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Abstract

These are notes in the making for the course VO 250059: Ergodic Theory 1,
Spring Semester 2013-2014, University of Vienna

1 Notation

Throughout, (X, d) will be a metric space, possibly compact, and T : X → X will be
a (piecewise) continuous map. The combination (X,T ) defines dynamical systems by
means of iteration. The orbit of a point x ∈ X is the set

orb(x) = {x, T (x), T ◦ T (x), . . . , T ◦ · · · ◦ T︸ ︷︷ ︸
n times

(x) =: T n(x), · · · } = {T n(x) : n > 0},

and if T is invertible, then orb(x) = {T n(x) : n ∈ Z} where the negative iterates are
defined as T−n = (T inv)n. In other words, we consider n ∈ N (or n ∈ Z) as discrete
time, and T n(x) is the position the point x takes at time n.

Definition 1. We call x a fixed point if T (x) = x; periodic if there is n > 1 such
that T n(x) = x; recurrent if x ∈ orb(x).

In general chaotic dynamical systems most orbits are more complicated than periodic
(or quasi-periodic as the irrational rotation Rα discussed below). The behaviour of such
orbits is hard to predict. Ergodic Theory is meant to help in predicting the behaviour
of typical orbits, where typical means: almost all points x for some (invariant) measure
µ.

To define measures properly, we need a σ-algebra B of “measurable” subsets. σ-algebra
means that the collection B is closed under taking complements, countable unions and
countable intersections, and also that ∅, X ∈ B. Then a measure µ is a function
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µ : B → R+ that is countably subadditive: µ(∪iAi) 6
∑

i µ(A)i (with equality if the
sets Ai are pairwise disjoint).

Example: For a subset A ⊂ X, define

ν(A) = lim
n→∞

1

n

n−1∑
i=0

1A ◦ T ix,

for the indicator function 1A, assuming for the moment that this limit exists. We
call this the visit frequency of x to the set A. We can compute

lim
n→∞

1

n

n−1∑
i=0

1A ◦ T ix = lim
n→∞

1

n

(
n−1∑
i=0

1A ◦ T i+1x+ 1Ax− 1A(T nx)

)

= lim
n→∞

1

n

(
n−1∑
i=0

1T−1A ◦ T ix+ 1Ax− 1A(T nx)

)

= lim
n→∞

1

n

n−1∑
i=0

1T−1A ◦ T ix = ν(T−1(A))

That is, visit frequency measures, when well-defined, are invariant under the map.
This allows us to use invariant measure to make statistical predictions of what orbit do
“on average”.

Let B0 be the collection of subsets A ∈ B such that µ(A) = 0, that is: B0 are the null-
sets of µ. We say that an event happens almost surely (a.s.) or µ-almost everywhere
(µ-a.e.) if it is true for all x ∈ X \ A for some A ∈ B0.

A measure µ on (X,T,B) is called

• non-singular if A ∈ B0 implies T−1(A) ∈ B0.

• non-atomic if µ({x}) = 0 for every x ∈ X

• T -invariant if µ(T−1(A)) = µ(A) for all A ∈ B.

• finite if µ(X) < ∞. In this case we can always rescale µ so that µ(X) = 1, i.e.,
µ is a probability measure.

• σ-finite if there is a countable collection Xi such that X = ∪iXi and µ(Xi) 6 1
for all i. In principle, finite measures are also σ-finite, but we would like to reserve
the term σ-finite only for infinite measures (i.e., µ(X) =∞).

Example: Let T : R2 → R2 be defined by

T

(
x
y

)
= M

(
x
y

)
for matrix M =

(
2 1
1 1

)
.
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2 What are its invariant measures?

Note that T is a bijection of R2, with 0 as single fixed point. Therefore the Dirac
measure δ0 is T -invariant. However, also Lebesgue measure m is invariant because
(using coordinate transformation x = T−1(y))

m(T−1A) =

∫
T−1A

dm(x) =

∫
A

det(M−1)dm(y) =

∫
A

1

det(M)
dm(y) = m(A)

because det(M) = 1. This is a general fact: If T : Rn → Rn is a bijection with Jacobian
J = | det(DT )| = 1, then Lebesgue measure is preserved. However, Lebesgue measure
is not a probability measure (it is σ-finite). In the above case of the integer matrix with
determinant 1, T preserves (and is a bijection) on Z2. Therefore we can factor out over
Z2 and obtain a map on the two-torus T2 = R2/Z2:

T : T2 → T2(
x
y

)
7→M

(
x
y

)
(mod 1)

This map is called Arnol’d’s cat-map, and it preserves Lebesgue measure, which on T2

is a probability measure.

A special case of the above is:

Proposition 1. If T : U ⊂ Rn → U is an isometry (or piecewise isometric bijection),
then T preserves Lebesgue measure.

Let M(X,T ) denote the set of T -invariant Borel1 probability measures. In general,
there are always invariant measures.

Theorem 1 (Krylov-Bogol’ubov). If T : X → X is a continuous map on a nonempty
compact metric space X, then M(T ) 6= ∅.

Proof. Let ν be any probability measure and define Cesaro means:

νn(A) =
1

n

n−1∑
j=0

ν(T−jA),

these are all probability measures. The collection of probability measures on a compact
metric space is known to be compact in the weak∗ topology, i.e., there is limit probability
measure µ and a subsequence (ni)i∈N such that for every continuous function ψ : X → R:∫

X

ψ dνni
→
∫
ψ dµ as i→∞. (1)

1that is, sets in the σ-algebra of sets generated by the open subsets of X.
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On a metric space, we can, for any ε > 0 and closed set A, find a continuous function
ψA : X → [0, 1] such that ψA(x) = 1 if x ∈ A and µ(A) 6

∫
X
ψAdµ 6 µ(A) + ε and

similarly µ(T−1A) 6
∫
X
ψA ◦ T dµ 6 µ(T−1A) + ε. Now

|µ(T−1(A))− µ(A)| 6

∣∣∣∣∫ ψA ◦ T dµ−
∫
ψA dµ

∣∣∣∣+ 2ε

= lim
i→∞

∣∣∣∣∫ ψA ◦ T dνni
−
∫
ψA dνni

∣∣∣∣+ 2ε

= lim
i→∞

1

ni

∣∣∣∣∣
ni−1∑
j=0

(∫
ψA ◦ T−(j+1) dν −

∫
ψA ◦ T−j dν

)∣∣∣∣∣+ 2ε

6 lim
i→∞

1

ni

∣∣∣∣∫ ψA ◦ T−ni dν −
∫
ψA dν

∣∣∣∣+ 2ε

6 lim
i→∞

1

ni
2‖ψA‖∞ + 2ε = 2ε.

Since ε > 0 is arbitrary, and because the closed sets form a generator of the Borel sets,
we find that µ(T−1(A)) = µ(A) as required.

3 Ergodicity and unique ergodicity

Definition 2. A measure is called ergodic if T−1(A) = A (mod µ) for some A ∈ B
implies that µ(A) = 0 or µ(Ac) = 0.

Proposition 2. The following are equivalent:

(i) µ is ergodic;

(ii) If ψ ∈ L1(µ) is T -invariant, i.e., ψ ◦ T = ψ µ-a.e., then ψ is constant µ-a.e.

Proof. (i) ⇒ (ii): Let ψ : X → R be T -invariant µ-a.e., but not constant. Thus
there exists a ∈ R such that A := ψ−1((−∞, a]) and Ac = ψ−1((a,∞)) both have
positive measure. By T -invariance, T−1A = A (mod µ), and we have a contradiction
to ergodicity.
(ii) ⇒ (i): Let A be a set of positive measure such that T−1A = A. Let ψ = 1A be
its indicator function; it is T -invariant because A is T -invariant. By (ii), ψ is constant
µ-a.e., but as ψ(x) = 0 for x ∈ Ac, it follows that µ(Ac) = 0.

The rotation Rα : S1 → S1 is defined as Rα(x) = x+ α (mod 1).

Theorem 2 (Poincaré). If α ∈ Q, then every orbit is periodic.
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If α /∈ Q, then every orbit is dense in S1. In fact, for every interval J and every x ∈ S1,
the visit frequency

v(J) := lim
n→∞

1

n
#{0 6 i < n : Ri

α(x) ∈ J} = |J |.

Proof. If α = p
q
, then clearly

Rq
α(x) = x+ qα (mod 1) = x+ q

p

q
(mod 1) = x+ p (mod 1) = x.

Conversely, if Rq
α(x) = x, then x = x+ qα (mod 1), so qα = p for some integer p, and

α = p
q
∈ Q.

Therefore, if α /∈ Q, then x cannot be periodic, so its orbit is infinite. Let ε > 0. Since S1

is compact, there must be m < n such that 0 < δ := d(Rm
α (x), Rn

α(x)) < ε. Since Rα is

an isometry, |Rk(n−m)
α (x)−R(k+1)(n−m)

α (x)| = δ for every k ∈ Z, and {Rk(n−m)
α (x) : k ∈ Z}

is a collection of points such that every two neighbours are exactly δ apart. Since ε > δ
is arbitrary, this shows that orb(x) is dense, but we want to prove more.

Let J0
δ = [Rm

α (x), Rn
α(x)) and Jkδ = Rk

α(Jδ). Then for K = b1/δc, {Jkδ }Kk=0 is a cover

S1 of adjacent intervals, each of length δ, and R
j(n−m)
α is an isometry from J iδ to J i+jδ .

Therefore the visit frequencies

vk = lim inf
n

1

n
#{0 6 i < n : Ri

α(x) ∈ Jkδ }

are all the same for 0 6 k 6 K, and together they add up to at most 1+ 1
K

. This shows
for example that

1

K + 1
6 vk 6 vk := lim sup

n

1

n
#{0 6 i < n : Ri

α(x) ∈ Jkδ } 6
1

K
,

and these inequalities are independent of the point x. Now an arbitrary interval J
can be covered by b|J |/δc+ 2 such adjacent Jkδ , so

v(J) 6

(
|J |
δ

+ 2

)
1

K
6 (|J |(K + 1) + 2)

1

K
6 |J |+ 3

K
.

A similar computation gives v(J) > |J | − 3
K

. Now taking ε → 0 (hence δ → 0 and
K →∞), we find that the limit v(J) indeed exists, and is equal to |J |.

Definition 3. A transformation (X,T ) is called uniquely ergodic if there is exactly
one invariant probability measure.

The above proof shows that Lebesgue measure is the only invariant measure if α /∈ Q,
so (S1, Rα) is uniquely ergodic. However, there is a missing step in the logic, in that
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we didn’t show yet that Lebesgue measure is ergodic. This will be shown in Example 1
and also Theorem 6.

Questions: Does Rα preserve a σ-finite measure? Does Rα preserve a non-atomic
σ-finite measure?

Lemma 1. Let X be a compact space. A transformation (X,B, µ, T ) is uniquely ergodic
if and only if, for every continuous function, the Birkhoff averages 1

n

∑n−1
i=0 f ◦ T i(x)

converge uniformly to a constant function.

Remark 1. Every continuous map on a compact space has an invariant measure, as
we showed in Theorem 1. Theorem 6 later on shows that if there is only one invariant
measure, it has to be ergodic as well.

Proof. If µ and ν were two different ergodic measures, then we can find a continuous
function f : X → R such that

∫
fdµ 6=

∫
fdν. Using the Ergodic Theorem for both

measures (with their own typical points x and y), we see that

lim
n

1

n

n−1∑
k=0

f ◦ T k(x) =

∫
fdµ 6=

∫
fdν = lim

n

1

n

n−1∑
k=0

f ◦ T k(y),

so there is not even convergence to a constant function.

Conversely, we know by the Ergodic Theorem that limn
1
n

∑n−1
k=0 f ◦ T k(x) =

∫
fdµ

is constant µ-a.e. But if the convergence is not uniform, then there are sequences
(xi), (yi) ⊂ X and (mi), (ni) ⊂ N, such that limi

1
mi

∑mi−1
k=0 f ◦ T k(x) := A 6= B =:

limi
1
ni

∑ni−1
k=0 f◦T k(yi). Take functionals µi(g) = lim infi

1
mi

∑mi−1
k=0 g◦T k(x) and νi(g) =

lim infi
1
ni

∑ni−1
k=0 g◦T k(x). Both sequences have weak accumulation points µ and ν which

are easily shown to be T -invariant measures, see the proof of Theorem 1. But they are
not the same because µ(f) = A 6= B = ν(f).

4 The Ergodic Theorem

Theorem 2 is an instance of a very general fact observed in ergodic theory:

Space Average = Time Average (for typical points).

This is expressed in the

Theorem 3 (Birkhoff Ergodic Theorem). Let µ be a probability measure and ψ ∈ L1(µ).
Then the ergodic average

ψ(x) := lim
n→∞

1

n

n−1∑
i=0

ψ ◦ T i(x)
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exists µ-a.e. (everywhere if ψ is continuous), and ψ is T -invariant, i.e., ψ ◦ T = ψ
µ-a.e. If in addition µ is ergodic then

lim
n→∞

1

n

n−1∑
i=0

ψ ◦ T i(x) =

∫
X

ψ dµ µ-a.e. (2)

Remark 2. A point x ∈ X satisfying (2) is called typical for µ. To be precise, the set
of µ-typical points also depends on ψ, but for different functions ψ, ψ̃, the (µ, ψ)-typical
points and (µ, ψ̃)-typical points differ only on a null-set.

Corollary 1. Lebesgue measure is the only Rα-invariant probability measure.

Proof. Suppose Rα had two invariant measures, µ and ν. Then there must be an interval
J such that µ(J) 6= ν(J). Let ψ = 1J be the indicator function; it will belongs to L1(µ)
and L1(ν). Apply Birkhoff’s Ergodic Theorem for some µ-typical point x and ν-typical
point y. Since their visit frequencies to J are the same, we have

µ(J) =

∫
ψ dµ = lim

n

1

n
#{0 6 i < n : Rα(x) ∈ J}

= lim
n

1

n
#{0 6 i < n : Rα(y) ∈ J} =

∫
ψ dν = ν(J),

a contradiction to µ and ν being different.

5 Absolute continuity and invariant densities

Definition 4. A measure µ is called absolutely continuous w.r.t. the measure ν
(notation: µ� ν if ν(A) = 0 implies µ(A) = 0. If both µ� ν and ν � µ, then µ and
ν are called equivalent.

Proposition 3. If µ � ν are both T -invariant probability measures, with a common
σ-algebra B of measurable sets. If ν is ergodic, then µ = ν.

Proof. First we show that µ is ergodic. Indeed, otherwise there is a T -invariant set A
such that µ(A) > 0 and µ(Ac) > 0. By ergodicity of ν at least one of A or Ac must
have ν-measure 0, but this would contradict that µ� ν.

