Birkhoff’s Ergodic Theorem

In this lecture we prove Birkhoff's Ergodic Theorem (also called the
Pointwise Ergodic Theorem):

Theorem: Let y be a probability measure and v € L1(1). Then the
ergodic average

n—1

* N 1 i
¥r(x) = lim — ng o T'(x)
=
exists p-a.e., and ¢* is T-invariant, i.e., ¥* o T = ¢* p-a.e.
If in addition 1 is ergodic then v* = [, ¢ dpu for p-a.e. x

Or in short:
Space Average = Time Average (for typical points).



Proof of BET. Step 1

Maximal Ergodic Theorem Let (X, T, B, 1) be a probability
measure preserving dynamical system. Take
My = max{S, : 0 < n < N}. Then

fdu>0 for Ay = {x € X : My(x) > 0}.
An

The Koopman operator Ut : L*(11) — LY(u) is defined as

Urf =foT.
Clearly Ut is linear and positive, i.e., f > 0 implies Urf > 0.

We write the ergodic sum as

n—1
5,,:5,,{:27‘0 Tk and So = 0.
k=0



Proof of BET. Step 1

Proof of the Maximal Ergodic Theorem: Clearly My > S, for
all 0 < n < N and by positivity of the Koopman operator, also
UrMy > UrS,. Add f: UrMy +f > UrS,+f = Spy1. For

x € Ay, this means

UrMp(x) + f(x) >  max, Sn(x)

> = .
Zxedn  Max, Sn(x) = Mn(x)
Therefore f > My — UrMpy on Ay, and (since My > 5o = 0)

fdu My dp — UrMy du
An An J AN

= / M/\/ d,u—/ UTMN du
X Ay

= /MNdu/UTMN du=0.
X X

This completes the proof.

v



Proof of BET. Step 2

Lemma: Let (X, T, B, 1) be a probability measure preserving
dynamical system, and E C X a T-invariant subset. Let

1
B, :={x¢€ X :sup ;5ng(x) > a}.
n

Then
/ g du > ap(BaNE).
BanE

For a measurable set E C X, we define a probability measure
(B)= - u(BNE)
pe(B) = —=n
1(E)

If E is T-invariant then pg is T-invariant too.



Proof of BET. Step 2

Proof: If u(E) = 0 then there is nothing to prove. So assume that
w(E) > 0. Take f = g — «, so

B, =UnAy for Ay = {X eX: MN(X) > 0}

Note also that Ay C Any1 for all N. Therefore for each ¢ > 0
there exists N € N such that

fdug > fdug > —e.
JBa An

Since ¢ is arbitrary, fBa f dug > 0. Adding  again we have

/ g dug = f+adug > apg(Bo, NE).
«@ B(X

Multiply everything by u(E) to get the lemma.



Proof of BET. Step 3

Proof of Birkhoff’s Ergodic Theorem:
Recall ¢ € L}(p1). Define

1 = limsup Eanp and ¢ = liminf 15,,1/}.
n n—oo n

n—o0o
Since
n+1 1 1 1
| - m5n+1¢ - ;Sn@bo T|= ;W(XH —0

as n — 0o, we have ¢y o T = 1) and similarly PoT =1

We want to show that ¢ = ¢ p-a.e.



Proof of BET. Step 3

Let B
Evp={xe X ¢¥(x)<B,a<i(x)}

Then E, g is T-invariant, and
xeX:px)<d(x)}= |J Eap
a,8€Q,6<a

This is a countable union, and therefore it suffices to show that
1(Eq,p) = 0 for every pair of rationals 8 < c.

Write By, := {x € X : sup, 1S,1)(x) > a} as in our Lemma. Since
Eng = En g N By, this Lemma gives

fo o=,

«

. ¥ dp = ap(Eap N Ba) = ap(Eqp)-
.BMNBa



Proof of BET. Step 3

From the previous slide:

/ Y dp > ap(Eap)-
- Eaﬁ

We repeat this argument replacing ¢, a, 8 by —¢, —a, —3. Note
that —¢) = —¢) and —1) = —1). This gives

/E o dp < Bu(Eap).

Since 3 < «, this can only be true if u(E,3) =0.

Therefore ¢ = 1 =1, i.e, the limsup and liminf are actually
limits u-a.e.



