
Birkho�'s Ergodic Theorem

In this lecture we prove Birkho�'s Ergodic Theorem (also called the

Pointwise Ergodic Theorem):

Theorem: Let µ be a probability measure and ψ ∈ L1(µ). Then the

ergodic average

ψ∗(x) := lim
n→∞

1

n

n−1∑
i=0

ψ ◦ T i (x)

exists µ-a.e., and ψ∗ is T -invariant, i.e., ψ∗ ◦ T = ψ∗ µ-a.e.
If in addition µ is ergodic then ψ∗ =

∫
X
ψ dµ for µ-a.e. x

Or in short:

Space Average = Time Average (for typical points).



Proof of BET. Step 1
Maximal Ergodic Theorem Let (X ,T ,B, µ) be a probability

measure preserving dynamical system. Take

MN = max{Sn : 0 ≤ n ≤ N}. Then∫
AN

f dµ ≥ 0 for AN = {x ∈ X : MN(x) > 0}.

The Koopman operator UT : L1(µ)→ L1(µ) is de�ned as

UT f = f ◦ T .

Clearly UT is linear and positive, i.e., f ≥ 0 implies UT f ≥ 0.

We write the ergodic sum as

Sn = Snf =
n−1∑
k=0

f ◦ T k and S0 ≡ 0.



Proof of BET. Step 1
Proof of the Maximal Ergodic Theorem: Clearly MN ≥ Sn for

all 0 ≤ n ≤ N and by positivity of the Koopman operator, also

UTMN ≥ UTSn. Add f : UTMN + f ≥ UTSn + f = Sn+1. For

x ∈ AN , this means

UTMN(x) + f (x) ≥ max
1≤n≤N

Sn(x)

≥x∈AN max
0≤n≤N

Sn(x) = MN(x).

Therefore f ≥ MN − UTMN on AN , and (since MN ≥ S0 = 0)∫
AN

f dµ ≥
∫
AN

MN dµ−
∫
AN

UTMN dµ

=

∫
X

MN dµ−
∫
AN

UTMN dµ

=

∫
X

MN dµ−
∫
X

UTMN dµ = 0.

This completes the proof.



Proof of BET. Step 2

Lemma: Let (X ,T ,B, µ) be a probability measure preserving

dynamical system, and E ⊂ X a T -invariant subset. Let

Bα := {x ∈ X : sup
n

1

n
Sng(x) > α}.

Then ∫
Bα∩E

g dµ ≥ αµ(Bα ∩ E ).

For a measurable set E ⊂ X , we de�ne a probability measure

µE (B) =
1

µ(E )
µ(B ∩ E )

If E is T -invariant then µE is T -invariant too.



Proof of BET. Step 2

Proof: If µ(E ) = 0 then there is nothing to prove. So assume that

µ(E ) > 0. Take f = g − α, so

Bα = ∪NAN for AN = {x ∈ X : MN(x) > 0}.

Note also that AN ⊂ AN+1 for all N. Therefore for each ε > 0

there exists N ∈ N such that∫
Bα

f dµE ≥
∫
AN

f dµE ≥ −ε.

Since ε is arbitrary,
∫
Bα

f dµE ≥ 0. Adding α again we have∫
Bα

g dµE =

∫
Bα

f + α dµE ≥ αµE (Bα ∩ E ).

Multiply everything by µ(E ) to get the lemma.



Proof of BET. Step 3

Proof of Birkho�'s Ergodic Theorem:

Recall ψ ∈ L1(µ). De�ne

ψ = lim sup
n→∞

1

n
Snψ and ψ = lim inf

n→∞

1

n
Snψ.

Since

|n + 1

n

1

n + 1
Sn+1ψ −

1

n
Snψ ◦ T | =

1

n
|ψ(x)| → 0

as n→∞, we have ψ ◦ T = ψ and similarly ψ ◦ T = ψ.

We want to show that ψ = ψ µ-a.e.



Proof of BET. Step 3

Let

Eα,β = {x ∈ X : ψ(x) < β,α < ψ(x)}

Then Eα,β is T -invariant, and

{x ∈ X : ψ(x) < ψ(x)} =
⋃

α,β∈Q,β<α
Eα,β.

This is a countable union, and therefore it su�ces to show that

µ(Eα,β) = 0 for every pair of rationals β < α.

Write Bα := {x ∈ X : supn
1

n
Snψ(x) > α} as in our Lemma. Since

Eα,β = Eα,β ∩ Bα, this Lemma gives∫
Eα,β

ψ dµ =

∫
Eα,β∩Bα

ψ dµ ≥ αµ(Eα,β ∩ Bα) = αµ(Eα,β).



Proof of BET. Step 3

From the previous slide:∫
Eα,β

ψ dµ ≥ αµ(Eα,β).

We repeat this argument replacing ψ, α, β by −ψ,−α,−β. Note
that −ψ = −ψ and −ψ = −ψ. This gives∫

Eα,β

ψ dµ ≤ βµ(Eα,β).

Since β < α, this can only be true if µ(Eα,β) = 0.

Therefore ψ = ψ = ψ∗, i.e., the lim sup and lim inf are actually

limits µ-a.e.



Proof of BET. Step 4

The next step is to show that ψ∗ ∈ L1(µ). From Measure Theory

we have:

Fatou's Lemma If (gn)n∈N are non-negative L1(µ)-functions, then

lim inf
n

gn ∈ L1(µ) and
∫
X

lim inf
n

gn dµ ≤ lim inf
n

∫
X

gn dµ.