Now let A ∈ B and let Y ⊂ X be the set of ν-typical points. Then ν(Y c) = 0 and hence
µ(Y c) = 0. Applying Birkhoff’s Ergodic Theorem to µ and ν separately for ψ = 1A
and some µ-typical y ∈ Y , we get

µ(A) = lim
n

1

n

n−1∑
i=0

ψ ◦ T (y) = ν(A).

But A ∈ B was arbitrary, so µ = ν.

7



Theorem 4 (Radon-Nikodym). If µ is a probability measure and µ � ν then there
is a function h ∈ L1(ν) (called Radon-Nikodym derivative or density) such that
µ(A) =

∫
A
h(x) dν(x) for every measurable set A.

Sometimes we use the notation: h = dµ
dν

.

Proposition 4. Let T : U ⊂ Rn → U be (piecewise) differentiable, and µ is absolutely
continuous w.r.t. Lebesgue. Then µ is T -invariant if and only if its density h = dµ

dx

satisfies

h(x) =
∑

T (y)=x

h(y)

| detDT (y)|
(3)

for every x.

Proof. The T -invariance means that dµ(x) = dµ(T−1(x)), but we need to beware that
T−1 is multivalued. So it is more careful to split the space U into pieces Un such
that the restrictions Tn := T |Un are diffeomorphism (onto their images) and write
yn = T−1

n (x) = T−1(x) ∩ Un. Then we obtain (using the change of coordinates)

h(x) dx = dµ(x) = dµ(T−1(x)) =
∑
n

dµ ◦ T−1
n (x)

=
∑
n

h(yn)| det(DT−1
n )(x)|dyn =

∑
n

h(yn)

det |DT (yn)|
dyn,

and the statement follows.

Conversely, if (3) holds, then the above computation gives dµ(x) = dµ ◦ T−1(x), which
is the required invariance.

Example: If T : [0, 1] → [0, 1] is (countably) piecewise linear, and each branch T :
In → [0, 1] (on which T is affine) is onto, then T preserves Lebesgue measure. Indeed,
the intervals In have pairwise disjoint interiors, and their lengths add up to 1. If sn
is the slope of T : In → [0, 1], then sn = 1/|In|. Therefore

∑
n

1
DT (yn)

=
∑

n 1/sn =∑
n |In| = 1.

Example: The map T : R \ {0} → R, T (x) = x − 1
x

is called the Boole transfor-

mation. It is 2-to-1; the two preimages of x ∈ R are y± = 1
2
(x ±

√
x2 + 4). Clearly

T ′(x) = 1 + 1
x2

. A tedious computation shows that

1

|T ′(y−)|
+

1

|T ′(y+)|
= 1.
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Indeed, |T ′(y±)| = 1 + 2
x2+2±x

√
x2+4

, 1/|T ′(y±)| = x2+2±x
√
x2+4

x2+4±x
√
x2+4

, and

1

|T ′(y−)|
+

1

|T ′(y+)|
=

x2 + 2− x
√
x2 + 4

x2 + 4− x
√
x2 + 4

+
x2 + 2 + x

√
x2 + 4

x2 + 4 + x
√
x2 + 4

=
(x2 + 2− x

√
x2 + 4)(x2 + 4 + x

√
x2 + 4)

(x2 + 4)2 − x2(x2 + 4)

+
(x2 + 2 + x

√
x2 + 4)(x2 + 4− x

√
x2 + 4)

(x2 + 4)2 − x2(x2 + 4)

=
(x2 + 2)2 − x2(x2 + 4) + 2(x2 + 2)− 2x

√
x2 + 4

4(x2 + 4)
+

(x2 + 2)2 − x2(x2 + 4) + 2(x2 + 2) + 2x
√
x2 + 4

4(x2 + 4)

=
4(x2 + 2) + 8

4(x2 + 4)
= 1.

Therefore h(x) ≡ 1 is an invariant density, so Lebesgue measure is preserved.

Example: The Gauß map G : (0, 1] → [0, 1) is defined as G(x) = 1
x
− b 1

x
c. It has

an invariant density h(x) = 1
log 2

1
1+x

. Here 1
log 2

is just the normalising factor (so that∫ 1

0
h(x)dx = 1).

Let In = ( 1
n+1

, 1
n
] for n = 1, 2, 3, . . . be the domains of the branches of G, and for

x ∈ (0, 1), and yn := G−1(x) ∩ In = 1
x+n

. Also G′(yn) = − 1
y2n

. Therefore

∑
n>1

h(yn)

|G′(yn)|
=

1

log 2

∑
n>1

y2
n

1 + yn
=

1

log 2

∑
n>1

1
(x+n)2

1 + 1
x+n

=
1

log 2

∑
n>1

1

x+ n

1

x+ n+ 1

=
1

log 2

∑
n>1

1

x+ n
− 1

x+ n+ 1
telescoping series

=
1

log 2

1

x+ 1
= h(x).

Exercise 1. Show that for each integer n > 2, the interval map given by

Tn(x) =

{
nx if 0 6 x 6 1

n
,

1
x
− b 1

x
c if 1

n
< x 6 1,

has invariant density 1
log 2

1
1+x

.

Theorem 5. If T : S1 → S1 is a C2 expanding circle map, then it preserves a measure
µ equivalent to Lebesgue, and µ is ergodic.
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Expanding here means that there is λ > 1 such that |T ′(x)| > λ for all x ∈ S1. The
above theorem can be proved in more generality, but in the stated version it conveys
the ideas more clearly.

Proof. First some estimates on derivatives. Using the Mean Value Theorem twice, we
obtain

log
|T ′(x)|
|T ′(y)|

= log(1 +
|T ′(x)| − |T ′(y)|

|T ′(y)|
) 6
|T ′(x)| − |T ′(y)|

|T ′(y)|

=
|T ′′(ξ)| · |x− y|
|T ′(y)|

=
|T ′′(ξ)|
|T ′(y)|

|Tx− Ty|
λ

6 sup
ζ

|T ′(ζ)|
|T ′(y)|

|Tx− Ty|
λ

6 K|Tx− Ty|

for some constant K. The chain rule then gives:

log
|DT n(x)|
|DT n(y)|

=
n−1∑
i=0

log
|T ′(T ix)|
|T ′(T iy)|

6 K
n∑
i=1

|T i(x)− T i(y)|.

Since T is a continuous expanding map of the circle, it wraps the circle d times around
itself, and for each n, there are dn pairwise disjoint intervals Z such that T iZ → S1

is onto, with slope at least λi. If we take x, y above in one such Z, then |x − y| <
λ−n|T n(x)− T n(y)| and in fact |T i(x)− T i(y)| < λ−(n−i)|T n(x)− T n(y)|. Therefore we
obtain

log
|DT n(x)|
|DT n(y)|

= K
n∑
i=1

λ−(n−i)|T n(x)− T n(y)| 6 K

λ− 1
|T n(x)− T n(y)| 6 logK ′

for some K ′ ∈ (1,∞). This means that if A ⊂ Z (so T n : A → T n(A) is a bijection),
then

1

K ′
m(A)

m(Z)
6
m(T nA)

m(T nZ)
=
m(T nA)

m(S1)
6 K ′

m(A)

m(Z)
, (4)

where m is Lebesgue measure.

Now we construct the T -invariant measure µ. Take B ⊂ B arbitrary, and set µn(B) =
1
n

∑n−1
i=0 m(T−iB). Then by (4),

1

K ′
m(B) 6 µn(B) 6 K ′m(B).

We can take a weak∗ limit of the µn’s, call it µ, then

1

K ′
m(B) 6 µ(B) 6 K ′m(B),

and therefore µ and m are equivalent. The T -invariance of µ proven in the same way
as Theorem 1.
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Now for the ergodicity of µ, we need the Lebesgue Density Theorem, which says that
if m(A) > 0, then for m-a.e. x ∈ A, the limit

lim
ε→0

m(A ∩Bε(x))

m(Bε(x))
= 1,

where Bε(x) is the ε-balls around x. Points x with this property are called (Lebesgue)
density points of A. (In fact, the above also holds, if Bε(x) is just a one-sided ε-
neighbourhood of x.)

Assume by contradiction that µ is not ergodic. Take A ∈ B a T -invariant set such that
µ(A) > 0 and µ(Ac) > 0. By equivalence of µ and m, also δ := m(Ac) > 0. Let x
be a density point of A, and Zn be a neighbourhood of x such that T n : Z → S1 is a
bijection. As n → ∞, Z → {x}, and therefore we can choose n so large (hence Z so
small) that

m(A ∩ Z)

m(Z)
> 1− δ/K ′.

Therefore m(Ac∩Z)
m(Z)

< δ/K ′, and using (4),

m(T n(Ac ∩ Z))

m(T n(Z))
6 K ′

m(Ac ∩ Z)

m(Z)
< K ′δ/K ′ = δ.

Since T n : Ac∩Z → Ac is a bijection, and m(T nZ) = m(S1) = 1, we get δ = m(Ac) < δ,
a contraction. Therefore µ is ergodic.

6 The Choquet Simplex and the Ergodic Decompo-

sition

Throughout this section, let T : X → X a continuous transformation of a compact
metric space. Recall that M(X) is the collection of probability measures defined on
X; we saw in (1) that it is compact in the weak∗ topology. In general, X carries many
T -invariant measures. The set M(X,T ) = {µ ∈ M(X) : µ is T -invariant} is called
the Choquet simplex of T . Let Merg(X,T ) be the subset of M(X,T ) of ergodic
T -invariant measures.

ClearlyM(X,T ) = {µ} if (X,T ) is uniquely ergodic. The name “simplex” just reflects
the convexity ofM(X,T ): if µ1, µ2 ∈M(X,T ), then also αµ1 + (1− α)µ2 ∈M(X,T )
for every α ∈ [0, 1].

Lemma 2. The Choquet simplex M(X,T ) is a compact subset of M(X) w.r.t. weak∗

topology.
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Proof. Suppose {µn} ⊂ M(X,T ), then by the compactness of M(X), see (1), there is
µ ∈M(X) and a subsequence (ni)i such that for every continuous function f : X → R
such that

∫
fdµni

→
∫
fdµ as i → ∞. It remains to show that µ is T -invariant, but

this simply follows from continuity of f ◦ T and∫
f ◦ T dµ = lim

i

∫
f ◦ T dµni

= lim
i

∫
f dµni

=

∫
f dµ.

Theorem 6. The ergodic measures are exactly the extremal points of the Choquet sim-
plex.

Proof. First assume that µ is not ergodic. Hence there is a T -invariant set A such that
0 < µ(A) < 1. Define

µ1(B) =
µ(B ∩ A)

µ(A)
and µ2(B) =

µ(B \ A)

µ(X \ A)
.

Then µ = αµ1 + (1− α)µ2 for α = µ(A) ∈ (0, 1) so µ is not an extremal point.

Suppose now that µ is ergodic but that µ = αµ1 + (1 − α)µ2 for some α ∈ (0, 1). We
need to show that µ1 = µ2 = µ. From the definition, it is clear that µ1 � µ, so a
Radon-Nikodym derivative dµ1

dµ
exists in L1(µ). Let A− = {x ∈ X : dµ1

dµ
< 1}. Then∫

A−∩T−1A−

dµ1

dµ
dµ +

∫
A−\T−1A−

dµ1

dµ
dµ = µ1(A−)

= µ1(T−1A−) =

∫
T−1A−∩A−

dµ1

dµ
dµ+

∫
T−1A−\A−

dµ1

dµ
dµ.

Canceling the term
∫
A−∩T−1A−

dµ1
dµ

dµ gives∫
A−\T−1A−

dµ1

dµ
dµ =

∫
T−1A−\A−

dµ1

dµ
dµ. (5)

But also µ(T−1A− \A−) = µ(T−1A−)− µ(T−1A− ∩A−) = µ(A− \ T−1A−). Therefore,
in (5), both integrations are over sets of the same measure, but in the left-hand side,
the integrand < 1 while in the right-hand side, the integrand > 1. Therefore µ(T−1A−\
A−) = µ(A− \ T−1A−) = 0, and hence A− is T -invariant. By assumed ergodicity of µ,
µ(A−) = 0 or 1. In the latter case,

1 = µ1(X) =

∫
X

dµ1

dµ
dµ =

∫
A−

dµ1

dµ
dµ < µ(A−) = 1,

a contradiction. Therefore µ(A−) = 0. But then we can repeat the argument for
A+ = {x ∈ X : dµ1

dµ
> 1} and find that µ(A+) = 0 as well. Therefore dµ1

dµ
= 1 µ-a.e. and

hence µ1 = µ. But then also µ2 = µ, which finishes the proof.
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The following fundamental theorem implies that for checking the properties of any
measure µ ∈M(X,T ), it suffices to verify the properties for ergodic measures:

Theorem 7 (Ergodic Decomposition). For every µ ∈ M(X,T ), there is a measure ν
on the spaces of ergodic measures such that ν(Merg(X,T )) = 1 and

µ(B) =

∫
Merg(X,T )

m(B) dν(m)

for all Borel sets B.

7 Poincaré Recurrence

Theorem 8 (Poincaré’s Recurrence Theorem). If (X,T, µ) is a measure preserving
system with µ(X) = 1, then for every measurable set U ⊂ X of positive measure, µ-a.e.
x ∈ U returns to U , i.e., there is n = n(x) such that T n(x) ∈ U .

Proof of Theorem 8. Let U be an arbitrary measurable set of positive measure. As µ
is invariant, µ(T−i(U)) = µ(U) > 0 for all i > 0. On the other hand, 1 = µ(X) >
µ(∪iT−i(U)), so there must be overlap in the backward iterates of U , i.e., there are
0 6 i < j such that µ(T−i(U)∩T−j(U)) > 0. Take the j-th iterate and find µ(T j−i(U)∩
U) > µ(T−i(U) ∩ T−j(U)) > 0. This means that a positive measure part of the set U
returns to itself after n := j − i iterates.

For the part U ′ of U that didn’t return after n steps, assuming U ′ has positive measure,
we repeat the argument. That is, there is n′ such that µ(T n

′
(U ′) ∩ U ′) > 0 and then

also µ(T n
′
(U ′) ∩ U) > 0.

Repeating this argument, we can exhaust the set U up to a set of measure zero, and
this proves the theorem.

Definition 5. A system (X,T,B, µ) is called conservative if for every set A ∈ B with
µ(A) > 0, there is n > 1 such that µ(T n(A) ∩ A) > 0. The system is called dissipative
otherwise, and it is called totally dissipative if µ(T n(A) ∩ A) = 0 for very set A ∈ B.

We call the transformation T recurrent w.r.t. µ if B \ ∪i∈NT−i(B) has zero measure
for every B ∈ B. In fact, this is equivalent to µ being conservative.

The Poincaré Recurrence Theorem thus states that probability measure preserving sys-
tems are conservative.