Proof of BET. Step 4

The next step is to show that ¢/* € L*(1). From Measure Theory
we have:

Fatou's Lemma If (gn)nen are non-negative L!(u)-functions, then

liminf g, € Ll(,u) and / liminf g, du < Iiminf/ &gn dpu.
n X n n X

Here we apply this to g, = \%Snw, which belong to L(u) because
(by T-invariance)

/!5¢!du< /leodeM /ledu<oo

Hence in the limit: [y | dp < liminf, [y [¢] dp < oo,



Proof of BET. Step 5

Next, we need to show that [, * du = [, ¢ du (so without
absolute value signs). Take

5 k+1
n

Din={xeX:—<9y"(x)< T}

Then Dy , is T-invariant, and Uxez Dy » = X mod . Also
Bi__N Dy.n = Dy for e > 0. Therefore our Lemma gives

/ Ydp = / Y dp
Dy, By MDDy

> (S ou(B N Dk)
= (5 9uDin)



Proof of BET. Step 5
Since ¢ is arbitrary, we have %M(Dk,n) < ka Y du. Therefore

. k+1 1
/‘¢W@MMHSMMH+ ¥ du.
Dk,n n n Dk,n

Summing over all k € Z, we find [, ¢* dp < % + [x ¥ dp. Since
n € N is arbitrary, also

AWMSAwm

By the same argument for —¢, we find [, ¥* du > [, ¥ dp.

Hence
/XW =/Xw dpu.

Finally, if 1 is ergodic, the T-invariant function ¥* has to be
constant pi-a.e., so ¥* = [t dp. This completes the proof of
Birkhoff's Ergodic Theorem.



The LP Ergodic Theorem

The LP Ergodic Theorem is a generalisation of Von Neumann's
L2 version of the Ergodic Theorem, which predates! Birkhoff’s
Theorem, but nowadays, it is usually proved as a corollary of the
pointwise ergodic theorem.

Theorem: Let (X, T, B, 1) be a probability measure preserving
dynamical system. If 4 is ergodic, and ¢ € LP(u) for some

1 < p < oo then there exists ¢* € LP(p) with ¢* o T = ¢* p-a.e.
such that

1
HES,,Q/) —¢*||p = 0 as n — oo.

! John von Neumann was earlier in proving his L*-version, but Birkhoff
delayed its publication until after the appearance of his own-paper.



The LP Ergodic Theorem
Proof of the L Ergodic Theorem.

First assume that 1) is bounded (and hence in LP(u)). By Birkhoff's
Ergodic Theorem there is ¢* such that 1S,1(x) — ¢*(x) p-a.e.,
and ¢* is bounded (and hence in LP(u) too). In particular,

1
|;5n¢(x) — " (xX)P =0 p-ae.

By the Bounded Convergence Theorem, we can swap the limit and
the integral:

) 1 .
lim H*Snw - Hp
n—oo n

1/
= Jim_ ( / |%s,,w(x> — ()P du) ’

1/p
= </ lim |75 P(x) — ™ (x)|P du) =0.
x =00 n



The LP Ergodic Theorem

Convergent sequences are Cauchy, so for every € > 0 there is
N = N(e, ) such that

1 1 € %
H;Smd) - ;Sanp < 5 ( )
forall m,n> N.

Now if ¢ € LP(u) is unbounded, we want to show that %S,,qb is a
Cauchy sequence in || ||. Let € > 0 be arbitrary, and take
bounded such that ||¢ — 9|, < /4. By T-invariance,

1 1
1=5n¢ = —Sallp < [l = llp  forall n>1. (**)



The LP Ergodic Theorem

Repeat (*) and (**) from the previous slide:
1 1 €
m n 2
and
1 1 €
|=Snp — =Sptllp < |[¢ —¥|lp < = foralln>1.
n n 4
By the triangle inequality,

1 1
H;Sm¢ - ;SmeP

IN

1 1
Hasm¢ - ;5n¢HP
1 1
+H*5m7/’ - *an/)HP
m n

1 1
+H*Sn¢ - *SanP
n n
e

_|_§_€
2 4

< 4
4

for all m,n > N(e,v).

(*)

(**)



The LP Ergodic Theorem

Hence 15,¢ is Cauchy in || ||, and thus converges to some

¢* € LP(u). We have

11 1 1
1 Sh0(0) — 2 Sabe T()| = 176(x)

for all x. Taking the limit n — oo gives ¢* = ¢* o T p-a.e.

This concludes the proof of the LP Ergodic Theorem.



