The Koopman Operator

Given (X, \mathcal{B}, μ, T) , we can take the space of complex-valued square-integrable observables $L^2(\mu)$. This is a Hilbert space, equipped with inner product

$$\langle f, g \rangle = \int_X f(x) \cdot \overline{g(x)} \, d\mu.$$

The Koopman operator is defined as

$$U_T: L^2(\mu) \to L^2(\mu), \qquad U_T f = f \circ T.$$

ション ふゆ アメリア メリア しょうくの

Exercise 8.1: Show that the Koopman operator is linear and positive.

The Koopman Operator

By T-invariance of μ , it is a unitary operator (it preserves the inner product). Indeed

$$\begin{array}{ll} \langle U_T f, U_T g \rangle &=& \int_X f \circ T(x) \cdot \overline{g \circ T(x)} \ d\mu \\ &=& \int_X (f \cdot \overline{g}) \circ T(x) \ d\mu = \int_X f \cdot \overline{g} \ d\mu = \langle f, g \rangle, \end{array}$$

and therefore $U_T^*U_T = U_T U_T^* = I$.

Remark: This has several consequences, common to all unitary operators. The spectrum $\sigma(U_T)$ of U_T is a closed subset of the unit circle, and it is in fact a group under multiplication.

Definition: The Perron-Frobenius or transfer operator of a transformation $T: X \rightarrow X$ is the dual of the Koopman operator:

$$\int_X P_T f \cdot g \ d\mu = \int_X f \cdot U_T g \ d\mu = \int_X f \cdot g \circ T \ d\mu.$$

Note that, although U_T is independent of the measure, P_T is not. Often it will be important to specify the measure explicitly, and this measure need not be invariant.

Exercise 8.2: Show that the Perron-Frobenius operator has the following properties:

- 1. P_T is linear;
- 2. P_T is positive: $f \ge 0$ implies $P_T f \ge 0$.
- 3. $\int P_T f d\mu = \int f d\mu$.
- 4. $P_{T^k} = (P_T)^k$.

Lemma: Let $T : [0,1] \rightarrow [0,1]$ be a piecewise C^1 interval map. Then the Perron-Frobenius operator P_T w.r.t. Lebesgue measure λ has the pointwise formula

$$P_T f(x) = \sum_{y \in T^{-1}(x)} \frac{f(y)}{|T'(y)|}.$$

Specifically, a fixed point of P is an invariant density for T.

Proof Let $0 = a_0 < a_1 < \cdots < a_N = 1$ be such that T is C^1 monotone on each (a_{i-1}, a_i) . Let $y_i = T^{-1}(x) \cap (a_{i-1}, a_i)$.

ション ふゆ アメリア メリア しょうくの

We obtain

$$(P_{T}f)(x) = \frac{d}{dx} \int_{0}^{x} P_{T}f(s) \, ds = \frac{d}{dx} \int_{0}^{1} (P_{T}f)(s) \cdot \mathbb{1}_{[0,x]}(s) \, ds$$

$$= \frac{d}{dx} \int_{0}^{1} f \cdot \mathbb{1}_{[0,x]} \circ T(s) \, ds = \frac{d}{dx} \int_{T^{-1}[0,x]}^{1} f(u) \, du$$

$$= \sum_{\substack{T \mid (a_{i-1},a_{i}) \text{ increasing} \\ x \in T((a_{i-1},a_{i}))}} \frac{d}{dx} \int_{a_{i-1}}^{a_{i}} f(u) \, du$$

$$+ \sum_{\substack{T \mid (a_{i-1},a_{i}) \text{ decreasing} \\ x \in T((a_{i-1},a_{i}))}} \frac{d}{dx} \int_{a_{i-1}}^{a_{i}} f(u) \, du$$

$$+ \sum_{\substack{T \mid (a_{i-1},a_{i}) \text{ decreasing} \\ x \in T((a_{i-1},a_{i}))}} \frac{d}{dx} \int_{a_{i-1}}^{a_{i}} f(u) \, du$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Continuing this:

$$(P_T f)(x) = \sum_{\substack{T \mid (a_{i-1}, a_i) \text{ increasing} \\ x \in T((a_{i-1}, a_i))}} \frac{f(y_i)}{T'(y_i)} + \sum_{\substack{T \mid (a_{i-1}, a_i) \text{ decreasing} \\ x \in T((a_{i-1}, a_i)))}} - \frac{f(y_i)}{T'(y_i)} + 0$$
$$= \sum_{i} \frac{f(y_i)}{|T'(y_i)|},$$

as required.