Lemma 3 (Kac Lemma). Let (X,T ) preserve an ergodic measure µ. Take Y ⊂ X
measurable such that 0 < µ(Y ) 6 1, and let τ : Y → N be the first return time to Y .
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Then ∫
τdµ =

∑
k>1

kµ(Yk) =

{
1 if µ is a probability measure ,

∞ if µ is a conservative σ-finite measure.

for Yk := {y ∈ Y : τ(y) = k}.

Proof. Build a tower over Y by defining levels L0 = Y , L1 = T (Y ) \ Y and recursively
Lj+1 = T (Lj) \ Y . Then Lj = {T j(y) : y ∈ Y, T k(x) /∈ Y for 0 < k < j}. In particular,
all the Lj are disjoint and T (Lj) ⊂ Lj+1 ∪ Y .

L0
Y4 Y3 Y2 Y1

L1

L2

L3

L4

Figure 1: The tower consisting of levels Lj, j > 0.

We claim that B := ∪j>0Lj is T -invariant (up to measure zero). Clearly T−1(Lj) ⊂ Lj−1

for j > 1. Hence, we only need to show that T−1(Y ) ⊂ B (mod µ). Set A := T−1(Y ) \
B. We consider the two cases:

• µ(X) = 1: if x ∈ A, then T−j(x) /∈ Y for all j > 0, because if j > 0 were the
minimal value such that T j(z) = x for some z ∈ Y , then x ∈ Lj.
The sets T−j(A), j > 0, are in fact pairwise disjoint because if x ∈ T−j(A) ∩
T−k(A) for some minimal 0 6 j < k, then T j−k(A) ⊂ L2k−j−1, contradicting the
previous paragraph.

But this means that if µ(A) > 0, then not only µ(T−j(A)) = µ(A) > 0, but
by disjointness, µ(∪jT−j(A) =

∑
j µ(T−j(A)) = ∞, contradicting that µ is a

probability measure.

This proves that µ(A) = 0, so T−1(B) = B (mod µ) and by ergodicity, µ(B) = 1.

• µ(X) = ∞ and µ is conservative: Note that T k(A) ∩ A = ∅ for all k > 1.
Therefore, if µ(A) > 0, we have a contradiction to conservativity.
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The sets Yk are clearly pairwise disjoint. Since τ(y) < ∞ for µ-a.e. y ∈ Y , ∪kYk = Y
(mod µ). Furthermore, T j(Yk) are pairwise disjoint subsets of Lj for j < k and Lj =
∪k>jT j(Yk) (mod µ). Finally, T−1(T j(Yk) ∩ Lj) = T j−1(Yk) ∩ Lj−1 for 1 6 j < k. By
T -invariance,

µ(T j(Yk) ∩ Lj) = µ(T j−1(Yk) ∩ Lj−1) = · · · = µ(T (Yk) ∩ L1) = µ(Yk)

for 0 6 j < k.

Therefore (swapping the order of summation in the second line)

µ(X) = µ(B) =
∑
j>0

µ(Lj) =
∑
j>0

∑
k>j

µ(T j(Yk) ∩ Lj)

=
∑
k>1

∑
06j<k

µ(T j(Yk) ∩ Lj)

=
∑
k>1

∑
06j<k

µ(Yk) =
∑
k>1

kµ(Yk),

as required.

8 The Koopman operator

Given a probability measure preserving dynamical system (X,B, µ, T ), we can take the
space of complex-valued square-integrable observables L2(µ). This is a Hilbert space,
equipped with inner product 〈f, g〉 =

∫
X
f(x) · g(x) dµ.

The Koopman operator UT : L2(µ)→ L2(µ) is defined as UTf = f ◦T . By T -invariance
of µ, it is a unitary operator. Indeed

〈UTf, UTg〉 =

∫
X

f ◦ T (x) · g ◦ T (x) dµ =

∫
X

(f · g) ◦ T (x) dµ =

∫
X

f · g dµ = 〈f, g〉,

and therefore U∗TUT = UTU
∗
T = I. This has several consequences, common to all unitary

operators. First of all, the spectrum σ(UT ) of UT is a closed subset of the unit circle.

Secondly, we can give a (continuous) decomposition of UT in orthogonal projections,
called spectral decomposition. For a fixed eigenfunction ψ (with eigenvalue λ ∈ S1,
we let Πλ : L2(µ) → L2(µ) be the orthogonal projection onto the span of ψ. More
generally, if S ⊂ σ(UT ), we define ΠS as the orthogonal projection on the largest closed
subspace V such that UT |V has spectrum contained in S. As any orthogonal projection,
we have the properties:

• Π2
S = ΠS (ΠS is idempotent);
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• Π∗S = ΠS (ΠS is self-adjoint);

• ΠSΠS′ = 0 if S ∩ S ′ = ∅;

• The kernel N (ΠS) equals the orthogonal complement, V ⊥, of V .

Theorem 9 (Spectral Decomposition of Unitary Operators). There is a measure νT
on S1 such that

UT =

∫
σ(UT )

λΠλdνT (λ),

and νT (λ) 6= 0 if and only if λ is an eigenvalue of UT . Using the above properties of
orthogonal projections, we also get

Un
T =

∫
σ(UT )

λnΠλdνT (λ).

9 Bernoulli shifts

Let (Σ, σ, µ) be a Bernoulli shift, say with alphabet A = {1, 2, . . . , N}. Here Σ = AZ

(two-sided) or Σ = AN∪{0} (one-sided), and µ is a stationary product measure with
probability vector (p1, . . . , pN). Write

Z[k+1,k+N ](a1 . . . aN) = {x ∈ Σ : xk+1 . . . xk+N = a1 . . . aN}

for the cylinder set of length N . If C = Z[k+1,k+R] and C ′ = Z[l+1,l+S] are two cylinders
fixing coordinates on disjoint integer intervals (i.e., [k + 1, k +R] ∩ [l + 1, l + S] = ∅),
then clearly µ(C ∩ C ′) = µ(C)µ(C ′). This just reflects the independence of disjoint
events in a sequence of Bernoulli trials.

Definition 6. Two measure preserving dynamical systems (X,B, T, µ) and (Y, C, S, ν)
are called isomorphic if there are X ′ ∈ B, Y ′ ∈ C and φ : Y ′ → X ′ such that

• µ(X ′) = 1, ν(Y ′) = 1;

• φ : Y ′ → X ′ is a bi-measurable bijection;

• φ is measure preserving: ν(φ−1(B)) = µ(B) for all B ∈ B.

• φ ◦ S = T ◦ φ.

Clearly invertible systems cannot be isomorphic to non-invertible systems. But there
is a construction to make a non-invertible system invertible, namely by passing to the
natural extension.
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Definition 7. Let (X,B, µ, T ) be a measure preserving dynamical system. A system
(Y, C, S, ν) is a natural extension of (X,B, µ, T ) if there are X ′ ∈ B, Y ′ ∈ C and
φ : Y ′ → X ′ such that

• µ(X ′) = 1, ν(Y ′) = 1;

• S : Y ′ → Y ′ is invertible;

• φ : Y ′ → X ′ is a measurable surjection;

• φ is measure preserving: ν(φ−1(B)) = µ(B) for all B ∈ B;

• φ ◦ S = T ◦ φ.

Any two natural extensions can be shown to be isomorphic, so it makes sense to speak
of the natural extension. Sometimes natural extensions have explicit formulas (such
as the baker transformation being the natural extension of the angle doubling map).
There is also a general construction: Set

Y = {(xi)i>0 : T (xi+1) = xi ∈ X for all i > 0}

with S(x0, x1, . . . ) = T (x0), x0, x1, . . . . Then S is invertible (with the left shift σ = S−1)
and

ν(A0, A1, A2, . . . ) = inf
i
µ(Ai) for (A0, A1, A2 . . . ) ⊂ S,

is S-invariant. Now defining φ(x0, x1, x2, . . . ) := x0 makes the diagram commute: T ◦
φ = φ ◦ S. Also φ is measure preserving because, for each A ∈ B,

φ−1(A) = (A, T−1(A), T−2(A), T−3(A), . . . )

and clearly ν(A, T−1(A), T−2(A), T−3(A), . . . ) = µ(A) because µ(T−i(A)) = µ(A) for
every i by T -invariance of µ.

Definition 8. Let (X,B, µ, T ) be a measure preserving dynamical system.

• If T is invertible, then the system is called Bernoulli if it is isomorphic to a
Bernoulli shift.

• If T is non-invertible, then the system is called one-sided Bernoulli if it is
isomorphic to a one-sided Bernoulli shift.

• If T is non-invertible, then the system is called Bernoulli if its natural extension
is isomorphic to a one-sided Bernoulli shift.
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The Bernoulli property is quite general, even though the isomorphism φ may be very
difficult to find explicitly. Expanding circle maps that satisfy the conditions of The-
orem 5 are also Bernoulli, i.e., have a Bernoulli natural extension, see [11]. Being
one-sided Bernoulli, on the other hand quite, is special. If T : [0, 1] → [0, 1] has
N linear surjective branches Ii, i = 1, . . . , N , then Lebesgue measure m is invariant,
and ([0, 1],B,m, T ) is isomorphic to the one-sided Bernoulli system with probability
vector (|I1|, . . . , |IN |). If T is piecewise C2 but not piecewise linear, then it has to be
C2-conjugate to a piecewise linear expanding map to be one-sided Bernoulli, see [6].

10 Mixing and weak mixing

Whereas Bernoulli trials are totally independent, mixing refers to an asymptotic in-
dependence:

Definition 9. A probability measure preserving dynamical systems (X,B, µ, T ) is mix-
ing (or strong mixing) if

µ(T−n(A) ∩B)→ µ(A)µ(B) as n→∞ (6)

for every A,B ∈ B.

Proposition 5. A probability preserving dynamical systems (X,B, T, µ) is mixing if
and only if ∫

X

f ◦ T n(x) · g(x) dµ→
∫
X

f(x) dµ ·
∫
X

g(x) dµ as n→∞ (7)

for all f, g ∈ L2(µ), or written in the notation of the Koopman operator UTf = f ◦ T
and inner product 〈f, g〉 =

∫
X
f(x) · g(x) dµ:

〈Un
T f, g〉 → 〈f, 1〉〈1, g〉 as n→∞. (8)

Proof. The “if”-direction follows by taking indicator functions f = 1A and g = 1B. For
the “only if”-direction, general f, g ∈ L2(µ) can be approximated by linear combinations
of indicator functions.

Definition 10. A probability measure preserving dynamical systems (X,B, µ, T ) is
weak mixing if in average

1

n

n−1∑
i=0

|µ(T−i(A) ∩B)− µ(A)µ(B)| → 0 as n→∞ (9)

for every A,B ∈ B.
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We can express ergodicity in analogy of (6) and (9):

Lemma 4. A probability preserving dynamical systems (X,B, T, µ) is ergodic if and
only if

1

n

n−1∑
i=0

µ(T−i(A) ∩B)− µ(A)µ(B)→ 0 as n→∞,

for all A,B ∈ B. (Compared to (9), note the absence of absolute value bars.)

Proof. Assume that T is ergodic, so by Birkhoff’s Ergodic Theorem 1
n

∑n−1
i=0 1A◦T i(x)→

µ(A) for µ-a.e. x. Multiplying by 1B gives

1

n

n−1∑
i=0

1A ◦ T i(x)1B(x)→ µ(A)1B(x) µ-a.e.

Integrating over x (using the Dominated Convergence Theorem to swap limit and in-
tegral), gives limn

1
n

∑n−1
i=0

∫
X

1A ◦ T i(x)1B(x) dµ = µ(A)µ(B).

Conversely, assume that A = T−1A and take B = A. Then we obtain µ(A) =
1
n

∑n−1
i=0 µ(T−i(A))→ µ(A)2, hence µ(A) ∈ {0, 1}.

Theorem 10. We have the implications:

Bernoulli ⇒ mixing ⇒ weak mixing ⇒ ergodic ⇒ recurrent.

None of the reverse implications holds in generality.

Proof. Bernoulli⇒ mixing holds for any pair of cylinder sets C, C ′ because µ(σ−n(C)∩
C) = µ(C)µ(C ′) for n sufficiently large. The property carries over to all measurable
sets by the Kolmogorov Extension Theorem.

Mixing ⇒ weak mixing is immediate from the definition.

Weak mixing ⇒ ergodic: Let A = T−1(A) be a measurable T -invariant set. Then by
weak mixing µ(A) = 1

n

∑n−1
i=0 µ(T−i(A) ∩ A) → µ(A)µ(A) = µ(A2). This means that

µ(A) = 0 or 1.

Ergodic ⇒ recurrent. If B ∈ B has positive measure, then A := ∪i∈NT−i(B) is T -
invariant up to a set of measure 0, see the Poincaré Recurrence Theorem. By ergodicity,
µ(A) = 1, and this is the definition of recurrence, see Definition 5.

We say that a subset E ⊂ N∪{0} has density zero if limn
1
n
#(E ∩{0, . . . , n− 1}) = 0.

Lemma 5. Let (ai)i>0 be a bounded non-negative sequence of real numbers. Then
limn

1
n

∑n−1
i=0 ai = 0 if and only if there is a sequence E of zero density in N ∪ {0} such

that limE 63n→∞ an = 0.
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Proof. ⇐: Assume that limE 63n→∞ an = 0 and for ε > 0, take N such that an < ε for
all E 63 n > N . Also let A = sup an. Then

0 6
1

n

n−1∑
i=0

ai =
1

n

n−1∑
E 63i=0

ai +
1

n

n−1∑
E3i=0

ai

6
NA+ (n−N)ε

n
+ A

1

n
#(E ∩ {0, . . . , n− 1})→ ε,

as n→∞. Since ε > 0 is arbitrary, limn
1
n

∑n−1
i=0 ai = 0.

⇒: Let Em = {n : an > 1
m
}. Then clearly E1 ⊂ E2 ⊂ E3 ⊂ . . . and each Em has

density 0 because

0 = m · lim
n

1

n

n−1∑
i=0

ai > lim
n

1

n

n−1∑
i=0

1Em(i) = lim
n

1

n
#(Em ∩ {0, . . . n− 1}).

Now take 0 = N0 < N1 < N2 < . . . such that 1
n
#(Em ∩ {0, . . . , n − 1}) < 1

m
for every

n > Nm−1. Let E = ∪m (Em ∩ {Nm−1, . . . , Nm − 1}).

Then, taking m = m(n) maximal such that Nm−1 < n,

1

n
# (E ∩ {0, . . . , n− 1})

6
1

n
#(Em−1 ∩ {0, . . . , Nm−1 − 1}) +

1

n
#(Em ∩ {Nm−1, . . . , n− 1})

6
1

Nm−1

#(Em−1 ∩ {0, . . . , Nm−1 − 1}) +
1

n
#(Em ∩ {0, . . . , n− 1})

6
1

m− 1
+

1

m
→ 0

as n→∞.

Corollary 2. For a non-negative sequence (an)n>0 of real numbers, limn
1
n

∑n−1
i=0 ai = 0

if and only if limn
1
n

∑n−1
i=0 a

2
i = 0.

