# Bernoulli Shifts

Beroulli trials in probability refer to successive coinflips or roles of the die. They are modeled as a shift-space over an alphabet  $\mathcal{A} = \{1, \dots, N\}$ :

 $\Sigma = \mathcal{A}^{\mathbb{Z}}$  (two-sided) or  $\Sigma = \mathcal{A}^{\mathbb{N}}(\mathsf{one}\mathsf{-sided})$ 

with a probability vector

$$p = (p_1, \dots p_N)$$
  $p_i \in [0, 1], \sum_{i=1}^N p_i = 1.$ 

The corresponding Bernoulli measure  $\mu_p$  gives cylinder sets

$$Z_{[k+1,k+n]}(a) = \{x \in \Sigma : x_{k+1} \dots x_{k+n} = a_1 \dots a_n\}$$

the mass

$$\mu_p(Z_{[k+1,k+N]}(a)) = \prod_{j=1}^n p_{a_j}.$$

## Bernoulli Shifts

The Kolmogorov Extension Theorem allows one to extend  $\mu_p$  to every set in the Borel  $\sigma$ -algebra  $\mathcal{B}$  of  $\Sigma$ . (Note that the cylinder sets form a basis of the topology.)

The measure space  $(\Sigma, \mathcal{B}, \mu_p)$  can be made into a measure preserving dynamical systems by taking the left-shift

 $\sigma(\ldots x_{-2}x_{-1} \cdot x_0x_1x_2 \ldots) = \ldots x_{-2}x_{-1}x_0 \cdot x_1x_2 \ldots$ 

Exercise: Show that the set of periodic points of  $(\Sigma, \mathcal{B}, \mu_p; \sigma)$  has measure zero if and only if  $p_i < 1$  for all *i*.

Exercise: Show that the set of points in  $(\Sigma, \mathcal{B}, \mu_p; \sigma)$  with a dense orbit has measure one if and only if  $p_i > 0$  for all *i*.

## Isomorphic Systems

Definition: Two measure preserving dynamical systems  $(X, \mathcal{B}, T, \mu)$ and  $(Y, \mathcal{C}, S, \nu)$  are called isomorphic if there are  $X' \in \mathcal{B}, Y' \in \mathcal{C}$ and  $\phi: Y' \to X'$  such that

• 
$$\mu(X') = 1, \ \nu(Y') = 1;$$

•  $\phi: Y' \to X'$  is a bi-measurable bijection;

•  $\phi$  is measure preserving:  $u(\phi^{-1}(B)) = \mu(B)$  for all  $B \in \mathcal{B}$ .

$$\bullet \ \phi \circ S = T \circ \phi.$$

That is, the below diagram commutes, and  $\phi: Y \to X$  is one-to-one almost everywhere.

$$\begin{array}{cccc} (Y, \mathcal{C}, \nu) & \stackrel{S}{\longrightarrow} & (Y, \mathcal{C}, \nu) \\ \phi \downarrow & & \downarrow \phi \\ (X, \mathcal{B}, \mu) & \stackrel{T}{\longrightarrow} & (X, \mathcal{B}, \mu) \end{array}$$

ション ふゆ く 山 マ チャット しょうくしゃ

# Isomorphic Systems

Example: The doubling map

 $T: \mathbb{S}^1 \to \mathbb{S}^1, \qquad T(x) = 2x \mod 1$ 

with Lebesgue measure is isomorphic to the one-sided  $(\frac{1}{2}, \frac{1}{2})$ -Bernoulli shift  $(\Sigma, \mathcal{B}, \sigma, \mu)$ . The (inverse of the) isomorphism is the coding map  $\phi^{-1} : X' \to \Sigma'$ :

$$\phi^{-1}(x)_k = \begin{cases} 1 & \text{if } T^k(x) \in [0, \frac{1}{2}), \\ 2 & \text{if } T^k(x) \in (\frac{1}{2}, 1]. \end{cases}$$

Here  $X' = [0,1] \setminus \{ \text{dyadic rationals in } (0,1) \}$  because these dyadic rationals map to  $\frac{1}{2}$  under some iterate of T, and at  $\frac{1}{2}$  the coding map is not well-defined. Note that

 $\Sigma' = \{0,1\}^{\mathbb{N}} \setminus \{\nu 10^{\infty}, \nu 01^{\infty} : \nu \text{ is a finite word in } \{0,1\}\}.$ 

## Isomorphic Systems

Example: Let  $(p_1, \ldots, p_N)$  be some probability vector with all  $p_i > 0$ . Then the one-sided  $(p_1, \ldots, p_N)$ -Bernoulli shift is isomorphic to  $([0, 1], \mathcal{B}, T, Leb)$  where  $T : [0, 1] \rightarrow [0, 1]$  has N linear branches of slope  $1/p_i$ .



The map  $T_p$  for  $p=\left(rac{1}{4},rac{2}{3},rac{1}{12}
ight)$ 

The one-sided  $(p_1, \ldots, p_N)$ -Bernoulli shift is also isomorphic to

 $([0, 1], \mathcal{B}, S, \nu)$  where  $S(x) = Nx \mod 1$ .