Here we apply this to gn = | 1nSnψ|, which belong to L1(µ) because
(by T -invariance)∫

X

|1
n
Snψ| dµ ≤

1

n

n−1∑
k=0

∫
X

|ψ| ◦ T k dµ =

∫
|ψ| dµ <∞.

Hence in the limit:
∫
X
|ψ| dµ ≤ lim infn

∫
X
|ψ| dµ <∞.



Proof of BET. Step 5

Next, we need to show that
∫
X
ψ∗ dµ =

∫
X
ψ dµ (so without

absolute value signs). Take

Dk,n = {x ∈ X :
k

n
≤ ψ∗(x) < k + 1

n
}.

Then Dk,n is T -invariant, and ∪k∈ZDk,n = X mod µ. Also
B k

n
−ε ∩ Dk,n = Dk,n for ε > 0. Therefore our Lemma gives∫

Dk,n

ψ dµ =

∫
B k
n
−ε∩Dk,n

ψ dµ

≥ (
k

n
− ε)µ(B k

n
−ε ∩ Dk,n)

= (
k

n
− ε)µ(Dk,n).



Proof of BET. Step 5

Since ε is arbitrary, we have k
n
µ(Dk,n) ≤

∫
Dk,n

ψ dµ. Therefore∫
Dk,n

ψ∗ dµ ≤ k + 1

n
µ(Dk,n) ≤

1

n
µ(Dk,n) +

∫
Dk,n

ψ dµ.

Summing over all k ∈ Z, we �nd
∫
X
ψ∗ dµ ≤ 1

n
+
∫
X
ψ dµ. Since

n ∈ N is arbitrary, also∫
X

ψ∗ dµ ≤
∫
X

ψ dµ,

By the same argument for −ψ, we �nd
∫
X
ψ∗ dµ ≥

∫
X
ψ dµ.

Hence ∫
X

ψ∗ =

∫
X

ψ dµ.

Finally, if µ is ergodic, the T -invariant function ψ∗ has to be

constant µ-a.e., so ψ∗ =
∫
ψ dµ. This completes the proof of

Birkho�'s Ergodic Theorem.



The Lp Ergodic Theorem

The Lp Ergodic Theorem is a generalisation of Von Neumann's

L2 version of the Ergodic Theorem, which predates1 Birkho�'s

Theorem, but nowadays, it is usually proved as a corollary of the

pointwise ergodic theorem.

Theorem: Let (X ,T ,B, µ) be a probability measure preserving

dynamical system. If µ is ergodic, and ψ ∈ Lp(µ) for some

1 ≤ p <∞ then there exists ψ∗ ∈ Lp(µ) with ψ∗ ◦ T = ψ∗ µ-a.e.
such that

‖1
n
Snψ − ψ∗‖p → 0 as n→∞.

1John von Neumann was earlier in proving his L1-version, but Birkho�

delayed its publication until after the appearance of his own paper.



The Lp Ergodic Theorem
Proof of the Lp Ergodic Theorem.

First assume that ψ is bounded (and hence in Lp(µ)). By Birkho�'s
Ergodic Theorem there is ψ∗ such that 1

n
Snψ(x)→ ψ∗(x) µ-a.e.,

and ψ∗ is bounded (and hence in Lp(µ) too). In particular,

|1
n
Snψ(x)− ψ∗(x)|p → 0 µ-a.e.

By the Bounded Convergence Theorem, we can swap the limit and

the integral:

lim
n→∞
‖1
n
Snψ − ψ∗‖p

= lim
n→∞

(∫
X

|1
n
Snψ(x)− ψ∗(x)|p dµ

)1/p

=

(∫
X

lim
n→∞

|1
n
Snψ(x)− ψ∗(x)|p dµ

)1/p

= 0.



The Lp Ergodic Theorem

Convergent sequences are Cauchy, so for every ε > 0 there is

N = N(ε, ψ) such that

‖ 1
m
Smψ −

1

n
Snψ‖p <

ε

2
(*)

for all m, n ≥ N.

Now if φ ∈ Lp(µ) is unbounded, we want to show that 1

n
Snφ is a

Cauchy sequence in ‖ ‖p. Let ε > 0 be arbitrary, and take ψ
bounded such that ‖φ− ψ‖p < ε/4. By T -invariance,

‖1
n
Snφ−

1

n
Snψ‖p ≤ ‖φ− ψ‖p for all n ≥ 1. (**)



The Lp Ergodic Theorem
Repeat (*) and (**) from the previous slide:

‖ 1
m
Smψ −

1

n
Snψ‖p <

ε

2
for all m, n ≥ N(ε, ψ) (*)

and

‖1
n
Snφ−

1

n
Snψ‖p ≤ ‖φ− ψ‖p <

ε

4
for all n ≥ 1. (**)

By the triangle inequality,

‖ 1
m
Smφ−

1

n
Snφ‖p ≤ ‖ 1

m
Smφ−

1

m
Smψ‖p

+‖ 1
m
Smψ −

1

n
Snψ‖p

+‖1
n
Snφ−

1

n
Snψ‖p

<
ε

4
+
ε

2
+
ε

4
= ε

for all m, n ≥ N(ε, ψ).



The Lp Ergodic Theorem

Hence 1

n
Snφ is Cauchy in ‖ ‖p and thus converges to some

φ∗ ∈ Lp(µ). We have∣∣∣n + 1

n

1

n + 1
Sn+1φ(x)−

1

n
Snφ ◦ T (x)

∣∣∣ = |1
n
φ(x)|

for all x . Taking the limit n→∞ gives φ∗ = φ∗ ◦ T µ-a.e.

This concludes the proof of the Lp Ergodic Theorem.


