
Poincaré Recurrence

Given a dynamical system (X ,T ), it is sometimes useful to consider

the �rst return map to a subset Y ⊂ X .

De�ne the �rst return time to a set Y as

τY = min{n ≥ 1 : T n(x) ∈ Y }.

The �rst return map or induced map to Y is

TY : Y → Y , TY (y) = T τ(y)(y).

The Poincaré Recurrence Theorem: If (X ,T , µ) is a measure

preserving system with µ(X ) = 1, then for every measurable set

Y ⊂ X of positive measure, µ-a.e. y ∈ Y returns to Y , i.e.,

τ(y) <∞ µ-a.e.



Poincaré Recurrence

Proof:

Assume by contradiction that

Y ′ = {x ∈ Y : T n(x) /∈ Y for all n ≥ 1}

has measure µ(Y ′) > 0.

As µ is invariant, µ(T−i (Y ′)) = µ(Y ′) > 0 for all i ≥ 0. On the

other hand,

1 = µ(X ) ≥ µ(∪iT−i (Y ′)),

so there must be overlap in the backward iterates of Y ′.

That is: there are 0 ≤ i < j such that µ(T−i (Y ′) ∩ T−j(Y ′)) > 0.

Take the i-th iterate and �nd

µ(Y ′ ∩ T i−j(Y ′)) ≥ µ(T−i (Y ′) ∩ T−j(Y ′)) > 0,

so there is z ∈ Y ′ such that T j−i (z) ∈ Y ′ ⊂ Y , contradicting the

de�nition of Y ′. This concludes the proof.



Poincaré Recurrence

De�nition: A system (X ,T ,B, µ) is called conservative if for every

set A ∈ B with µ(A) > 0, there is n ≥ 1 such that

µ(T n(A) ∩ A) > 0. The Poincaré Recurrence Theorem thus implies

that probability measure preserving systems are conservative.

If not conservative, then the system is called dissipative. It is called

totally dissipative if for every set A ∈ B,

µ({x ∈ A : T n(x) ∈ A in�nitely often}) = 0.



Kac's Lemma

The next result quanti�es the expected value of the �rst return

time τ to Y ⊂ X .

Kac' Lemma: Let (X ,T ) preserve an ergodic measure µ. Take
Y ⊂ X measurable such that µ(Y ) > 0, and let τ : Y → N be the

�rst return time to Y . Take Y ⊂ X measurable such that

µ(Y ) > 0. Then ∫
Y

τdµ =
∑
n≥1

nµ(Yn) = µ(X )

for Yn := {y ∈ Y : τ(y) = n}.

Exercise 7.1: Extend τ to τ : X → N as the �rst hitting time on X :

τ(x) = min{n ≥ 1 : T n(x) ∈ Y }.

Show that
∫
X
τ(x) dµ = µ(Y )−1.



Kac's Lemma

Proof of Kac' Lemma Set

Un = {x ∈ Y : T n
Y (x) is unde�ned }.

By Poincaré Recurrence, µ(U1) = 0. Also

Un+1 = ∪k≥1T−k(Un) ∩ Yk

for Yk = {y ∈ Y : τ(y) = k}. It follows by induction that

µ(Un) = 0 for all n ≥ 1. Hence µ(∪nUn) = 0 as well: µ-a.e. y ∈ Y

returns to Y in�nitely often.

Let A = {x ∈ X : T n(x) ∈ Y in�nitely often}. Then A = T−1(A).
and µ(A) > µ(Y ) > 0. By ergodicity, µ(Ac) = 0.



Kac's Lemma

Next de�ne L0 = Y , L1 = T−1(L0) \ Y and recursively

Ln+1 = T−1(Ln) \ Y . In other words:

Ln = {x ∈ X : T n(x) ∈ Y and T k(x) /∈ Y for 0 ≤ k < n}.

Clearly all the Lns are pairwise disjoint, and

µ(X ) ≥
∑
n≥0

µ(Ln) ≥ µ(A) = µ(X )

by the previous slide.

Furthermore, T−1(Ln) is the disjoint union of Ln+1 and Yn+1. By

T -invariance of µ it follows that

µ(Ln) = µ(Ln+1) + µ(Yn+1).



Kac's Lemma

Therefore

∞∑
n=1

nµ(Yn) =
∞∑
n=0

(n + 1)µ(Yn+1)

=
∞∑
n=0

(n + 1)(µ(Ln)− µ(Ln+1))

=
∞∑
n=0

µ(Ln) + nµ(Ln)− (n + 1)µ(Ln+1)︸ ︷︷ ︸
telescopes to 0

=
∞∑
n=0

µ(Ln) = µ(X ).

This proves Kac' Lemma.



Induced Tranformations

De�nition: We say that a transformation T is non-singular w.r.t. a

measure µ if µ(A) = 0 implies that µ(T−1(A)) = 0.

Hence measures-preserving maps are always non-singular, and so

are e.g. di�erential maps w.r.t. Lebesgue measure.

But T is not non-singular w.r.t. the Dirac measure δx , unless x is a

�xed point.



Induced Tranformations

Kac's Lemma e�ectively combines a measure preserving system

(X ,T ) to the �rst return map to a subset Y ⊂ X .

Proposition: Let (X ,B,T , µ) be an ergodic dynamical system and

Y ∈ B a set with µ(Y ) > 0. Let TY = T τY be the �rst return map

to Y .

