n \lambda^{-(n-i)} |T^n(x) - T^n(y)|$$

$$\leq \frac{K}{\lambda - 1} |T^n(x) - T^n(y)| \leq \log K'$$

for some $K' \in (1, \infty)$. This means that if $A \subset Z_n$ (so $T^n : A \to T^n(A)$ is a bijection), then

$$\frac{1}{K'}\frac{m(A)}{m(Z_n)} \le \frac{m(T^nA)}{m(T^nZ_n)} = \frac{m(T^nA)}{m(\mathbb{S}^1)} \le K'\frac{m(A)}{m(Z_n)},$$
 (2)

where *m* is Lebesgue measure.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Construct the *T*-invariant measure μ . Take $B \subset \mathcal{B}$ arbitrary, and set $\mu_n(B) = \frac{1}{n} \sum_{i=0}^{n-1} m(T^{-i}B)$. Then by (2),

$$\frac{1}{K'}m(B) \leq \mu_n(B) \leq K'm(B).$$

We can take a weak* limit of the μ_n 's; call it μ . Then

$$\frac{1}{K'}m(B) \leq \mu(B) \leq K'm(B),$$

and therefore μ and m are equivalent. The *T*-invariance of μ proven in the same way as in the Theorem of Krylov-Bogul'ubov.

Now for the ergodicity of μ , we need the Lebesgue Density Theorem, which says that if m(A) > 0, then for *m*-a.e. $x \in A$, the limit

 $\lim_{\varepsilon\to 0}\frac{m(A\cap B_\varepsilon(x))}{m(B_\varepsilon(x))}=1,$

where $B_{\varepsilon}(x)$ is the ε -balls around x. Points x with this property are called (Lebesgue) density points of A. (In fact, the above also holds, if $B_{\varepsilon}(x)$ is just a one-sided ε -neighbourhood of x.)

Assume by contradiction that μ is not ergodic. Take $A \in \mathcal{B}$ a T-invariant set such that $\mu(A) > 0$ and $\mu(A^c) > 0$. By equivalence of μ and m, also $\delta := m(A^c) > 0$. Let x be a density point of A, and Z_n be a neighbourhood of x such that $T^n : Z_n \to \mathbb{S}^1$ is a bijection. As $n \to \infty$, $Z_n \to \{x\}$, and therefore we can choose n so large (hence Z_n so small) that

$$\frac{m(A\cap Z_n)}{m(Z_n)}>1-\delta/K'.$$

Therefore $\frac{m(A^c \cap Z_n)}{m(Z_n)} < \delta/K'$, and using (2),

$$\frac{m(T^n(A^c \cap Z_n))}{m(T^n(Z_n))} \leq K' \frac{m(A^c \cap Z_n)}{m(Z_n)} < K' \delta / K' = \delta.$$

Since $T^n : A^c \cap Z_n \to A^c$ is a bijection, and $m(T^nZ_n) = m(\mathbb{S}^1) = 1$, we get $\delta = m(A^c) < \delta$, a contraction. Therefore μ is ergodic.