Absolutely Continuous Measures

A transformation may have many invariant measures, but some are
more improtant than others.

Example 1: To find the digits in the standard continued fraction
expansion of a real number x:

1
x=ay+———53— =[a:a1,a,a3,...]

a1 az+

1
a3+i

we need the Gau map G :[0,1) — (0, 1]:
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a0 = x| X1 = X — ap.
ai=|1/x]  x41=G(x) (stopif xiy1 = 0).

For example:
T =13;7,15,1,292,1,1,1,...]

and
e=[21,2,1,1,4,1,1,6,1,1,8,1,1,10,...]

Lebesgue measure is not G-invariant.
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Definition: A measure p is called absolutely continuous w.r.t. the
measure v (notation: p < v) if ¥(A) = 0 implies u(A) = 0. If both
1< vand v < p, then pand v are called equivalent.

Theorem of Radon-Nikodym: If 1 is a probability measure and

i < v then there is a function h € L1(v) (caIIed Radon Nikodym
derivative or density) such that u(A) = [, h( ) for every
measurable set A.

Notation: h(x) = Z’:g;

Example 1: Lebesgue measure is not G-invariant, but there is a
probability measure u¢ that is absolutely continuous w.r.t.
Lebesgue.

1 1
log21+ x

MG(A):/Ah(X) dx for h(x)=
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Proposition 1. Suppose that y < v are both T-invariant
probability measures, with a common o-algebra B of measurable
sets. If v is ergodic, then = v.

Proof: First we show that x is ergodic. Indeed, otherwise there is a
T-invariant set A such that p(A) > 0 and p(A°) > 0. By
ergodicity of v at least one of A or A must have v-measure 0, but
this would contradict that p < v.

Now let A € B and let Y C X be the set of v-typical points. Then
v(Y€) =0 and hence p(Y€¢) = 0. Applying Birkhoff’s Ergodic
Theorem to p and v separately for 1) = 14 and some p-typical

y €Y, we get

n—1
p(A) = lim = 3" 40 T(y) = w(A).
i=0

But A € B was arbitrary, so u = v.
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Exercise 4.1: Show that the condition of ergodicity is essential for
Proposition 17

If 4 < v and pis ergodic. Does it follow that = v?

Proposition 2: Let T : U C R” — U be (piecewise) differentiable,
and p is absolutely continuous w.r.t. Lebesgue. Then p is
T-invariant if and only if its density h = % satisfies

h(y)
h(x)= > [det DT())| (1)

T(y)=x

for every x.
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Proof of Proposition 2: The T-invariance means that

du(x) = du(T71(x)), but we need to be aware that T~ ! is
multivalued. So it is more careful to split the space U into pieces
U, such that the restrictions T, := T|U, are diffeomorphic (onto
their images) and write y, = T, }(x) = T~!(x) N U,. Then we
obtain (using the change of coordinates)

hx) dx = dpu(x) = dp(T™(x)) = 3 dpo T, (x)

_ _ _ h(yn)
= zn: h(yn)| det(DT,*)(x)|dys = zn: mdﬁ-

Conversely, if (1) holds, then the above computation gives
du(x) = dpo T71(x).
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Example 1 continued: The GauR map has invariant density

h(x) = Ioézﬁ. Here @ is just the normalising factor (so that
fo dx =1).
Let I,, = (nJr17 11for n=1,2,3,... be the domains of the

branches of G, and for x € (0,1), and yni=Gtx)N 1, = m
Also G'(y,) = . Therefore

1
Z _ 1 o _ 1 Z G2
= ] Iog2n21 14y, |og2 1+X+n
1 Z 1 1
Iog2n21x+n x+n+1
1 1 1 . .
= 05 2 Z Tt n  xtnTi telescoping series
n>1
1 1

= — = h(x).
log2x+1 (x)
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Exercise 4.2: Compute the average frequency of the digit 1 for
points that are normal w.r.t. the standard continued fraction.