Proof. By the previous lemma, limn
1
n

∑n−1
i=0 ai = 0 if and only if limE 63n→∞ an = 0 for

a set E of zero density. But the latter is clearly equivalent to limE 63n→∞ a
2
n = 0 for the

same set E. Applying the lemma again, we have limn
1
n

∑n−1
i=0 a

2
i = 0.

Example 1. Let Rα : S1 → S1 be an irrational circle rotation; it preserves Lebesgue
measure. We claim that Rα is not mixing or weak mixing, but it is ergodic. To see
why Rα is not mixing, take an interval A of length 1

4
. There are infinitely many n

such that R−nα (A) ∩ A = ∅, so lim infn µ(R−n(A) ∩ A) = 0 6= (1
4
)2. However, Rα has

a non-constant eigenfunction ψ : S1 → C defined as ψ(x) = e2πix because ψ ◦ Rα(x) =
e2πi(x+α) = e2πiαψ(x). Therefore Rα is not weak mixing, see Theorem 11 below. To
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prove ergodicity, we show that every T -invariant function ψ ∈ L2(m) must be constant.
Indeed, write ψ(x) =

∑
n∈Z ane

2πinx as a Fourier series. The T -invariance implies that
ane

2πiα = an for all n ∈ Z. Since α /∈ Q, this means that an = 0 for all n 6= 0, so
ψ(x) ≡ a0 is indeed constant.

Theorem 11. Let (X,B, µ, T ) be a probability measure preserving dynamical system.
Then the following are equivalent:

1. (X,B, µ, T ) is weak mixing;

2. limn
1
n

∑n−1
i=0 |〈f ◦ T i, g〉 − 〈f, 1〉〈1, g〉| = 0 for all L2(µ) functions f, g;

3. limE 63n→∞ µ(T−nA ∩ B) = µ(A)µ(B) for all A,B ∈ B and a subset E of zero
density;

4. T × T is weak mixing;

5. T × S is ergodic on (X, Y ) for every ergodic system (Y, C, ν, S);

6. T × T is ergodic;

7. The Koopman operator UT has no measurable eigenfunctions other than constants.

Proof. 2. ⇒ 1. Take f = 1A, g = 1B.

1. ⇔ 3. Use Lemma 5 for ai = |µ(T−i(A) ∩B)− µ(A)µ(B)|.
3. ⇒ 4. For every A,B,C,D ∈ B, there are subsets E1 and E2 of N of zero density
such that

lim
E1 63n→∞

µ(T−n(A) ∩B)− µ(A)µ(B)| = lim
E2 63n→∞

µ(T−n(C) ∩D)− µ(C)µ(D)| = 0.

The union E = E1 ∪ E2 still has density 0, and

0 6 lim
E 63n→∞

| µ× µ ((T × T )−n(A× C) ∩ (B ×D))− µ× µ(A×B) · µ× µ(C ×D)|

= lim
E 63n→∞

|µ(T−n(A) ∩B) · µ(T−n(C) ∩D)− µ(A)µ(B)µ(C)µ(D)|

6 lim
E 63n→∞

µ(T−n(A) ∩B) · |µ(T−n(C) ∩D)− µ(C)µ(D)|

+ lim
E 63n→∞

µ(C)µ(D) · |µ(T−n(A) ∩B)− µ(A)µ(B)| = 0.

4. ⇒ 5. If T ×T is weakly mixing, then so is T itself. Suppose (Y, C, ν, S) is an ergodic
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system, then, for A,B ∈ B and C,D ∈ C we have

1

n

n−1∑
i=0

µ (T−i(A) ∩B)ν(S−i(C) ∩D)

=
1

n

n−1∑
i=0

µ(A)µ(B)ν(S−i(C) ∩D)

+
1

n

n−1∑
i=0

(µ(T−i(A) ∩B)− µ(A)µ(B))ν(S−i(C) ∩D).

By ergodicity of S (see Lemma 4), 1
n

∑n−1
i=0 ν(S−i(C)∩D)→ µ(C)µ(D), so the first term

in the above expression tends to µ(A)µ(B)µ(C)µ(D). The second term is majorised by
1
n

∑n−1
i=0 |µ(T−i(A) ∩B)− µ(A)µ(B)|, which tends to 0 because T is weak mixing.

5. ⇒ 6. By assumption T × S is ergodic for the trivial map S : {0} → {0}. Therefore
T itself is ergodic, and hence T × T is ergodic.

6. ⇒ 7. Suppose f is an eigenfunction with eigenvalue λ. The Koopman operator is
an isometry (by T -invariance of the measure), so 〈f, f〉 = 〈UTf, UTf〉 = 〈λf, λf〉 =
|λ|2〈f, f〉, and |λ| = 1. Write ψ(x, y) = f(x)f(y). Then

ψ ◦ (T × T )(x, y) = ψ(Tx, Ty) = f(Tx)f(Ty) = |λ|2ψ(x, y) = ψ(x, y),

so ψ is T × T -invariant. By ergodicity of T × T , ψ must be constant µ × µ-a.e. But
then also f must be constant µ-a.e.

7. ⇒ 2. This is the hardest step; it relies on spectral theory of unitary operators. If
ψ is an eigenfunction of UT , then by assumption, ψ is constant, so the eigenvalue is
1. Let V = span (ψ) and Π1 is the orthogonal projection onto V ; clearly V ⊥ = {f ∈
L2(µ) :

∫
f dµ = 0}. One can derive that the spectral measure νT cannot have any

atoms, except possibly at Π1.

Now take f ∈ V ⊥ and g ∈ L2(µ) arbitrary. Using the Spectral Theorem 9, we have

1

n

n−1∑
i=0

|〈U i
Tf, g〉|2 =

1

n

n−1∑
i=0

∣∣∣∣∫
σ(UT )

λi〈Πλf, g〉 dνT (λ)

∣∣∣∣2
=

1

n

n−1∑
i=0

∫
σ(UT )

λi〈Πλf, g〉 dνT (λ)

∫
σ(UT )

κi〈Πκf, g〉 dνT (κ)

=
1

n

n−1∑
i=0

∫ ∫
σ(UT )×σ(UT )

λiκi 〈Πλf, g〉〈Πκf, g〉 dνT (λ) dνT (κ)

=

∫ ∫
σ(UT )×σ(UT )

1

n

n−1∑
i=0

λiκi 〈Πλf, g〉〈Πκf, g〉 dνT (λ) dνT (κ)

=

∫ ∫
σ(UT )×σ(UT )

1

n

1− (λκ)n

1− λκ
〈Πλf, g〉〈Πκf, g〉 dνT (λ) dνT (κ),
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where in the final line we used that the diagonal {λ = κ} has νT × νT -measure zero,
because ν is non-atomic (except possibly the atom Π1 at λ = 1, but then Π1f = 0).

Now 1
n

1−(λκ)n

1−λκ is bounded (use l’Hôpital’s rule) and tends to 0 for λ 6= κ, so by the
Bounded Convergence Theorem, we have

lim
n

1

n

n−1∑
i=0

|〈U i
Tf, g〉|2 = 0.

Using Corollary 2, we derive that also limn
1
n

∑n−1
i=0 |〈U i

Tf, g〉| = 0 (i.e., without the
square). Finally, if f ∈ L2(µ) is arbitrary, then f − 〈f, 1〉 ∈ V ⊥. We find

0 = lim
n

1

n

n−1∑
i=0

|〈U i
T (f − 〈f, 1〉), g〉|

= lim
n

1

n

n−1∑
i=0

|〈U i
Tf − 〈f, 1〉, g〉|

= lim
n

1

n

n−1∑
i=0

|〈U i
Tf, g〉 − 〈f, 1〉〈1, g〉|

and so property 2. is verified.

11 Cutting and Stacking

The purpose of cutting and stacking is to create invertible maps of the interval
that preserve Lebesgue measure, and have further good properties such as “unique
ergodicity”, “not weak mixing”, or rather the opposite “weak mixing but not strong
mixing”. Famous examples due to Kakutani and to Chacon achieve this, and we will
present them here.

The procedure is as follows:

• Cut the unit interval into several intervals, say A,B,C, . . . (these will become the
stacks), and a remaining interval S (called the spacer).

• Cut each interval into parts (a fix finite number for each stack), and also cut of
some intervals from the spacer.

• Pile the parts of the stacks and the cut-off pieces of the spacer on top of the
stacks, according to some fixed rule. By choosing the parts in the previous step
of the correct size, we can ensure that all intervals in each separate stack have the
same size; they can therefore be neatly aligned vertically.
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• Map every point on a level of a stack directly to the level above. Then every point
has a well-defined image (except for points at the top levels in a stack and points
in the remaining spacer), and also a well-defined preimage (except for points at
a bottom level in a stack and points in the remaining spacer). Where defined,
Lebesgue measure is preserved.

• Repeat the process, now slicing vertically through whole stacks and stacking whole
stacks on top of other stacks, possibly putting some intervals of the spacer in
between. Wherever the map was defined at a previous step, the definition remains
the same.

• Keep repeating. Eventually, the measure of points where the map is not defined
tends to zero. In the end, assuming that the spacer will be entirely spent, there
will only be one point for each stack without image and one points in each stack
without preimage. We can take an arbitrary bijection between them to define the
map everywhere.

• The resulting transformation of the interval is invertible and preserves Lebesgue
measure. The number of stacks used is called the rank of the transformation.

Example 2 (Kakutani). Take one stack, so start with A = [0, 1]. Cut it in half and
put the right half on top of the left half. Repeat this procedure. Let us call the result
limit map T : [0, 1]→ [0, 1] the Kakutani map. The resulting formula is:

T (x) =



x+ 1
2

if x ∈ [0, 1
2
);

x− 1
4

if x ∈ [1
2
, 3

4
);

x− 1
2
− 1

8
if x ∈ [3

4
, 7

8
);

...
...

x− (1− 1
2n
− 1

2n+1 ) if x ∈ [1− 1
2n
, 1− 1

2n+1 ), n > 1,

see Figure 2. If x ∈ [0, 1) is written in base 2, i.e.,

x = 0.b1b2b3 . . . bi ∈ {0, 1}, x =
∑
i

bi2
−i,

then T acts as the adding machine: add 0.1 with carry. That is, if k = min{i > 1 :
bi = 0}, then T (0.b1b2b3 . . . ) = 0.001bk+1bk+2 . . . . If k = ∞, so x = 0.111111 . . . , then
T (x) = 0.0000 . . . .

Proposition 6. The Kakutani map T : [0, 1]→ [0, 1] of cutting and stacking is uniquely
ergodic, but not weakly mixing.

Proof. The map T permutes the dyadic intervals cyclically. For example T ((0, 1
2
)) =

(1
2
, 1)) and T ((1

2
, 1)) = (0, 1

2
). Therefore, f(x) = 1(0, 1

2
) − 1( 1

2
,1) is an eigenfunction for
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Figure 2: The Kakutani map T : [0, 1]→ [0, 1] resulting from cutting and stacking.

eigenvalue −1. Using four intervals, we can construct (complex-valued) eigenfunctions
for eigenvalues ±i. In generality, all the numbers e2πim/2n , m,n ∈ N are eigenvalues,
and the corresponding eigenfunctions span L2(m). This property is called pure point
spectrum. In any case, T is not weakly mixing.

Now for unique ergodicity, we use the fact again that T permutes the dyadic intervals
cyclically. Call these intervals Dj,N = [ j

2N
, j+1

2N
) for N ∈ N and j = {0, 1, . . . , 2N − 1},

and if x ∈ [0, 1), we indicate the dyadic interval containing it by Dj,N(x). Let{
fN(x) = supt∈Dj,N (x) f(t),

f
N

(x) = inft∈Dj,N (x) f(t),

be step-functions that we can use to compute the Riemann integral of f . That is:∫
fN(s)ds :=

1

2N

2N−1∑
j=0

sup
t∈Dj,N

f(t) >
∫
f(s)ds >

∫
f
N

(s)ds :=
1

2N

2N−1∑
j=0

inf
t∈Dj,N

f(t).

For continuous (or more generally Riemann integrable) functions,
∫
fNdx−

∫
f
N
dx→ 0

as N →∞, and their common limit is called the Riemann integral of f .

According to Lemma 1, we need to show that 1
n

∑N−1
i=0 f ◦ T i(x) converges uniformly

to a constant (for each continuous function f) to show that T is uniquely ergodic, i.e.,
Lebesgue measure is the unique invariant measure.

Let f : [0, 1] → R be continuous and ε > 0 be given. By uniform continuity, we can
find N such that maxj(supt∈Dj,N

f(t) − inft∈Dj,N
f(t)) < ε. Write n = m2N + r. Any

orbit x will visit all intervals Dj,N cyclically before returning close to itself, and hence
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visit each Dj,N exactly m times in the first m2N iterates. Therefore

1

n

n−1∑
i=0

f ◦ T i(x) 6
1

m2N + r

2N−1∑
j=0

m sup
t∈Dj,N

f(t) + r‖f‖∞


6

1

2N

2N−1∑
j=0

sup
t∈Dj,N

f(t) +
r‖f‖∞
m2N + r

=

∫
fN(s)ds+

r‖f‖∞
m2N + r

→
∫
fN(s)ds,

as m → ∞. A similar computation gives 1
n

∑n−1
i=0 f ◦ T i(x) >

∫
f
N

(x)dx. As ε → 0

(and hence N →∞), we get convergence to the integral
∫
f(s)ds, independently of the

initial point x.

Example 3 (Chacon). Take one stack and one stack: A0 = [0, 2
9
) and S = [2

3
, 1). Cut

A0 is three equal parts and cut [2
3
, 8

9
) from spacer S. Pile the middle interval [2

9
, 4

9
) on

the left, then the cut-off piece [2
3
, 8

9
) of the spacer, and then remaining interval [4

9
, 2

3
).

The stack can now be coded upward as A1 = A0A0SA0.

Repeat this procedure: cut the stack vertically in three stacks (of width 2
27

), cut an
interval [8

9
, 26

27
) from the spacer, and pile them on top of one another: middle stack on

left, then the cut-off piece of the spacer, and then the remaining third of the stack. The
stack can now be coded upward as A2 = A1A1SA1.
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Figure 3: The Chacon map T : [0, 1]→ [0, 1] resulting from cutting and stacking.

Proposition 7. The Chacon map T : [0, 1]→ [0, 1] of cutting and stacking is uniquely
ergodic, weakly mixing but not strongly mixing.

