
The Koopman Operator

Given (X ,B, µ,T ), we can take the space of complex-valued

square-integrable observables L2(µ). This is a Hilbert space,

equipped with inner product

〈f , g〉 =
∫
X

f (x) · g(x) dµ.

The Koopman operator is de�ned as

UT : L2(µ)→ L2(µ), UT f = f ◦ T .

Exercise 8.1: Show that the Koopman operator is linear and

positive.



The Koopman Operator

By T -invariance of µ, it is a unitary operator (it preserves the inner

product). Indeed

〈UT f ,UTg〉 =

∫
X

f ◦ T (x) · g ◦ T (x) dµ

=

∫
X

(f · g) ◦ T (x) dµ =

∫
X

f · g dµ = 〈f , g〉,

and therefore U∗TUT = UTU
∗
T = I .

Remark: This has several consequences, common to all unitary

operators. The spectrum σ(UT ) of UT is a closed subset of the

unit circle, and it is in fact a group under multiplication.



The Transfer Operator

De�nition: The Perron-Frobenius or transfer operator of a

transformation T : X → X is the dual of the Koopman operator:∫
X

PT f · g dµ =

∫
X

f · UTg dµ =

∫
X

f · g ◦ T dµ.

Note that, although UT is independent of the measure, PT is not.

Often it will be important to specify the measure explicitly, and this

measure need not be invariant.

Exercise 8.2: Show that the Perron-Frobenius operator has the

following properties:

1. PT is linear;

2. PT is positive: f ≥ 0 implies PT f ≥ 0.

3.
∫
PT f dµ =

∫
f dµ.

4. PT k = (PT )
k .



The Transfer Operator

Lemma: Let T : [0, 1]→ [0, 1] be a piecewise C 1 interval map.

Then the Perron-Frobenius operator PT w.r.t. Lebesgue measure λ
has the pointwise formula

PT f (x) =
∑

y∈T−1(x)

f (y)

|T ′(y)|
.

Speci�cally, a �xed point of P is an invariant density for T .

Proof Let 0 = a0 < a1 < · · · < aN = 1 be such that T is C 1

monotone on each (ai−1, ai ). Let yi = T−1(x) ∩ (ai−1, ai ).



The Transfer Operator
We obtain

(PT f )(x) =︸︷︷︸
Fund. Th. Calc

d

dx

∫ x

0

PT f (s) ds =
d

dx

∫
1

0

(PT f )(s) · 1[0,x](s)ds

=︸︷︷︸
def. PT

d

dx

∫
1

0

f · 1[0,x] ◦ T (s) ds =︸︷︷︸
s=T (u)

d

dx

∫
T−1[0,x]

f (u) du

=
∑

T |(ai−1,ai )
increasing

x∈T ((ai−1,ai ))

d

dx

∫ yi (x)

ai−1

f (u) du

+
∑

T |(ai−1,ai )
decreasing

x∈T ((ai−1,ai ))

d

dx

∫ ai

yi (x)
f (u) du

+
∑

T ((ai−1,ai ))⊂[0,x]

d

dx

∫ ai

ai−1

f (u) du



The Transfer Operator

Continuing this:

(PT f )(x) =
∑

T |(ai−1,ai )
increasing

x∈T ((ai−1,ai ))

f (yi )

T ′(yi )
+

∑
T |(ai−1,ai )

decreasing

x∈T ((ai−1,ai ))

− f (yi )

T ′(yi )
+ 0

=
∑
i

f (yi )

|T ′(yi )|
,

as required.



The Transfer Operator

There is also a Perron-Frobenius operator with respect to a

measure µ� Lebesgue, instead of Lebesgue measure itself:

Lemma: If dµ = hdx , then the operator

PT ,µf =
PT (f · h)

h

acts as the Perron-Frobenius operator on (X ,B,T , µ).

Viewed di�erently, if a function h ≥ 0 is �xed by PT (w.r.t.

Lebesgue) then dµ = h dx is an invariant measure.



The Transfer Operator

Proof of the Lemma: Let A be µ-measurable and f ∈ L1(µ).
Then∫

A

PT ,µf dµ =

∫
A

PT (f · h)
h

h dx

=

∫
A

PT (f · h) dx

=

∫
X

PT (f · h) 1A dµ =

∫
X

f · h · (1A ◦ T ) dx

=

∫
T−1A

f · h dx =

∫
T−1A

f dµ.

Because A is arbitrary, the lemma is proved.



Mixing

De�nition: A probability measure preserving dynamical system

(X ,B, µ,T ) is mixing (or strong mixing) if

µ(T−n(A) ∩ B)→ µ(A)µ(B) as n→∞

for every A,B ∈ B.

This says that the �events� A and B are asymptotically independent.

Exercise: Show that Lebesgue measure µ is mixing for the doubling

map. In fact, the n-th correlation coe�cient

Corn(A,B) := µ(T−n(A) ∩ B)− µ(A)µ(B) = 0

for every n ≥ 1.



Mixing

Proposition: A probability preserving dynamical system (X ,B,T , µ)
is mixing if and only if∫

X

f ◦ T n(x) · g(x) dµ→
∫
X

f (x) dµ ·
∫
X

g(x) dµ as n→∞

for all f , g ∈ L2(µ), or written in the notation of the Koopman

operator UT f = f ◦ T :

〈Un
T f , g〉 → 〈f , 1〉〈1, g〉 as n→∞.