Exercise 4.3: Show that for each integer n > 2, the interval map
given by

nx ingxg%,
Lol lexs<t

has invariant density h(x) = 5735
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Example 2: The map T : R\ {0} - R, T(x)=x — 1 is called the
Boole transformation It is 2-to-1; the two preimages of x € R are
yi = 3(x £ V/x2 +4). Clearly T'(x) =1+ . It can be shown
that

1 1
+ =1.
T (y=)l 1T ()l
Indeed, )
T =1+
T )l X2 4+24+xvV/x2 44
and

1 X2+ 24+ xv/x2+4

1T (ye)]  x2+d44+xv/x2+4

and
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1 1
7O 0]
X2+2-xVx2+4  xP+24+xVx2+4
2 d /2 id et x/Cra
(X2 +2 = xVx2 +8)(x®> + 4+ xV/x2 + 4)

(x24+4)? — x2(x%2 4+ 4)
n (x2 + 24+ xVx2 +8)(x® + 4 — x/x2 + 4)
(x24+4)? — x2(x%2 + 4)

(x2+2)2 = x2(x>+4)+2(x* +2) —2xV/x2 + 4 n

4(x% +4)
(x® +2)%2 = x2(x® +4) +2(x® +2) +2xV/x2 + 4
4(x>+4)
4(x2+2)+8
- X TI)Te
4(x? +4)

Therefore h(x) = 1 is an invariant density, so Lebesgue measure is
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Example 3: If T :[0,1] — [0,1] is (countably) piecewise linear, and
each branch T : [, — [0,1] (on which T is affine) is onto, then T
preserves Lebesgue measure. Indeed, the intervals /, have pairwise
disjoint interiors, and their lengths add up to 1. If s, is the slope of
T : 1, —[0,1], then s, = 1/|/,|. Therefore

1 1
25Tl 25, 2=t

“Folklore” Theorem If T :S! — S! is a C? expanding circle map,
then it preserves a measure p equivalent to Lebesgue, and p is
ergodic.

Expanding means that there is A > 1 such that | T'(x)| > A for all
x € S!. The above theorem can be proved in more generality, but
in the stated version it conveys the ideas more clearly.
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Proof: Using the Mean Value Theorem twice, we obtain

TO e TR TO, T (T )
CIE 70 I GRS 7% R A (%1
T Ix =yl _ T Tx= T
7)) OBREG

Since T is expanding, the denominators are > A and since T is C?
on a compact space, also | T”(&)]| is bounded. Therefore there is
some K < sup|T"(&)|/A? such that

Tl _
o [0 < KITCO = T

The chain rule then gives:

X )’ . .
| | <K Ti(x)— T'(y)l.
08 TH |DT” Bl E O 1o =7 A |T, S | T'(x) §2]
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Since T is a continuous expanding map of the circle, it wraps the
circle d times around itself, and for each n, there are d” pairwise
disjoint intervals Z, such that T" : Z, — S! is onto, with slope at
least \". If we take x, y above in one such Z,, then

X =y S AT (x) — T"(y)|
and in fact

[TIx) = T )L < A T7(x) = T7(y))-
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Therefore we obtain

o |DT”(X)‘ _ - —(n—i)|7n x)— T"
%8 | 57| K;A [ T"(x) = T"(y)|

K
< LT~ T < log K
for some K’ € (1,00). This means that if A C Z, (so
T":A— T"(A) is a bijection), then

1 m(A) - m(T"A)  m(T"A) <K m(A)

K'm(Z,) — m(T"Z,) m(St) m(Z,)’ (2)

where m is Lebesgue measure.
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Construct the T-invariant measure u. Take B C B arbitrary, and
set pn(B) = L S27 3 m(T~'B). Then by (2),

n

1

~m(B) < 1n(B) < K'm(B).

We can take a weak™ limit of the p,'s; call it u. Then

m(B) < u(B) < K'm(B).

and therefore © and m are equivalent. The T-invariance of u
proven in the same way as in the Theorem of Krylov-Bogul'ubov.



The Folklore Theorem

Now for the ergodicity of i, we need the Lebesgue Density
Theorem, which says that if m(A) > 0, then for m-a.e. x € A, the
limit
. m(AN B:(x))
lim ——————~
e—0  m(B:(x))
where B.(x) is the e-balls around x. Points x with this property are

called (Lebesgue) density points of A. (In fact, the above also
holds, if B-(x) is just a one-sided e-neighbourhood of x.)

=1,
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Assume by contradiction that p is not ergodic. Take A € B a
T-invariant set such that ;(A) > 0 and p(A€) > 0. By equivalence
of 1 and m, also § := m(A°) > 0. Let x be a density point of A,
and Z, be a neighbourhood of x such that T": Z, — Sl is a
bijection. As n — oo, Z, — {x}, and therefore we can choose n so
large (hence Z, so small) that

m(AN Z,)

m(Z) >1-4/K'.

Therefore m(,f(?j”) < 0/K’, and using (2),

m(T"(ACNZy)) _ , m(A€ 1 Zy)
m(TZ)) = m(Zy)

< K'§/K =4,

Since T" : AN Z, — A€ is a bijection, and
m(T"Z,) = m(S') = 1, we get § = m(A°) < §, a contraction.
Therefore p is ergodic.