There is also a Perron-Frobenius operator with respect to a measure $\mu \ll$ Lebesgue, instead of Lebesgue measure itself: Lemma: If $d\mu = hdx$, then the operator

$$P_{T,\mu}f=\frac{P_T(f\cdot h)}{h}$$

ション ふゆ アメリア メリア しょうくの

acts as the Perron-Frobenius operator on (X, \mathcal{B}, T, μ) .

Viewed differently, if a function $h \ge 0$ is fixed by P_T (w.r.t. Lebesgue) then $d\mu = h dx$ is an invariant measure.

Proof of the Lemma: Let A be μ -measurable and $f \in L^1(\mu)$. Then

$$\int_{A} P_{T,\mu} f \, d\mu = \int_{A} \frac{P_{T}(f \cdot h)}{h} \, h \, dx$$
$$= \int_{A} P_{T}(f \cdot h) \, dx$$
$$= \int_{X} P_{T}(f \cdot h) \, 1_{A} \, d\mu = \int_{X} f \cdot h \cdot (1_{A} \circ T) \, dx$$
$$= \int_{T^{-1}A} f \cdot h \, dx = \int_{T^{-1}A} f \, d\mu.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Because A is arbitrary, the lemma is proved.

Mixing

Definition: A probability measure preserving dynamical system (X, \mathcal{B}, μ, T) is mixing (or strong mixing) if

 $\mu({\it T}^{-n}(A)\cap B) o \mu(A)\mu(B)$ as $n o\infty$

for every $A, B \in \mathcal{B}$.

This says that the "events" A and B are asymptotically independent.

Exercise: Show that Lebesgue measure μ is mixing for the doubling map. In fact, the *n*-th correlation coefficient

 $\operatorname{Cor}_n(A,B) := \mu(T^{-n}(A) \cap B) - \mu(A)\mu(B) = 0$

for every $n \geq 1$.

Mixing

Proposition: A probability preserving dynamical system $(X, \mathcal{B}, \mathcal{T}, \mu)$ is mixing if and only if

$$\int_X f \circ T^n(x) \cdot \overline{g(x)} \ d\mu \to \int_X f(x) \ d\mu \cdot \int_X \overline{g(x)} \ d\mu \text{ as } n \to \infty$$

for all $f, g \in L^2(\mu)$, or written in the notation of the Koopman operator $U_T f = f \circ T$:

 $\langle U_T^n f, g \rangle \to \langle f, 1 \rangle \langle 1, g \rangle$ as $n \to \infty$.

Proof: The "if"-direction follows by taking indicator functions $f = 1_A$ and $g = 1_B$. For the "only if"-direction, general $f, g \in L^2(\mu)$ can be approximated by linear combinations of indicator functions.

Assume without loss of generality that $\int g \, d\mu = \overline{\langle 1, g \rangle} = 0$. Then mixing means that

 $\langle U_T^n f, g \rangle = \langle f, P_T^n g \rangle \to 0 \text{ as } n \to \infty.$

If the operator norm $||P_T||$ restricted to $\{g \in L^2(\mu) : \int g \, d\mu = 0\}$ is strictly less than 1, then

 $\operatorname{Cor}_n(f,g) = \langle f, P_T^n g \rangle \le \|f\| \, \|g\| \, \|P_T\|^n \to 0$ exponentially fast.

Thus μ is exponentially mixing: the "events" f and g are exponentially independent.

This motivates the spectral analysis of the transfer operator.

Definition: An operator P is called quasi-compact if $\lambda = 1$ is an eigenvalue of multiplicity one, and the rest of the spectrum (i.e., all $\lambda \in \mathbb{C}$ such that $(P - \lambda I)^{-1}$ is not a wel-defined bounded operator), lies in a disk $\{|\lambda| \leq \sigma\}$ for some $\sigma < 1$.

- Multiplicity one means that the space of eigenfunctions satisfying $Pf = \lambda f$ (for $\lambda = 1$) is one-dimensional.
- This σ is called the essential spectral radius. The actual spectral radius is 1.
- Perron-Frobenius operators are seldom quasi-compact on L²(µ). The (non-trivial) task is to find a Banach space B restricted to which P is quasi-compact.