Proof: The �if�-direction follows by taking indicator functions

f = 1A and g = 1B . For the �only if�-direction, general

f , g ∈ L2(µ) can be approximated by linear combinations of

indicator functions.



Exponential Mixing

Assume without loss of generality that
∫
g dµ = 〈1, g〉 = 0. Then

mixing means that

〈Un
T f , g〉 = 〈f ,Pn

Tg〉 → 0 as n→∞.

If the operator norm ‖PT‖ restricted to {g ∈ L2(µ) :
∫
g dµ = 0}

is strictly less than 1, then

Corn(f , g) = 〈f ,Pn
Tg〉 ≤ ‖f ‖ ‖g‖ ‖PT‖n → 0 exponentially fast.

Thus µ is exponentially mixing: the �events� f and g are

exponentially independent.

This motivates the spectral analysis of the transfer operator.



Exponential Mixing

De�nition: An operator P is called quasi-compact if λ = 1 is an

eigenvalue of multiplicity one, and the rest of the spectrum (i.e., all

λ ∈ C such that (P − λI )−1 is not a wel-de�ned bounded

operator), lies in a disk {|λ| ≤ σ} for some σ < 1.

I Multiplicity one means that the space of eigenfunctions

satisfying Pf = λf (for λ = 1) is one-dimensional.

I This σ is called the essential spectral radius. The actual

spectral radius is 1.

I Perron-Frobenius operators are seldom quasi-compact on

L2(µ). The (non-trivial) task is to �nd a Banach space B
restricted to which P is quasi-compact.



Exponential Mixing

The Lasota-Yorke (or Doeblin-Fortet or Tulcea-Ionescu-Marinescu)

inequality holds if there are two Banach spaces (Bs , ‖ ‖s) and
(Bw , ‖ ‖w ) (for strong and weak) and σ ∈ (0, 1), L ≥ 1 such that

I Bs ⊂ Bw and the unit ball {f ∈ Bs : ‖f ‖s ≤ 1} is a compact

subset of Bw .

I ‖Pf ‖s ≤ σ‖f ‖s + L‖f ‖w for all f ∈ Bs .

I ‖Pf ‖w ≤ ‖f ‖w for all f ∈ Bw .

Under these conditions, P : Bs → Bs is quasi-compact, with

essential spectral radius ≤ σ.

Theorem: If the Perron-Frobenius operator for T : [0, 1]→ [0, 1] is
quasi-compact with Bs ⊂ L1(m) for Lebesgue measure m, then

there is an absolutely continuous invariant measure µ which is

exponentially mixing.



Exponential Mixing

Exercise 8.3: Show that ‖PT f ‖L1 ≤ ‖f ‖L1 .

Exercise 8.4: Suppose we have two sequences (an)n∈N and (bn)n∈N
satisfying: there are σ ∈ (0, 1) and L > 0 such that:

an+1 ≤ an and bn ≤ σbn + Lan.

Show that (bn)n∈N is bounded. Show that lim supn bn ≤ L/(1− σ).

The Lasota-Yorke inequality got reinvented several times (Andrej

Lasota and James Yorke being the most recent), and they applied

this to expanding interval maps with speci�c choices of Banach

spaces.



Exponential Mixing

De�nition: Let g : [a, b]→ R. The variation of g is de�ned to be

Var[a,b] g = sup

n∑
i=1

|g(xi )− g(xi−1)|,

where the supremum runs over all �nite partitions generated by

points a = x0 < x1 < · · · < xn = b.

Note that Var is a seminorm, i.e., Var(f ) = 0 6⇒ f ≡ 0. In fact,

Var f = Var(f + C ) for every constant C . However,

BV := {f ∈ L1 : Var(f ) <∞} with norm ‖f ‖BV = Var(f ) +

∫
|f |dx

is a Banach space. Its unit ball is compactly embedded in L1.



Exponential Mixing

Lasota-Yorke Theorem: If T : [0, 1]→ [0, 1] is a piecewise C 2 map

with infx∈[0,1] |T ′(x)| > 1, then T preserves an invariant measure

µ� m = Lebesgue, and the density h = dµ
dx

is of bounded

variation. Also µ is exponentially mixing.

I Compared to the Folklore Theorem, there is an important

di�erence that the branches need not be onto.

I For instant, β-transformations:

Tβ : [0, 1]→ [0, 1], Tβ(x) = βx mod 1

have an absolutely continuous measures for all β > 1, not just

the integers β ≥ 2.



Exponential Mixing
The technical details are in the notes, but the key-steps are:

I Take an iterate T n such that infx |(T n)′(x)| > 2, so

σ := 2/ infx |(T n)′(x)| < 1.
I For Bs = BV and Bw = L1(m) the Lasota-Yorke ineq. holds:

Var[0,1]PT ,mg ≤ σ Var[0,1]g + L‖g‖L1(m).

I The limit µ of Césaro means 1

n

∑n−1
k=0

m ◦ T−k is invariant.

I The invariant density h = dµ
dx

= limn P
n
T ,m1 ∈ BV .

I The eigenspace of PT ,m for λ = 1 is spanned by h.
I For all f ∈ L1(m) and g ∈ BV :

Corn(f , g) =

∫
f · Pn

T ,m g h dx −
∫

f dµ

∫
g dµ

because Pn
T ,mh = h =

∫
f · PT ,m (g −

∫
g dµ) h dx

≤ ‖f ‖L1‖g‖BV ‖Pn|h⊥‖
≤ ‖f ‖L1 ‖g‖BV σn.