Sketch of Proof. First some observations on the symbolic pattern that emerges of the
Chacon cutting and stacking. When stacking intervals, their labels follow the following
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pattern

A0A0SA0︸ ︷︷ ︸
A1

A0A0SA0︸ ︷︷ ︸
A1

S A0A0SA0︸ ︷︷ ︸
A1︸ ︷︷ ︸

A2

A0A0SA0︸ ︷︷ ︸
A1

A0A0SA0︸ ︷︷ ︸
A1

S A0A0SA0︸ ︷︷ ︸
A1︸ ︷︷ ︸

A2

S A0A0SA0︸ ︷︷ ︸
A1

A0A0SA0︸ ︷︷ ︸
A1

S A0A0SA0︸ ︷︷ ︸
A1︸ ︷︷ ︸

A2︸ ︷︷ ︸
A3

This pattern is the same at every level; we could have started with An, grouped together
as An+1 = AnAnSAn, etc. At step n in the construction of the tower, the width of the
stack is wn = 2

3
(3−(n+1) and the length of the the word An is ln = 1

2
(3n+1 − 1).

The frequency of each block σk(An) is almost the same in every block huge block B,
regardless where taken in the infinite string. This observation leads to unique ergodicity
(similar although a bit more involved as in the case of the Kakutani map), but we will
skip the details.

Instead, we focus on the weak mixing. Clearly the word An appears in triples, and
also as AnAnAnSAnAnAn. To explain the idea behind the proof, pretend that an
eigenfunction (with eigenvalue e2πiλ) were constant on any set E whose code is An (or
σkAn for some 0 6 k < ln, where σ denotes the left-shift). Such set E are intervals of
width wn. Then

f ◦ T ln|E = e2πiλlnf |E and f ◦ T 2ln+1|E = e2πiλlnf |E

This gives 1 = e2πiλln = e2πiλln , so λ = 0, and the eigenvalue is 1 after all.

The rigorous argument is as follows. Suppose that f(x) = e2πiϑ(x) were an eigenfunction
for eigenvalue e2πiλ and a measurable function ϑ : S1 → R. By Lusin’s Theorem, we can
find a subset F ⊂ S1 of Lebesgue measure > 1− ε such that ϑ is uniformly continuous
on F . Choose ε > 0 arbitrary, and take N so large that the variation of ϑ is less
that ε on any set of the form E ∩ F , where points in E have code starting as σk(AN),
0 6 k < lN . Sets of this type fill a set E∗ with mass at least half of the unit interval.

Because of the frequent occurrence of ANANANSANANAN , a definite proportion of E∗

is covered by set E with the property that such that T 2lN+1 ∩ T lNE ∩ E 6= ∅, because
they have codes of length lN that reappear after both lN and 2lN + 1 shifts. For x in
this intersection,{

ϑ ◦ T 2lN+1(x) = (lN + 1)λ+ ϑ ◦ T lN (x) (mod 1)

ϑ ◦ T lN (x) = lNλ+ ϑ(x) (mod 1)

where all three point x, T lN (x), T 2lN+1(x) belong to the same copy E. Subtracting the
two equations gives

λ mod 1 = ϑ ◦ T 2lN+1(x)− ϑ ◦ T lN (x) + ϑ(x)− ϑ ◦ T lN (x) 6 2ε.
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But ε is arbitrary, so λ = 0 mod 1 and the eigenvalue is 1.

Now for the strong mixing, consider once more the sets E = Ek,n of points whose
codes starts as the k-th cyclic permutation of An for some 0 6 k < ln, that is: the
first ln symbols of σk(AnAn). Their measure is µ(E) = wn, and for different k, they
are disjoint. Furthermore, the only ln-block appearing are cyclic permutations of An
or cyclic permutations with a spacer S inserted somewhere. At least half of these
appearances are of the first type, so µ(∪ln−1

k=0 Ek,n) > 1
2

for each n.

The basic idea is that µ(E∩T−lnE) > 1
3
µ(E) because at least a third of the appearances

of An is followed by another An. But 1
3
µ(E)� µ(E)2, as one would expect for mixing.

Of course, mixing only says that liml µ(Y ∩ T−l(E)) = µ(Y )2 only for sets Y not
depending on l.

However, let Ym = [m/8, (m+ 1)/8] ⊂ [0, 1], m = 0, . . . , 7 be the eight dyadic intervals
of length 1/8. For each n, at least one Ym is covered for at least half by sets E of the
above type, say a set Z ⊂ Ym of measure µ(Z) > 1

2
µ(Ym)) such that Z ⊂ ∪kEk,n. That

means that

µ(Ym ∩ T−ln(Ym)) > µ(Z ∩ T−ln(Z)) >
1

3
µ(Z) >

1

6
µ(Ym) > µ(Ym)2.

Let Y be one of the Ym’s for which the above holds for infinitely many n. Then
lim supn µ(Ym ∩ T−ln(Ym)) > µ(Y )2, contradicting strong mixing.

12 Toral automorphisms

The best known example of a toral automorphism (that is, an invertible linear map on
the torus Tn = S1×· · ·×S1) is the Arnol’d cat map. This map TC : T2 → T2 is defined
as

TC(x, y) = C

(
x

y

)
(mod 1) for the matrix C =

(
2 1
1 1

)
.

The name come from the illustration in Arnol’d’s book [3] showing how the head of a
cat, drawn on a torus, is distorted by the action of the map2. Properties of TC are:

• C preserves the integer lattice, so TC is well-defined an continuous.

• det(C) = 1, so Lebesgue measure m is preserved (both by C and TC). Also C
and TC are invertible, and C−1 is still an integer matrix.

• The eigenvalues of C are λ± = (3 ±
√

5)/2, and the corresponding eigenspaces
E± are spanned (−1, (

√
5 + 1)/2)T and (1, (

√
5 − 1)/2)T . These are orthogonal

2Arnol’d didn’t seem to like cats, but see the applet https://www.jasondavies.com/catmap/ how
the cat survives
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(naturally, since C is symmetric), and have irrational slopes, so they wrap densely
in the torus.

• Every rational point in T2 is periodic under T (as their denominators cannot
increase, so T acts here as an invertible map on a finite set). This gives many
invaraint measures: the equidistribution on each periodic orbit. Therefore TC is
not uniquely ergodic.

The properties are common to all maps TA, provided they satisfy the following defini-
tion.

Definition 11. A toral automorphism T : Td → Td is an invertible linear map on the
(d-dimensional) torus Td. Each such T is of the form TA(x) = Ax (mod 1), where the
matrix A satisfies:

• A is an integer matrix with det(A) = ±1;

• the eigenvalues of A are not on the unit circle; this property is called hyperbol-
icity.

Somewhat easier to treat that the cat map is TA for A =
(

1 1
1 0

)
, which is an orientation

reversing matrix with A2 = C. The map TA has a Markov partition, that is a
partition {Ri}Ni=1 for sets such that

1. The Ri have disjoint interiors and ∪iRi = Td;

2. If TA(Ri) ∩ Rj 6= ∅, then TA(Ri) stretches across Rj in the unstable direction
(i.e., the direction spanned by the unstable eigenspaces of A).

3. If T−1
A (Ri) ∩ Rj 6= ∅, then T−1

A (Ri) stretches across Rj in the stable direction
(i.e., the direction spanned by the stable eigenspaces of A).

In fact, every hyperbolic toral automorphism has a Markov partition, but in general
they are fiendishly difficult to find explicitly. In the case of A, a Markov partition of
three rectangles Ri for i = 1, 2, 3 can be constructed, see Figure 4.

The corresponding transition matrix is

B =

0 1 1
1 0 1
0 1 0

 where Bij =

{
1 if TA(Ri) ∩Rj 6= ∅
0 if TA(Ri) ∩Rj = ∅.

Note that the characteristic polynomial of B is

det(B − λI) = −λ3 + 2λ+ 1 = −(λ+ 1)(λ2 − λ− 1) = −(λ+ 1) det(A− λI).
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Figure 4: The Markov partition for the toral automorphism TA. The arrows indicate
the stable and unstable directions at (0, 0).

so B has the eigenvalues of A (no coincidence!), together with λ = −1. The transition
matrix B generates a subshift of finite type:

ΣB = {(xi)i∈Z : xi ∈ {1, 2, 3}, Bxixi+1
= 1 ∀ i ∈ Z},

equipped with the left-shift σ. That is, ΣB contains only sequences in which each xixi+1

indicate transitions from Markov partition elements that are allowed by the map TA.

It can be shown that (Td,B, T, Leb) is isomorphic to the shift space (ΣB, C, σ, µ) where

µ([xkxk+1 . . . xn]) = mxkΠxkxk+1
Πxk+1xk+2

. . .Πxn−1xn ,

for mi = Leb(Ri), i = 1, . . . , d}, and weighted transition matrix Π where

Πij =
Leb(TA(Ri) ∩Rj)

Leb(Ri)
is the relative mass that TA transports from Ri to Rj.

Finally C the σ-algebra of set generated by allowed cylinder sets.

Theorem 12. For every hyperbolic toral automorphism, Lebesgue measure is ergodic
and mixing.

Proof. We only give the proof for dimension 2. The higher dimensional case goes
similarly. Consider the Fourier modes (also called characters)

χ(m,n) : T2 → C, χ(m,n)(x, y) = e2πi(mx+ny).

These form an orthogonal system (w.r.t. 〈ϕ, ψ〉 =
∫
ϕψdλ), spanning L2(λ) for Lebesgue

measure λ. We have

UTAχ(m,n)(x, y) = χ(m,n)◦TA(x, y) = χm,n(x, y) = e2πi(am+cn)x+(bm+dn)y) = χAt(m,n)(x, y).
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In other words, UTA maps the character with index (m,n) to the character with index
At(m,n), where At is the transpose matrix.

For the proof of ergodicity, assume that ϕ is a TA-invariant L2-function. Write it as
Fourier series:

ϕ(x, y) =
∑
m,n∈Z

ϕ(m,n)χ(m,n)(x, y),

where the Fourier coefficients ϕm,n → 0 as |m|+ |n| → ∞ By TA-invariance, we have

ϕ(x, y) = ϕ ◦ TA(x, y) =
∑
m,n∈Z

ϕ(m,n)χAt(m,n)(x, y),

and hence ϕ(m,n) = ϕAt(m,n) for all m,n. For (m,n) = (0, 0) this is not a problem, but
this only produces constant functions. If (m,n) 6= (0, 0), then the At-orbit of (m,n), so
infinitely many equal Fourier coefficients

ϕ(m,n) = ϕAt(m,n) = ϕ(At)2(m,n) = ϕ(At)3(m,n) = ϕ(At)4(m,n) . . .

As the Fourier coefficients converge to zero as |m| + |n| → ∞, they all must be equal
to zero, and hence ϕ is a constant function. This proves ergodicity.

For the proof of mixing, we need a lemma, which we give without proof.

Lemma 6. A transformation (X,T, µ) is mixing if and only if for all ϕ, ψ in a complete
orthogonal system spanning L2(µ), we have∫

X

ϕ ◦ TN(x)ψ(x) dµ→
∫
X

ϕ(x) dµ ·
∫
X

ψ(x) dµ

as N →∞.

To use this lemma on ϕ = χ(m,n) and ψ = χ(k,l), we compute∫
X

χ(m,n) ◦ TN(x)χ(k,l)(x) dλ =

∫
X

χ(At)N (m,n)χ(k,l)(x) dλ.

If (m,n) = (0, 0), then (At)N(m,n) = (0, 0) = (m,n) for all N . Hence, the integral
is non-zero only if (k, l) = (0, 0), but then the integral equals 1, which is the same
as
∫
X
χ(0,0) dλ

∫
X
χ(0,0)(x) dλ. If (k, l) = (0, 0), then the integral is zero, but so is∫

X
χ(0,0) dλ

∫
X
χ(0,0)(x) dλ.

If (m,n) 6= (0, 0), then, regardless what (k, l) is, there is N such that (At)M(m,n) 6=
(k, l) for all M > N . Therefore∫

X

χ(m,n) ◦ TM(x)χ(k,l)(x) dλ = 0 =

∫
X

χ(m,n) dλ

∫
X

χ(k,l)(x) dλ.

The lemma therefore guarantees mixing.

31



13 Topological entropy and topological pressure

Topological entropy was first defined in 1965 by Adler et al. [1], but the form that
Bowen [4] and Dinaburg [8] redressed it in is commonly used nowadays.

We will start by start giving the original definition, because the idea of joints of covers
easily relates to joints of partitions as used in measure-theoretic entropy. After that, we
will give Bowen’s approach, since it readily generalises to topological pressure as well.

13.1 The orginal definition

Let (X, d, T ) be a continuous map on compact metric space (X, d). We say that U =
{Ui} is an open ε-cover if all Ui are open sets of diamter 6 ε and X ⊂

⋃
i Ui. Naturally,

compactness of X guarantees that for every open cover, we can select a finite subcover.
Thus, let N (U) the the minimal possible cardinality of subcovers of U . We say that
U refines V (notation U � V) if evey U ∈ U is contained in a V ∈ V . If U � V then
N (U) ≥ N (V).

Given two cover U and V , the joint

U ∨ V := {U ∩ V : U ∈ U , V ∈ V}

is an open cover again, and one can verify that N (U ∨ V) 6 N (U)N (V). Since T is
continuous, T−1(U) is an open cover as well, although in this case it need not be an
ε-cover; However, U ∨ T−1(U) is an ε-cover, and it refines T−1(U).

Define the topological entropy as

htop(T ) = lim
ε→0

sup
U

lim
n

1

n
logN (Un) for Un :=

n−1∨
i=0

T−i(U), (10)

where the supremum is taken over all open ε-covers U . BecauseN (U∨V) 6 N (U)N (V),
the sequence logN (Un) is subadditive, so the limit limn

1
n

logN (Un) exists. We have
the following properties:

Lemma 7. • htop(T k) = khtop(T ) for k > 0. If T is invertible, then also htop(T
−1) =

htop(T ).

• If (Y, S) is semiconjugate to (X,T ), then htop(S) 6 htop(T ). In particular, conju-
gate systems (on compact spaces!) have the same entropy.

Proof.
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13.2 Topological entropy of interval maps

If X = [0, 1] with the usual Euclidean metric, then there are various shortcuts to
compute the entropy of a continuous map T : [0, 1] → [0, 1]. Let us call any maximal
interval on which T is monotone a lap; the number of laps is denoted as `(T ). Also, the
variation of T is defined as

V ar(T ) = sup
06x0<... xN6N

N∑
i=1

|T (xi)− T (xi−1)|,

where the supremum runs over all finite collections of points in [0, 1]. The following
result is due to Misurewicz & Szlenk [12].

Proposition 8. Let T : [0, 1]→ [0, 1] have finitely many laps. Then

htop(T ) = lim
n→∞

1

n
log `(T n)

= lim sup
n→∞

1

n
log #{clusters of n-periodic points}

= max{0, lim
n→∞

1

n
log Var(T n)}.

where two n-periodic points are in the same cluster if they belong to the same lap of T n.