The Lasota-Yorke (or Doeblin-Fortet or Tulcea-Ionescu-Marinescu) inequality holds if there are two Banach spaces $(\mathcal{B}_s, || ||_s)$ and $(\mathcal{B}_w, || ||_w)$ (for strong and weak) and $\sigma \in (0, 1)$, $L \ge 1$ such that

- B_s ⊂ B_w and the unit ball {f ∈ B_s : ||f||_s ≤ 1} is a compact subset of B_w.
- $\|Pf\|_s \leq \sigma \|f\|_s + L\|f\|_w$ for all $f \in B_s$.
- $||Pf||_{w} \leq ||f||_{w} \text{ for all } f \in B_{w}.$

Under these conditions, $P: B_s \rightarrow B_s$ is quasi-compact, with essential spectral radius $\leq \sigma$.

Theorem: If the Perron-Frobenius operator for $T : [0,1] \rightarrow [0,1]$ is quasi-compact with $B_s \subset L^1(m)$ for Lebesgue measure m, then there is an absolutely continuous invariant measure μ which is exponentially mixing.

Exercise 8.3: Show that $||P_T f||_{L^1} \le ||f||_{L^1}$.

Exercise 8.4: Suppose we have two sequences $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ satisfying: there are $\sigma \in (0, 1)$ and L > 0 such that:

 $a_{n+1} \leq a_n$ and $b_n \leq \sigma b_n + La_n$.

Show that $(b_n)_{n\in\mathbb{N}}$ is bounded. Show that $\limsup_n b_n \leq L/(1-\sigma)$.

The Lasota-Yorke inequality got reinvented several times (Andrej Lasota and James Yorke being the most recent), and they applied this to expanding interval maps with specific choices of Banach spaces.

Definition: Let $g:[a,b] \rightarrow \mathbb{R}$. The variation of g is defined to be

$$\operatorname{Var}_{[a,b]} g = \sup \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})|,$$

where the supremum runs over all finite partitions generated by points $a = x_0 < x_1 < \cdots < x_n = b$.

Note that Var is a seminorm, i.e., $Var(f) = 0 \neq f \equiv 0$. In fact, Var f = Var(f + C) for every constant C. However,

 $BV := \{f \in L^1 : \operatorname{Var}(f) < \infty\}$ with norm $\|f\|_{BV} = \operatorname{Var}(f) + \int |f| dx$

is a Banach space. Its unit ball is compactly embedded in L^1 .

Lasota-Yorke Theorem: If $T : [0,1] \to [0,1]$ is a piecewise C^2 map with $\inf_{x \in [0,1]} |T'(x)| > 1$, then T preserves an invariant measure $\mu \ll m$ = Lebesgue, and the density $h = \frac{d\mu}{dx}$ is of bounded variation. Also μ is exponentially mixing.

- Compared to the Folklore Theorem, there is an important difference that the branches need not be onto.
- For instant, β -transformations:

 $T_{\beta}: [0,1] \rightarrow [0,1], \qquad T_{\beta}(x) = \beta x \mod 1$

have an absolutely continuous measures for all $\beta > 1$, not just the integers $\beta \ge 2$.

The technical details are in the notes, but the key-steps are:

- ► Take an iterate T^n such that $\inf_x |(T^n)'(x)| > 2$, so $\sigma := 2/\inf_x |(T^n)'(x)| < 1$.
- For $B_s = BV$ and $B_w = L^1(m)$ the Lasota-Yorke ineq. holds:

 $\mathsf{Var}_{[0,1]} P_{\mathcal{T},m} g \leq \sigma \, \mathsf{Var}_{[0,1]} g + L \|g\|_{L^1(m)}.$

- The limit μ of Césaro means $\frac{1}{n} \sum_{k=0}^{n-1} m \circ T^{-k}$ is invariant.
- The invariant density $h = \frac{d\mu}{dx} = \lim_{n} P_{T,m}^n 1 \in BV$.
- The eigenspace of $P_{T,m}$ for $\lambda = 1$ is spanned by h.
- For all $f \in L^1(m)$ and $g \in BV$:

$$\operatorname{Cor}_{n}(f,g) = \int f \cdot P_{T,m}^{n} g h \, dx - \int f \, d\mu \int g \, d\mu$$

because $P_{T,m}^{n} h = h = \int f \cdot P_{T,m} (g - \int g \, d\mu) h \, dx$
$$\leq \| f \|_{L^{1}} \| g \|_{BV} \| P^{n} |_{h^{\perp}} \|$$

$$\leq \| f \|_{L^{1}} \| g \|_{BV} \sigma^{n}.$$