But here  $\nu$  is another measure that gives  $\left[\frac{i-1}{N}, \frac{i}{N}\right]$  the mass  $p_i$ , and  $\left[\frac{i-1}{N} + \frac{j-1}{N^2}, \frac{i-1}{N} + \frac{j}{N^2}\right]$  the mass  $p_i p_j$ , etc.

#### Ornstein Theorem

The entropy of the Bernoulli system is defined as:

$$h(p) := -\sum_{i=1}^{N} p_i \log p_i \qquad \text{Convention: } 0 \log 0 = 0.$$

It is preserved under isomorphism, so

Two isomorphic Bernoulli system have the same entopy.

Theorem of Ornstein: Two 2-sided Bernoulli systems are isomorphic if and only if they have the same entropy.

Exercise: The 2-sided  $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$  shift is isomorphic to the 2-sided  $(\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{2})$ -shift, but to no other 2-sided shift on  $\leq$  4 symbols.

Invertible systems cannot be isomorphic to non-invertible systems. So

 $(\{0,1\}^{\mathbb{Z}},\mathcal{B}:\sigma)$  and  $(\{0,1\}^{\mathbb{N}},\mathcal{B}:\sigma)$ 

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

are not isomorphic.

But there is a construction to make a non-invertible system invertible, namely by passing to the natural extension.

#### Natural Extensions

Definition: Let  $(X, \mathcal{B}, \mu, T)$  be a measure preserving dynamical system. A system  $(Y, \mathcal{C}, S, \nu)$  is a natural extension of  $(X, \mathcal{B}, \mu, T)$  if there are  $X' \in \mathcal{B}, Y' \in \mathcal{C}$  and  $\phi : Y' \to X'$  such that

• 
$$\mu(X') = 1, \ \nu(Y') = 1;$$

- $S: Y' \to Y'$  is invertible;
- $\phi: Y' \rightarrow X'$  is a measurable surjection;
- ▶  $\phi$  is measure preserving:  $u(\phi^{-1}(B)) = \mu(B)$  for all  $B \in \mathcal{B}$ ;

$$\blacktriangleright \phi \circ S = T \circ \phi.$$

Any two natural extensions can be shown to be isomorphic, so it makes sense to speak of the natural extension.

#### Natural Extensions

Sometimes natural extensions have explicit formulas. For example the baker map  $B: [0,1]^2 \rightarrow [0,1]^2$ ,

$$B(x,y) = \begin{cases} (2x,\frac{y}{2}) & \text{if } x < \frac{1}{2};\\ (2x-1,\frac{y+1}{2}) & \text{if } x \ge \frac{1}{2}. \end{cases}$$

ション ふゆ アメリア ショー シック

preserving two-dimensional Lebesgue measure is the natural extension of the doubling map via the factor map  $\phi(x, y) = x$ .



FIG. 1: The baker map propagates a pair of vertical rectangles onto a pair of horizontal rectangles. Inside each separate region the evolution is linear.

## Natural Extensions

There is also a general construction: Set

 $Y = \{(x_i)_{i>0} : T(x_{i+1}) = x_i \in X \text{ for all } i \ge 0\}$ 

with  $S((x_0, x_1, ...)) = (T(x_0), x_0, x_1, ...)$ . Then S is invertible (with the left shift  $\sigma = S^{-1}$ ) and

 $\nu(A_0,A_1,A_2,\dots) = \inf \mu(A_i) \quad \text{ for } (A_0,A_1,A_2\dots) \subset S,$ 

is S-invariant.

The factor map  $\phi(x_0, x_1, x_2, ...) := x_0$  satisfies  $T \circ \phi = \phi \circ S$ . Also  $\phi$  is measure preserving because, for each  $A \in \mathcal{B}$ ,

$$\phi^{-1}(A) = (A, T^{-1}(A), T^{-2}(A), T^{-3}(A), \dots)$$

and clearly  $\nu(A, T^{-1}(A), T^{-2}(A), T^{-3}(A), ...) = \mu(A)$  because  $\mu(T^{-i}(A)) = \mu(A)$  for every *i* by *T*-invariance of  $\mu$ . ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Definition: Let  $(X, \mathcal{B}, \mu, T)$  be a measure preserving dynamical system.

- 1. If T is invertible, then the system is called Bernoulli if it is isomorphic to a 2-sided Bernoulli shift.
- 2. If T is non-invertible, then the system is called one-sided Bernoulli if it is isomorphic to a 1-sided Bernoulli shift.
- 3. If T is non-invertible, then the system is called Bernoulli if its natural extension is isomorphic to a 2-sided Bernoulli shift.

ション ふゆ アメリア メリア しょうくの

### The Bernoulli Property

The third Bernoulli property is quite general, even though the isomorphism  $\phi$  may be very difficult to find explicitly. Thus, proving that a system is not Bernoulli can be hard.

Expanding circle maps  $T : \mathbb{S}^1 \to \mathbb{S}^1$  that satisfy the conditions of the Folklore Theorem are also Bernoulli, i.e., have a Bernoulli natural extension (proven by Ledrappier).

Being one-sided Bernoulli, on the other hand, is quite special. If T is piecewise  $C^2$  but not piecewise linear, then it has to be  $C^2$ -conjugate to a piecewise linear expanding map to be one-sided Bernoulli.

Bernoulli (of any of the above forms) implies mixing. So non-mixing systems (e.g. circle rotations) are not Bernoulli.