Proof. Since the variation of a monotone function is given by supT − inf T , and due to
the definition of “cluster” of n-periodic points, the inequalities

#{clusters of n-periodic points},Var(T n) 6 `(T n)

are immediate. For a lap I of T n, let γ := |T n(I)| be its height. We state without proof
(cf. [5, Chapter 9]):

For every δ > 0, there is γ > 0 such that the number of
laps I of T n with the property that I belongs to a lap of T j

of height > γ for all 1 6 j 6 n is at least (1− δ)n`(T n).
(11)

This means that V ar(T n) > γ(1− δ)n`(T n), and therefore

−2δ + lim
n

1

n
log `(T n) 6 lim

n

1

n
log Var(T n) 6 lim

n

1

n
log `(T n).

Since δ is arbitrary, both above quantities are all equal.

Making the further assumption (without proof3) that there is K = K(γ) such that
∪Ki=0T

i(J) = X for every interval of length |J | > γ, we also find that

#{clusters of n+ i-periodic points, 0 6 i 6 K} > (1− δ)n`(T n).

3In fact, it is not entirely true if T has an invariant subset attracting an open neighbourhood.
But it suffices to restrict T to its nonwandering set, that is, the set Ω(T ) = {x ∈ X : x ∈
∪n>1T

n(U)) for every neighbourhood U 3 x}, because htop(T ) = htop(T |Ω(T )).
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This implies that

−2δ + lim
n

1

n
log `(T n) 6 lim sup

n

1

n
max

06i6K
log #{clusters of n+ i-periodic points}

so also limn
1
n

log `(T n) = lim supn→∞
1
n

log #{clusters of n-periodic points}

If ε > 0 is so small that the width of every lap is greater than 2ε, then for every ε-
cover U , every subcover of Un has at least one element in each lap of T n. Therefore
`(T n) 6 N (Un) for every ε-cover, so limn

1
n

log `(T n) 6 htop(T ).

13.3 Bowen’s approach

Let T be map of a compact metric space (X, d). If my eyesight is not so good, I cannot
distinguish two points x, y ∈ X if they are at a distance d(x, y) < ε from one another. I
may still be able to distinguish there orbits, if d(T kx, T ky) > ε for some k > 0. Hence,
if I’m willing to wait n− 1 iterations, I can distinguish x and y if

dn(x, y) := max{d(T kx, T ky) : 0 6 k < n} > ε.

If this holds, then x and y are said to be (n, ε)-separated. Among all the subsets of
X of which all points are mutually (n, ε)-separated, choose one, say En(ε), of maximal
cardinality. Then sn(ε) := #En(ε) is the maximal number of n-orbits I can distinguish
with ε-poor eyesight.

The topological entropy is defined as the limit (as ε→ 0) of the exponential growth-
rate of sn(ε):

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε). (12)

Note that sn(ε1) > sn(ε2) if ε1 6 ε2, so lim supn
1
n

log sn(ε) is a decreasing function in
ε, and the limit as ε→ 0 indeed exists.

Instead of (n, ε)-separated sets, we can also work with (n, ε)-spanning sets, that is,
sets that contain, for every x ∈ X, a y such that dn(x, y) 6 ε. Note that, due to its
maximality, En(ε) is always (n, ε)-spanning, and no proper subset of En(ε) is (n, ε)-
spanning. Each y ∈ En(ε) must have a point of an (n, ε/2)-spanning set within an
ε/2-ball (in dn-metric) around it, and by the triangle inequality, this ε/2-ball is disjoint
from ε/2-ball centred around all other points in En(ε). Therefore, if rn(ε) denotes the
minimal cardinality among all (n, ε)-spanning sets, then

rn(ε) 6 sn(ε) 6 rn(ε/2). (13)

Thus we can equally well define

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log rn(ε). (14)
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Examples: Consider the β-transformation Tβ : [0, ) → [0, 1), x 7→ βx (mod 1) for
some β > 1. Take ε < 1/(2β2), and Gn = { k

βn : 0 6 k < βn}. Then Gn is (n, ε)-

separating, so sn(ε) > βn. On the other hand, G′n = {2kε
βn : 0 6 k < βn/(2ε)} is

(n, ε)-spanning, so rn(ε) 6 βn/(2ε). Therefore

log β = lim sup
n

1

n
log βn 6 htop(Tβ) 6 lim sup

n
log βn/(2ε) = log β.

Circle rotations, or in general isometries, T have zero topological entropy. Indeed,
if E(ε) is an ε-separated set (or ε-spanning set), it will also be (n, ε)-separated (or
(n, ε)-spanning) for every n > 1. Hence sn(ε) and rn(ε) are bounded in n, and their
exponential growth rates are equal to zero.

Finally, let (X, σ) be the full shifts on N symbols. Let ε > 0 be arbitrary, and take m
such that 2−m < ε. If we select a point from each n + m-cylinder, this gives an (n, ε)-
spanning set, whereas selecting a point from each n-cylinder gives an (n, ε)-separated
set. Therefore

logN = lim sup
n

1

n
logNn 6 lim sup

n

1

n
log sn(ε) 6 htop(Tβ)

6 lim sup
n

1

n
log rn(ε) 6 lim sup

n
logNn+m = logN.

Proposition 9. For a continuous map T on a compact metric space (X, d), the three
definitions (10), (12) and (14) give the same outcome.

Proof. The equality of the limits (12) and (14) follows directly from (13).

If U is an ε-cover, every A ∈ Un can contain at most one point in an (n, ε)-separated
set, so s(n, ε) < N (Un), whence lim supn

1
n

log s(n, ε) 6 limn
1
n

logN (Un).

Finally, in a compact metric space, every open cover U has a numbr (called its Lebesgue
number) such that for every x ∈ X, there is U ıU such that Bδ(x) ⊂ U . Clearly δ < ε
if U is an ε-cover. Now if an open ε-cover U has Lebesgue number δ, and E is an
(n, δ-spanning set of cardinality #E = r(n, δ), then X ⊂ ∪x∈E
capn−1

i=0 T
−i(Bδ(T

i)). Since each Bδ(T
i(x)) is contained in some U ∈ U , we haveN (Un) 6

r(n, δ). Since δ → 0 as ε→ 0, also

lim
ε→0

lim
n

1

n
logN (Un) 6 lim

δ→0
lim sup

n

1

n
log r(n, δ).

13.4 Topological pressure

The topological pressure Ptop(T, ψ) combines entropy with a potential function ψ : X →
R. By definition, htop(T ) = Ptop(T, ψ) if ψ(x) ≡ 0. Denote the n-th ergodic sum of ψ
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by

Snψ(x) =
n−1∑
k=0

ψ ◦ T k(x).

Next set {
Kn(T, ψ, ε) = sup{

∑
x∈E e

Snψ(x) : E is (n, ε)-separated},
Ln(T, ψ, ε) = inf{

∑
x∈E e

Snψ(x) : E is (n, ε)-spanning}.
(15)

For reasonable choices of potentials, the quantities limε→0 lim supn→∞
1
n

logKn(T, ψ, ε)
and limε→0 lim supn→∞

1
n

logLn(T, ψ, ε) are the same, and this quantity is called the
topological pressure. To give an example of an unreasonable potential, take X0 be
a dense T -invariant subset of X such that X \X0 is also dense. Let

ψ(x) =

{
100 if x ∈ X0,
0 if x /∈ X0.

Then Ln(T, ψ, ε) = rn(ε) whilst Kn(T, ψ, ε) = e100nsn(ε), and their exponential growth
rates differ by a factor 100. Hence, some amount of continuity of ψ is necessary to make
it work.

Lemma 8. If ε > 0 is such that d(x, y) < ε implies that |ψ(x)− ψ(y)| < δ/2, then

e−nδKn(T, ψ, ε) 6 Ln(T, ψ, ε/2) 6 Kn(T, ψ, ε/2).

Exercise 2. Prove Lemma 8. In fact, the second inequality holds regardless of what ψ
is.

Theorem 13. If T : X → X and ψ : X → R are continuous on a compact metric
space, then the topological pressure is well-defined by

Ptop(T, ψ) := lim
ε→0

lim sup
n→∞

1

n
logKn(T, ψ, ε) = lim

ε→0
lim sup
n→∞

1

n
logLn(T, ψ, ε).

Exercise 3. Show that Ptop(T
R, SRψ) = R · Ptop(T, ψ).

14 Measure-theoretic entropy

Entropy is a measure for the complexity of a dynamical system (X,T ). In the previous
sections, we related this (or rather topological entropy) to the exponential growth rate
of the cardinality of Pn =

∨n−1
k=0 T

−kP for some partition of the space X. In this
section, we look at the measure theoretic entropy hµ(T ) of an T -invariant measure µ,
and this amounts to, instead of just counting Pn, taking a particular weighted sum of the
elements Zn ∈ Pn. However, if the mass of µ is equally distributed over the all the Zn ∈
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Pn, then the outcome of this sum is largest; then µ would be the measure of maximal
entropy. In “good” systems (X,T ) is indeed the supremum over the measure theoretic
entropies of all the T -invariant probability measures. This is called the Variational
Principle:

htop(T ) = sup{hµ(T ) : µ is T -invariant probability measure}. (16)

In this section, we will skip some of the more technical aspect, such as conditional
entropy (however, see Proposition 10) and σ-algebras (completing a set of partitions),
and this means that at some points we cannot give full proofs. Rather than present-
ing more philosophy what entropy should signify, let us first give the mathematical
definition.

Define
ϕ : [0, 1]→ R ϕ(x) = −x log x

with ϕ(0) := limx↓0 ϕ(x) = 0. Clearly ϕ′(x) = −(1+log x) so ϕ(x) assume its maximum
at 1/e and ϕ(1/e) = 1/e. Also ϕ′′(x) = −1/x < 0, so that ϕ is strictly concave:

αϕ(x) + βϕ(y) 6 ϕ(αx+ βy) for all α + β = 1, α, β > 0, (17)

with equality if and only if x = y.

Theorem 14 (Jensen’s Inequality). For every strictly concave function ϕ : [0,∞)→ R
we have ∑

i

αiϕ(xi) 6 ϕ(
∑
i

αixi) for αi > 0,
∑
i

αi = 1 and xi ∈ [0,∞), (18)

with equality if and only if all the xi are the same.

Proof. We prove this by induction on n. For n = 2 it is simply (17). So assume that
(18) holds for some n, and we treat the case n + 1. Assume αi > 0 and

∑n+1
i=1 αi = 1

and write B =
∑n

i=1 αi.

ϕ(
n+1∑
i=1

αixi) = ϕ(B
n∑
i=1

αi
B
xi + αn+1xn+1)

> Bϕ(
n∑
i=1

αi
B
xi) + ϕ(αn+1xn+1) by (17)

> B
n∑
i=1

αi
B
ϕ(xi) + ϕ(αn+1xn+1) by (18) for n

=
n+1∑
i=1

αiϕ(xi)

as required. Equality also carries over by induction, because if xi are all equal for
1 6 i 6 n, (17) only preserves equality if xn+1 =

∑n
i=1

αi

B
xi = x1.
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This proof doesn’t use the specific form of ϕ, only its (strict) concavity. Applying it to
ϕ(x) = −x log x, we obtain:

Corollary 3. For p1 + · · · + pn = 1, pi > 0, then
∑n

i=1 ϕ(pi) 6 log n with equality if
and only if all pi are equal, i.e., pi ≡ 1

n
.

Proof. Take αi = 1
n
, then by Theorem 14,

1

n

n∑
i=1

ϕ(pi) =
n∑
i=1

αiϕ(pi) 6 ϕ(
n∑
i=1

1

n
pi) = ϕ(

1

n
) =

1

n
log n.

Now multiply by n.

Corollary 4. For real numbers ai and p1 + · · ·+ pn = 1, pi > 0,
∑n

i=1 pi(ai − log pi) 6
log
∑n

i=1 e
ai with equality if and only if pi = eai/

∑n
i=1 e

ai for each i.

Proof. Write Z =
∑n

i=1 e
ai . Put αi = eai/Z and xi = piZ/eai in Theorem 14. Then

n∑
i=1

pi(ai − logZ − log pi) = −
n∑
i=1

eai

Z

(
piZ
eai

log
piZ
eai

)
6 −

n∑
i=1

eai

Z
piZ
eai

log
n∑
i=1

eai

Z
piZ
eai

= ϕ(1) = 0.

Rearranging gives
∑n

i=1 pi(ai − log pi) 6 logZ, with equality only if xi = piZ/e
ai are

all the same, i.e., pi = eai/Z.

Exercise 4. Reprove Corollaries 3 and 4 using Lagrange multipliers.

Given a finite partition P of a probability space (X,µ), let

Hµ(P) =
∑
P∈P

ϕ(µ(P )) = −
∑
P∈P

µ(P ) log(µ(P )), (19)

where we can ignore the partition elements with µ(P ) = 0 because ϕ(0) = 0. For a
T -invariant probability measure µ on (X,B, T ), and a partition P , define the entropy
of µ w.r.t. P as

Hµ(T,P) = lim
n→∞

1

n
Hµ(

n−1∨
k=0

T−kP). (20)

Finally, the measure theoretic entropy of µ is

hµ(T ) = sup{Hµ(T,P) : P is a finite partition of X}. (21)

Naturally, this raises the questions:
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Does the limit exist in (20)?
How can one possibly consider all partitions of X?

We come to this later; first we want to argue that entropy is a characteristic of a
measure preserving system. That is, two measure preserving systems (X,B, T, µ) and
(Y, C, S, ν) that are isomorphic, i.e., there are full-measured sets X0 ⊂ X, Y0 ⊂ Y and
a bi-measurable invertible measure-preserving map π : X0 → Y0 (called isomorphism)
such that the diagram

(X0,B, µ)
T−→ (X0,B, µ)

π ↓ ↓ π

(Y0, C, ν)
S−→ (Y0, C, ν)

commutes, then hµ(T ) = hν(S). This holds, because the bi-measurable measure-
preserving map π preserves all the quantities involved in (19)-(21), including the class
of partitions for both systems.

A major class of systems where this is very important are the Bernoulli shifts. These
are the standard probability space to measure a sequence of i.i.d. events each with
outcomes in {0, . . . , N − 1} with probabilities p0, . . . , pN−1 respectively. That is: X =
{0, . . . , N − 1}N0 or {0, . . . , N − 1}Z, σ is the left-shift, and µ the Bernoulli measure
that assigns to every cylinder set [xm . . . xn] the mass

µ([xm . . . xn]) =
n∏

k=m

ρ(xk) where ρ(xk) = pi if xk = i.

For such a Bernoulli shift, the entropy is

hµ(σ) = −
∑
i

pi log pi, (22)

so two Bernoulli shifts (X, p, µp) and (X ′, p′, µp′) can only be isomorphic if−
∑

i pi log pi =
−
∑

i p
′
i log(p′i). The famous theorem of Ornstein showed that entropy is a complete in-

variant for Bernoulli shifts:

Theorem 15 (Ornstein 1974 [14], cf. page 105 of [16]). Two Bernoulli shifts (X, p, µp)
and (X ′, p′, µp′) are isomorphic if and only if −

∑
i pi log pi = −

∑
i p
′
i log p′i.