If µ is T -invariant, then ν(A) := 1
µ(Y )µ(A ∩ Y ) is TY -invariant.

Conversely, if ν is TY -invariant, and

Λ :=

∫
Y

τ(y)dν <∞,

then

µ(A) =
1

Λ

∞∑
j=1

ν(T−j(A) ∩ {y ∈ Y : τ(y) ≥ j})

is a T -invariant probability measure. Moreover µ is ergodic for T if

and only if ν is ergodic for TY .



Induced Tranformations

Proof: Let A ⊂ Y be measurable. We can write T−1Y (A) as

disjoint union T−1Y (A) = tk≥1Yk ∩ T−k(A), where
Yk = {y ∈ Y : τ(y) = k}. Using the notation of the previous

proof, we compute

µ(A) = µ(L0 ∩ A)

= µ(L1 ∩ T−1(A)) + µ(Y1 ∩ T−1(A))

= µ(L2 ∩ T−2(A)) + µ(Y2 ∩ T−2(A)) + µ(Y1 ∩ T−1(A))

=
...

...

=
∑
j≥1

µ(Yj ∩ T−j(A)) = µ(T−1Y (A)).

After scaling by 1/µ(Y ), we get ν(A) = ν(T−1Y (A)).



Induced Tranformations

Conversely, note that

µ(X ) =
1

Λ

∞∑
j=1

ν({y ∈ Y : τ(y) ≥ 1})

=
1

Λ

∞∑
j=1

jν({y ∈ Y : τ(y) = j})

=
1

Λ

∫
Y

τ dν = 1.



Induced Tranformations

For the invariance, we compute

µ(T−1(A))

=
1

Λ

∞∑
j=1

ν(T−(j+1)(A) ∩ {τ(y) ≥ j})

=
1

Λ

∞∑
j=1

ν(T−(j+1)(A) ∩ {τ(y) ≥ j + 1}) + ν(T−(j+1)(A) ∩ {τ(y) = j})

=
1

Λ

∞∑
j=1

(
ν(T−j(A) ∩ {τ(y) ≥ j}) + ν(T−j(T−1(A)) ∩ {τ(y) = j})

)
− 1

Λ
ν(T−1(A) ∩ {τ(y) ≥ 1})

=µ(A) +
1

Λ

(
ν(T−1Y (T−1(A))− ν(T−1(A))

)
= µ(A),

where the last equality is by TY -invariance of ν.



Induced Tranformations

Now for ergodicity, �rst assume that µ is ergodic and A ⊂ Y is

TY -invariant. Then

B = ∪∞j=0T
−j(A)

is T -invariant, so µ(B) or µ(Bc) = 0.

If µ(B) = 0 then ν(A) = 1
µ(Y )µ(B ∩ Y ) = 0.

If µ(Bc) = 0, then ν(Ac) = 1
µ(Y )µ(Bc ∩ Y ) = 0.

Finally, if ν is ergodic and B is T -invariant, then A := B ∩ Y is

TY -invariant, and therefore ν(A) or ν(Ac) = 0. Suppose the �rst.

As ν|Y = 1
µ(Y )µ|Y , we have µ(A) = 0. Since T is non-singular, it

follows that µ(∪j≥0T−j(A)). But µ-a.e., x ∈ B belongs to

∪j≥0T−j(A), so also µ(B) = 0.

The case (Ac) = 0 goes likewise.



Induced Tranformations

As an illustration, we take the quadratic map T (x) = 4x(1− x). It
is not uniformly expanding, so we cannot apply the Folklore

Theorem to �nd an absolutely continuous probability measure µ.
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Figure: The quadratic map T : x 7→ 4x(1− x)

Therefore we take Y = [1− p, p] for the �xed point p = 3
4
of T .

and consider the �rst return map TY : Y → Y . Note that the

critical point c = 1
2
satis�es T (c) = 1 and T 2(c) = 0 is �xed under

f . This is essential for TY to be uniformly expanding.



Induced Tranformations

Without proofs, we mention the properties of TY :

I TY is de�ned for Lebesgue-a.e. y ∈ Y .

I If y ∈ Y has return time τ(y) = n, then there is a

neighborhood Ux of x such that TY : Ux → Y ◦ is a C∞

di�eomorphism and |T ′Y | ≥ 2.

I TY has in�nitely many branches (so it is not piecewise C 2 in

the strict sense), and T ′Y is not bounded. However, there is a

constant C such that

|T ′′Y (y)|
|T ′Y (y)|2

≤ C wherever de�ned.

I The Lebesgue measure of {y ∈ Y : τ(y) = n} is exponentially
small in n.

These conditions are su�cient to get the conclusion of the Folklore

Theorem, so we have an TY -invariant measure ν and in fact, its

density dν
dx

is bounded and bounded away from zero.



Induced Tranformations

This means that

ν({y ∈ Y : τ(y) = n}) is exponentially small in n

as well, so that the normalizing constant Λ <∞. Hence, we

conclude that f preserves an ergodic absolutely continuous measure

µ, satisfying the formula of the previous proposition.

For the above example, it is not essential that T is a quadratic

map; any C 2 unimodal map T : [0, 1]→ [0, 1] with T 2(c) = 0

�xed and T ′′(c) 6= 0 can be treated in the same way. For the

quadratic map, however, the density of µ is known precisely:

dµ

dx
=

1

π
√

x(1− x)
.