Exercise 5. Conclude that the Bernoulli shift µ( 1
4
, 1
4
, 1
4
, 1
4

) is isomorphic to µ( 1
8
, 1
8
, 1
8
, 1
8
, 1
2

),
but that no Bernoulli measure on four symbols can be isomorhic to µ( 1

5
, 1
5
, 1
5
, 1
5
, 1
5

)

Let us go back to the definition of entropy, and try to answer the outstanding questions.

Definition 12. We call a real sequence (an)n>1 subadditive if

am+n 6 am + an for all m,n ∈ N.
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Theorem 16. If (an)n>1 is subadditive, then limn
an
n

= infr>1
ar
r

.

Proof. Every integer n can be written uniquely as n = i · r+ j for 0 6 j < r. Therefore

lim sup
n→∞

an
n

= lim sup
i→∞

ai·r+j
i · r + j

6 lim sup
i→∞

iar + aj
i · r + j

=
ar
r
.

This holds for all r ∈ N, so we obtain

inf
r

ar
r

6 lim inf
n

an
n

6 lim sup
n

an
n

6 inf
r

ar
r
,

as required.

Definition 13. Motivated by the conditional measure µ(P |Q) = µ(P∩Q)
µ(Q)

, we define
conditional entropy of a measure µ as

Hµ(P|Q) = −
∑
j

µ(Qj)
∑
i

µ(Pi ∩Qj)

µ(Qj)
log

µ(Pi ∩Qj)

µ(Qj)
, (23)

where i runs over all elements Pi ∈ P and j runs over all elements Qj ∈ Q.

Avoiding philosophical discussions how to interpret this notion, we just list the main
properties that are needed in this course that rely of condition entropy:

Proposition 10. Given measures µ, µi and two partitions P and Q, we have

1. Hµ(P ∨Q) 6 Hµ(P) +Hµ(Q);

2. Hµ(T,P) 6 Hµ(T,Q) +Hµ(P | Q).

3.
∑n

i=1 piHµi(P) 6 H∑n
i=1 piµi

(P) whenever
∑n

i=1 p1 = 1, pi > 0,

Subadditivity is the key to the convergence in (20). Call an = Hµ(
∨n−1
k=0 T

−kP). Then

am+n = Hµ(
m+n−1∨
k=0

T−kP) use Proposition 10, part 1.

6 Hµ(
m−1∨
k=0

T−kP) +Hµ(
m+n−1∨
k=m

T−kP) use T -invariance of µ

= Hµ(
m−1∨
k=0

T−kP) +Hµ(
n−1∨
k=0

T−kP)

= am + an.

ThereforeHµ(
∨n−1
k=0 T

−kP) is subadditive, and the existence of the limit of 1
n
Hµ(

∨n−1
k=0 T

−kP)
follows.
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Proposition 11. Entropy has the following properties:

1. The identity map has entropy 0;

2. hµ(TR) = R · hµ(T ) and for invertible systems hµ(T−R) = R · hµ(T ).

Proof. Statement 1. follows simply because
∨n−1
k=0 T

−kP = P if T is the identity map,
so the cardinality of

∨n−1
k=0 T

−kP doesn’t increase with n.

For statement 2. set Q =
∨R−1
j=0 T

−jP . Then for k > 1,

R ·Hµ(T,P) = lim
n→∞

R · 1

nR
Hµ(

nR−1∨
j=0

T−kP)

= lim
n→∞

1

n
Hµ(

n−1∨
j=0

(TR)−jQ)

= Hµ(TR,Q).

Taking the supremum over all P or Q has the same effect.

The next theorem is the key to really computing entropy, as it shows that a single
well-chosen partition P suffices to compute the entropy as hµ(T ) = Hµ(T,P).

Theorem 17 (Kolmogorov-Sinăı). Let (X,B, T, µ) be a measure-preserving dynamical
system. If partition P is such that{ ∨∞

j=0 T
−kP generates B if T is non-invertible,∨∞

j=−∞ T
−kP generates B if T is invertible,

then hµ(T ) = Hµ(T,P).

We haven’t explained properly what “generates B means, but the idea you should
have in mind is that (up to measure 0), every two points in X should be in different
elements of

∨n−1
k=0 T

−kP (if T is non-invertible), or of
∨n−1
k=−n T

−kP (if T is invertible)
for some sufficiently large n. The partition B = {X} fails miserably here, because∨n
j=−n T

−kP = P for all n and no two points are ever separated in P . A more subtle

example can be created for the doubling map T2 : S1 → S1, T2(x) = 2x (mod 1). The
partition P = {[0, 1

2
), [1

2
, 1)}. is separating every two points, because if x 6= y, say

2−(n+1) < |x− y| 6 2−n, then there is k 6 n such that T k2 x and T k2 y belong to different
partition elements.

On the other hand, Q = {[1
4
, 3

4
), [0, 1

4
) ∪ [3

4
, 1)} does not separate points. Indeed, if

y = 1−x, then T k2 (y) = 1−T k2 (x) for all k > 0, so x and y belong to the same partition
element, T k2 (y) and T k2 (x) will also belong to the same partition element!
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In this case, P can be used to compute hµ(T ), while Q in principle cannot (although
here, for all Bernoulli measure µ = µp,1−p, we have hµ(T2) = Hµ(T,P) = Hµ(T,Q)).

Proof of Theorem 17. Let A be the generating partition. Then hµ(T,A) 6 hµ(T ) be-
cause the RHS is the supremum over all partitions. Let ε > 0 be arbitrary, and let C
be a finite partition, say #C = N , such that Hµ(T, C) > hµ(T )− ε. We have

hµ(T |
k∨

i=−k

T iA) = lim
n→∞

1

n
Hµ(

n−1∨
j=0

T−j(
k∨

i=−k

T iA)) = lim
n→∞

1

n
Hµ(T k(

n+2k∨
j=0

T−jA))

= lim
n→∞

n+ 2k + 1

n

1

n+ 2k + 1
Hµ(

n+2k∨
j=0

T−jA) = hµ(TA).

Using this and Proposition 10, part 2, we compute:

hµ(T |C) 6 hµ(T |
k∨

i=−k

T iA) +Hµ(C|
k∨

i=−k

T iA) = hµ(T |A) +Hµ(C|
k∨

i=−k

T iA).

SinceA is generating, the measure of points in X for which the element A ∈
∨k
i=−k T

ikA
that contains x is itself contained in a single element of C tends to one as k → ∞.
Therefore we can find k so large that if we set

A∗ = {A ∈
k∨

i=−k

T ikA : A ∩ C 6= ∅ 6= A ∩ C ′ for some C 6= C ′ ∈ C},

then µ(
⋃
A∈A∗ A) 6 ε/(N logN). This gives

Hµ(C|
k∨

i=−k

T ikA) =
∑

A∈
∨k

i=−k T
ikA

∑
C∈C

µ(A)ϕ

(
µ(A ∩ C)

µ(A)

)

=
∑
A∈A∗

µ(A)
∑
C∈C

ϕ

(
µ(A ∩ C)

µ(A)

)
6
∑
A∈A∗

µ(A)N logN < ε.

Combining all, we get hµ(T,A) > hµ(T, C)− ε > hµ(T )− 2ε completing the proof.

We finish this section with computing the entropy for a Bernoulli shift on two symbols,
i.e., we will prove (22) for two-letter alphabets and any probability µ([0]) =: p ∈ [0, 1].
The space is thus X = {0, 1}N0 and each x ∈ X represents an infinite sequence of
coin-flips with an unfair coin that gives head probability p (if head has the symbol 0).
Recall from probability theory

P(k heads in n flips) =

(
n

k

)
pk(1− p)n−k,
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so by full probability:
n∑
k=0

(
n

k

)
pk(1− p)n−k = 1.

Here
(
n
k

)
= n!

k!(n−k)!
are the binomial coefficients, and we can compute{
k
(
n
k

)
= n!

(k−1)!(n−k)!
= n (n−1)!

(k−1)!(n−k)!
= n

(
n−1
k−1

)
(n− k)

(
n
k

)
= n!

(k)!(n−k−1)!
= n (n−1)!

k!(n−k−1)!
= n

(
n−1
k

) (24)

This gives all the ingredients necessary for the computation.

Hµ(
n−1∨
k=0

σ−kP) = −
1∑

x0,...,xn−1=0

µ([x0, . . . , xn−1]) log µ([x0, . . . , xn−1])

= −
1∑

x0,...,xn−1=0

n−1∏
j=0

ρ(xj) log
n−1∏
j=0

ρ(xj)

= −
n∑
k=0

(
n

k

)
pk(1− p)n−k log

(
pk(1− p)n−k

)
= −

n∑
k=0

(
n

k

)
pk(1− p)n−kk log p

−
n∑
k=0

(
n

k

)
pk(1− p)n−k(n− k) log(1− p)

In the first sum, the term k = 0 gives zero, as does the term k = n for the second sum.
Thus we leave out these terms and rearrange by (24):

= −p log p
n∑
k=1

k

(
n− 1

k

)
pk−1(1− p)n−k

−(1− p) log(1− p)
n−1∑
k=0

(n− k)

(
n

k

)
pk(1− p)n−k−1

= −p log p
n∑
k=1

n

(
n− 1

k − 1

)
pk−1(1− p)n−k

−(1− p) log(1− p)
n−1∑
k=0

n

(
n− 1

k

)
pk(1− p)n−k−1

= n (−p log p− (1− p) log(1− p)) .
The partition P = {[0], [1]} is generating, so by Theorem 17,

hµ(σ) = Hµ(σ,P) = lim
n

1

n
Hµ(

n−1∨
k=0

σ−kP) = −p log p− (1− p) log(1− p)

as required.
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15 The Variational Principle

The Variational Principle claims that topological entropy (or pressure) is achieved by
taking the supremum of the measure-theoretic entropies over all invariant probability
measures. But in the course of these notes, topological entropy has seen various defini-
tions. Even sup{hµ(T ) : µ is a T -invariant probability measure} is sometimes used as
definition of topological entropy. So it is time to be more definite.

We will do this by immediately passing to topological pressure, which we will base on
the definition in terms of (n, δ)-spanning sets and/or (n, ε)-separated sets. Topological
entropy then simply emerges as htop(T ) = Ptop(T, 0).

Theorem 18 (The Variational Principle). Let (X, d) be a compact metric space, T :
X → X a continuous map and ψ : X → R as continuous potential. Then

Ptop(T, ψ) = sup{hµ(T ) +

∫
X

ψ dµ : µ is a T -invariant probability measure}. (25)

Remark 3. By the ergodic decomposition, every T -invariant probability measure can
be written as convex combination (sometimes in the form of an integral) of ergodic
T -invariant probability measures. Therefore, it suffices to take the supremum over all
ergodic T -invariant probability measures.

Proof. First we show that for every T -invariant probability measure, hµ(T )+
∫
X
ψ dµ 6

Ptop(T, ψ). Let P = {P0, . . . , PN−1} be an arbitrary partition with N > 2 (if P = {X},
then hµ(T,P) = 0 and there is not much to prove). Let η > 0 be arbitrary, and choose
ε > 0 so that εN logN < η.

By “regularity of µ”, there are compact sets Qi ⊂ Pi such that µ(Pi \Qi) < ε for each
0 6 i < N . Take QN = X \ ∪N−1

i=0 Qi. Then Q = {Q0, . . . , QN} is a new partition of X,
with µ(QN) 6 Nε. Furthermore

µ(Pi ∩Qj)

µ(Qj)
=

{
0 if i 6= j < N,
1 if i = j < N.

whereas
∑N−1

i=0
µ(Pi∩QN )
µ(QN )

= 1. Therefore the conditional entropy

Hµ(P|Q) =
N∑
j=0

N−1∑
i=0

µ(Qj)ϕ

(
µ(Pi ∩Qj)

µ(Qj)

)
︸ ︷︷ ︸

= 0 if j<N

= −µ(QN)
N−1∑
i=0

µ(Pi ∩QN)

µ(QN)
log(

µ(Pi ∩QN)

µ(QN)
)

6 µ(QN) logN by Corollary 3

6 εN logN < η.
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Choose 0 < δ < 1
2

min06i<j<N d(Qi, Qj) so that

d(x, y) < δ implies |ψ(x)− ψ(y)| < ε. (26)

Here we use uniform continuity of ψ on the compact space X. Fix n and let En(δ) be
an (n, δ)-spanning set. For Z ∈ Qn :=

∨n−1
k=0 T

−kQ, let α(Z) = sup{Snψ(x) : x ∈ Z}.
For each such Z, also choose xZ ∈ Z such that Snψ(x) = α(Z) (again we use continuity
of ψ here), and yZ ∈ En(δ) such that dn(xZ , yZ) < δ. Hence

α(Z)− nε 6 Snψ(yZ) 6 α(Z) + nε.

This gives

Hµ(Qn) +

∫
X

Snψ dµ 6
∑
Z∈Qn

µ(Z)(α(Z)− log µ(Z)) 6 log
∑
Z∈Qn

eα(Z) (27)

by Corollary 4.

Each δ-ball intersects the closure of at most two elements of Q. Hence, for each y ∈
En(δ), the cardinality #{Z ∈ Qn : yZ = y} 6 2n. Therefore∑

Z∈Qn

eα(Z)−nε 6
∑
Z∈Qn

eSnψ(yZ) 6 2n
∑

y∈En(δ)

eSnψ(y).

Take the logarithm and rearrange to

log
∑
Z∈Qn

eα(Z) 6 n(ε+ log 2) + log
∑

y∈En(δ)

eSnϕ(y).

By T -invariance of µ we have
∫
Snψ dµ = n

∫
ψ dµ. Therefore

1

n
Hµ(Qn) +

∫
X

ψ dµ 6
1

n
Hµ(Qn) +

1

n

∫
X

Snψ dµ

6
1

n
log

∑
Z∈Qn

eα(Z)

6 ε+ log 2 +
1

n
log

∑
y∈En(δ)

eSnϕ(y).

Taking the limit n → ∞ and recalling that En(δ) is an arbitrary (n, δ)-spanning set,
gives

Hµ(T,Q) +

∫
X

ψ dµ 6 ε+ log 2 + Ptop(T, ψ).

By Proposition 10, part 2., and recalling that ε < η, we get

Hµ(T,P) +

∫
X

ψ dµ = Hµ(T,Q) +Hµ(P|Q) +

∫
X

ψ dµ 6 2η + log 2 + Ptop(T, ψ).
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We can apply the same reasoning to TR and SRψ instead of T and ψ. This gives

R ·
(
Hµ(T,P) +

∫
X

ψ dµ

)
= Hµ(TR,P) +

∫
X

SRψ dµ

6 2η + log 2 + Ptop(T
R, SRψ)

= 2η + log 2 +R · Ptop(T, ψ).

Divide by R and take R → ∞ to find Hµ(T,P) +
∫
X
ψ dµ 6 Ptop(T, ψ). Finally take

the supremum over all partitions P .

Now the other direction, we will work with (n, ε)-separated sets. After choosing ε > 0
arbitrary, we need to find a T -invariant probability measure µ such that

hµ(T ) +

∫
X

ψ dµ > lim sup
n→∞

1

n
logKn(T, ψ, ε) := P (T, ψ, ε).

Let En(ε) be an (n, ε)-separated set such that

log
∑

y∈En(ε)

eSnψ(y) > logKn(T, ψ, ε)− 1. (28)

Define ∆n as weighted sum of Dirac measures:

∆n =
1

Z
∑

y∈En(ε)

eSnψ(y)δy,

where Z =
∑

y∈En(ε) e
Snψ(y) is the normalising constant. Take a new probability measure

µn =
1

n

n−1∑
k=0

∆n ◦ T−k.

Therefore∫
X

ψ dµn =
1

n

n−1∑
k=0

∫
X

ψ d(∆n ◦ T−k) =
1

n

n−1∑
k=0

∑
y∈En(ε)

ψ ◦ T k(y)
1

Z
eSnψ(y)

=
1

n

∑
y∈En(ε)

Snψ(y)
1

Z
eSnψ(y) =

1

n

∫
X

Snψ d∆n. (29)

Since the space of probability measures on X is compact in the weak topology, we can
find a sequence (nj)j>1 such that for every continuous function f : X → R∫

X

f dµnj
→
∫
X

f dµ as j →∞.
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Choose a partition P = {P0, . . . , PN−1} with diam(Pi) < ε and µ(∂Pi) = 0 for all
0 6 i < N . Since Z ∈ Pn :=

∨n−1
k=0 T

−kP contains at most one element of an (n, ε)-
separated set, we have

H∆n(Pn) +

∫
X

Snψ d∆n =
∑

y∈En(ε)

∆n({y}) (Snψ(y)− log ∆n({y}))

= log
∑

y∈En(ε)

eSnψ(y) = logZ.

by Corollary 4

Take 0 < q < n arbitrary, and for 0 6 j < q, let

Uj = {j, j + 1, . . . , ajq + j − 1} where aj = bn− j
q
c.

Then

{0, 1, . . . , n− 1} = Uj ∪ {0, 1, . . . , j − 1} ∪ ajq + j, ajq + j + 1, . . . , n− 1}︸ ︷︷ ︸
Vj

where Vj has at most 2q elements. We split

n−1∨
k=0

T−kP =

(
aj−1∨
r=0

q−1∨
i=0

T−(rq+j+i)P

)
∨
∨
l∈Vj

T−lP

=

(
aj−1∨
r=0

T−(rq+j)

q−1∨
i=0

T−iP

)
∨
∨
l∈Vj

T−lP .

Therefore,

logZ = H∆n(Pn) +

∫
X

Snψ d∆n

6
aj−1∑
r=0

H∆n(T−(rq+j)

q−1∨
i=0

T−iP) +H∆n(
∨
l∈Vj

T−lP) +

∫
X

Snψ d∆n

6
aj−1∑
r=0

H∆n◦T−(rq+j)(

q−1∨
i=0

T−iP) + 2q logN +

∫
X

Snψ d∆n,

because
∨
l∈Vj T

−lP has at most N2q elements and using Corollary 3. Summing the
above inequality over j = 0, . . . , q − 1, gives

q logZ =

q−1∑
j=0

aj−1∑
r=0

H∆n◦T−rq+j(

q−1∨
i=0

T−iP) + 2q2 logN + q

∫
X

Snψ d∆n

6 n
n−1∑
k=0

1

n
H∆n◦T−k(

q−1∨
i=0

T−iP) + 2q2 logN + q

∫
X

Snψ d∆n.

47



Proposition 10, part 3., allows us to swap the weighted average and the operation H:

q logZ 6 nHµn(

q−1∨
i=0

T−iP) + 2q2 logN + q

∫
X

Snψ d∆n.

Dividing by n and recalling (28) for the left hand side, and (29) to replace ∆n by µn,
we find

q

n
logKn(T, ψ, ε)− q

n
6 Hµn(

q−1∨
i=0

T−iP) +
2q2

n
logN + q

∫
X

ψ dµn.

Because µ(∂Pi) = 0 for all i, we can replace n by nj and take the weak limit as j →∞.
This gives

qP (T, ψ, ε) 6 Hµ(

q−1∨
i=0

T−iP) + q

∫
X

ψ dµ.

Finally divide by q and let q →∞:

P (T, ψ, ε) 6 hµ(T ) +

∫
X

ψ dµ.

This concludes the proof.

16 Measures of maximal entropy

16.1 Subshifts of finite type

To each directed graph (G,→), say with vertices {1, . . . , N} one can assign a transition
matrix A = (ai,j)

N
i,j=1 where for each i, j, Ai,j counts the number of edges from vertex

i to vertex j. We call G irreducible if there exists a path (of some length) from each
vertex to each vertex. It is called aperiodic if for each i, j there is m ∈ N such that
there is a path from i to j of length n for every n > m. In terms of the transmatrix,
this translates to: A is irreducible if for every i, j there is n such that Ani,j > 0, and A
is aperiodic if in addition there is n such that Ani,j > 0 for all i, j.

The set of (bi)inifnite strings

ΣA = {(xi)i∈Z : xi ∈ {1, . . . , N}, Axi,xi+1
> 0 for all i ∈ Z}

is shift-invariant and closed in the standard product topology of {1, . . . , N}Z. Hence it
is a subshift. It is called subshift of finite type (SFT) because of the finite collection of
fobidden words (namely the pairs ij such that Ai,j = 0) that fully determines ΣA.
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It is easy to see that the word-complexity

pn(ΣA) := #{x0 . . . xn−1 subword appearing in ΣA}
= #{paths of length n− 1 in G} =

∑
i,j

Ani,j.

Because the partition into n-cylinders forms an open 2−n-cover of ΣA, we can derive

htop(σ|ΣA
) = lim

n→∞

1

n
log pn(ΣA) = log λ,

where λ is the leading eigenvalue of the transition matrix A. That A has a unique,
positive, leading eigenvalue follows from the following theorem.

Theorem 19 (Perron-Frobenius). Let A be a nonnegative N × N-matrix such that
An > 0 for some m ∈ N. Then A has a unique (up to scaling) eigenvector with all
entries > 0. The corresponding eigenvalue is positive, has multiplicity one, and is
larger than the absolute value of all other eigenvakues of A.

Proof. Let C = RN
>0 be the one-sided cone of nonegative vectors. Since A is nonegative,

AC ⊂ C, and because Am > 0, AmC ⊂ Ao, by which we mean that every nonzero
vector in C is mapped into the interior of C by Am. Define on the simplex S = {x ∈
C : ‖x‖ = 1} the map f : S → S by f(x) = Ax/‖Ax‖. Since An > 0, it is impossible
that Ax = 0 for x ∈ S, so f is well-defined. Although nonlinear, the map f is convex,
meaning that it sends convex subsets of S to convex subsets, and extremal points to
extremal points. Applying this to Πn := ∩nk=0f

k(S), we conclude that (Πn) is a nested
sequence of convex sets with fn(ei), i = 1, . . . N as extremal points. This carries over
to the limit Π :=

⋂
n Πn as well; note that Π is contained in the interior of S because

An > 0. We can select a subsequence (nj) such that fnj(ei) → pi are the extremal
points of Π. This is a finite set, invariant under f , so there is M such that each pi
is fixed by fM and therefore an eigenvector of AM associatedto a poistive eigenvalue.
By reordering the pi, we can assume that the corresponding eigenvalues of AM are
λ1 > λ2 > . . . > λN .

1. If λ2 = λ1 and p1 6= p2, then we can find v = α1p1 + α2p2 ∈ ∂C. This is also an
eigenvector of AM , so AkMv ∈ ∂C for all k, but this contradicts that AmC ∈ Co.

2. If λ2 < λ1, then take v = p2−εp1 ∈ C (for ε > 0 sufficiently small), and note that
AkMv = λkM2 p2 − ελkM1 p1 cannot be contained in C for all k. This contradicts
again the invariance of C. Hence, all pi coincide, and it is the unique fixed point
of f .

3. To show that λ1 has multiplicity one, assume by contradiction that there is a
generalised eigenvector v ∈ S with AMv = λv + p1. Then also AkMv = λkv +
kλk−1p1. Take w = p1 − εv ∈ C for some small ε > 0. Then AkMw = λk−1(λ −
εk)v − ελnv which cannot be contained in c for large k. This again contradticts
that AMC ⊂ C.
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4. Finally, suppose that µ is some eigenvalue, not necessarily associated with an
eigenvector in S, such that |µ| > λ1. There is a AM -invariant subspace V (possibly
of dimension two if µ /∈ R) such that AM : V → V is the composition of an
isometry and a dilatation by a factor |µ|. In particular, there is a subsequence
(kj) such that |µ|−kjAkjMv → v for every v ∈ V . Take v ∈ V so that w :=
v + p1 ∈ ∂C. Then |µ|−kjAkjMw → w, contradicting that AmC ⊂ Co. Hence all
other eigenvectors of AM are strictly smaller than λ1.

The proof now follows by taking λ = λ
1/M
1 .

16.2 Parry measure

For the full shift (Σ, σ) with Σ = {0, . . . , N − 1}N0 or Σ = {0, . . . , N − 1}Z, we have
htop(σ) = logN , and the ( 1

N
, . . . , 1

N
)-Bernoulli measure µ indeed achieves this maxi-

mum: hµ(σ) = htop(σ). Hence µ is a (and in this case unique) measure of maximal
entropy. The intuition to have here is that for a measure to achieve maximal entropy,
it should distribute its mass as evenly over the space as possible. But how does this
work for subshifts, where it is not immediately obvious how to distribute mass evenly?

For subshifts of finite type, Parry [15] demonstrated how to construct the measure of
maximal entropy, which is now called after him. Let (ΣA, σ) be a subshift of finite type
on alphabet {0, . . . , N − 1} with transition matrix A = (Ai,j)

N−1
i,j=0, so x = (xn) ∈ Σn if

and only if Axn,xn+1 = 1 for all n. Let us assume that A is aperiodic and irreducible.
Then by the Perron-Frobenius Theorem for matrices, there is a unique real eigenvalue,
of multiplicity one, which is larger in absolute value than every other eigenvalue, and
htop(σ) = log λ. Furthermore, by irreducibility of A, the left and right eigenvectors u =
(u0, . . . , uN−1) and v = (v0, . . . , vN−1)T associated to λ are unique up to a multiplicative
factor, and they can be chosen to be strictly positive. We will scale them such that

N−1∑
i=0

uivi = 1.

Now define the Parry measure by

pi := uivi = µ([i]),

pi,j :=
Ai,jvj
λvi

= µ([ij] | [i]),

so pi,j indicates the conditional probability that xn+1 = j knowing that xn = i. There-
fore µ([ij]) = µ([i])µ([ij] | [i]) = pipi,j. It is stationary (i.e., shift-invariant) but not
quite a product measure, but µ([im . . . in]) = pim · pim,im+1 · · · pin−1,in .

Theorem 20. The Parry measure µ is the unique measure of maximal entropy for a
subshift of finite type with aperiodic irreducible transition matrix.
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Proof. In this proof, we will only show that hµ(σ) = htop(σ) = log λ, and skip the (more
complicated) uniqueness part.

The definitions of mass of 1-cylinders and 2-cylinders are compatible, because (since v
is a right eigenvector)

N−1∑
j=0

µ([ij]) =
N−1∑
j=0

pipi,j = pi

N−1∑
j=0

Ai,jvj
λvi

= pi
λvi
λvi

= pi = µ([i]).

Summing over i, we get
∑N−1

i=0 µ([i]) =
∑N−1

i=0 uivi = 1, due to our scaling.

To show that µ is shift-invariant, we take any cylinder set Z = [im . . . in] and compute

µ(σ−1Z) =
N−1∑
i=0

µ([iim . . . in]) =
N−1∑
i=0

pipi,im
pim

µ([im . . . in])

= µ([im . . . in])
N−1∑
i=0

uivi Ai,imvim
λvi uimvim

= µ(Z)
N−1∑
i=0

uiAi,im
λuim

= µ(Z)
λuim
λuim

= µ(Z).

This invariance carries over to all sets in the σ-algebra B generated by the cylinder sets.

Based on the interpretation of conditional probabilities, the identity

N−1∑
im+1,...,in=0

Aik,ik+1
=1

pimpim,im+1 · · · pin−1,in = pim and
N−1∑

im,...,in−1=0

Aik,ik+1
=1

pimpim,im+1 · · · pin−1,in = pin (30)

follows because the left hand side indicates the total probability of starting in state im
and reach some state after n−m steps, respectively start at some state and reach state
n after n−m steps.

To compute hµ(σ), we will confine ourselves to the partition P of 1-cylinder sets; this
partition is generating, so this restriction is justified by Theorem 17.

Hµ(
n−1∨
k=0

σ−kP) = −
N−1∑

i0,...,in−1=0

Aik,ik+1
=1

µ([i0 . . . in−1]) log µ([i0 . . . in−1])

= −
N−1∑

i0,...,in−1=0

Aik,ik+1
=1

pi0pi0,i1 · · · pin−1,in

(
log pi0 + log pi0,i1 + · · ·+ log pin−2,in−1

)

= −
N−1∑
i0=0

pi0 log pi0 − (n− 1)
N−1∑
i,j=0

pipi,j log pi,j,
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by (30) used repeatedly. Hence

hµ(σ) = lim
n→∞

1

n
Hµ(

n−1∨
k=0

σ−kP)

= −
N−1∑
i,j=0

pipi,j log pi,j

= −
N−1∑
i,j=0

uiAi,jvj
λ

(logAi,j + log vj − log vi − log λ) .

The first term in the brackets is zero because Ai,j ∈ {0, 1}. The second term (summing
first over i) simplifies to

−
N−1∑
j=0

λujvj
λ

log vj = −
N−1∑
j=0

ujvj log vj,

whereas the third term (summing first over j) simplifies to

N−1∑
i=0

uiλvi
λ

log vi =
N−1∑
i=0

uivi log vi.

Hence these two terms cancel each other. The remaining term is

N−1∑
i,j=0

uiAi,jvj
λ

log λ =
N−1∑
i=0

uiλvi
λ

log λ =
N−1∑
i=0

uivi log λ = log λ.

Remark 4. There are systems without maximising measure, for example among the
“shifts of finite type” on infinite alphabets. To give an example (without proof, see [7]),
if N is the alphabet, and the infinite transition matrix A = (Ai,j)i,j∈N is given by

Ai,j =

{
1 if j > i− 1,
0 if j < i− 1,

then htop(σ) = log 4, but there is no measure of maximal entropy.

Exercise 6. Find the maximal measure for the Fibonacci subshift of finite type. What
is the limit frequency of the symbol zero in µ-typical sequences x?
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