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1 Notation

Throughout, (X, d) will be a metric space, possibly compact, and T : X → X will be
a (piecewise) continuous map. The combination (X,T ) defines dynamical systems by
means of iteration. The orbit of a point x ∈ X is the set

orb(x) = {x, T (x), T ◦ T (x), . . . , T ◦ · · · ◦ T︸ ︷︷ ︸
n times

(x) =: T n(x), · · · } = {T n(x) : n > 0},

and if T is invertible, then orb(x) = {T n(x) : n ∈ Z} where the negative iterates are
defined as T−n = (T inv)n. In other words, we consider n ∈ N (or n ∈ Z) as discrete
time, and T n(x) is the position the point x takes at time n.

Definition 1. We call x a fixed point if T (x) = x; periodic if there is n > 1 such
that T n(x) = x; recurrent if x ∈ orb(x).

In general chaotic dynamical systems most orbits are more complicated than periodic
(or quasi-periodic as the irrational rotation Rα discussed below). The behaviour of such
orbits is hard to predict. Ergodic Theory is meant to help in predicting the behaviour
of typical orbits, where typical means: almost all points x for some (invariant) measure
µ.

To define measures properly, we need a σ-algebra B of “measurable” subsets. σ-algebra
means that the collection B is closed under taking complements, countable unions and
countable intersections, and also that ∅, X ∈ B. Then a measure µ is a function
µ : B → R+ that is countably subadditive: µ(∪iAi) 6

∑
i µ(A)i (with equality if the

sets Ai are pairwise disjoint). To makeour lives a bit easier, in these notes, we let B be
the σ-algebra of Borel sets; this is the small σ-algebra that contains all open sets.

Example: For a subset A ⊂ X, define

ν(A) = lim
n→∞

1

n

n−1∑
i=0

1A ◦ T ix,

for the indicator function 1A, assuming for the moment that this limit exists. We
call this the visit frequency of x to the set A. We can compute

lim
n→∞

1

n

n−1∑
i=0

1A ◦ T ix = lim
n→∞

1

n

(
n−1∑
i=0

1A ◦ T i+1x+ 1Ax− 1A(T nx)

)

= lim
n→∞

1

n

(
n−1∑
i=0

1T−1A ◦ T ix+ 1Ax− 1A(T nx)

)

= lim
n→∞

1

n

n−1∑
i=0

1T−1A ◦ T ix = ν(T−1(A))
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That is, visit frequency measures, when well-defined, are invariant under the map.
This allows us to use invariant measure to make statistical predictions of what orbit do
“on average”.

Let B0 be the collection of subsets A ∈ B such that µ(A) = 0, that is: B0 are the null-
sets of µ. We say that an event happens almost surely (a.s.) or µ-almost everywhere
(µ-a.e.) if it is true for all x ∈ X \ A for some A ∈ B0.

A measure µ on (X,T,B) is called

• non-singular if A ∈ B0 implies T−1(A) ∈ B0.

• non-atomic if µ({x}) = 0 for every x ∈ X

• T -invariant if µ(T−1(A)) = µ(A) for all A ∈ B.

• finite if µ(X) < ∞. In this case we can always rescale µ so that µ(X) = 1, i.e.,
µ is a probability measure.

• σ-finite if there is a countable collection Xi such that X = ∪iXi and µ(Xi) 6 1
for all i. In principle, finite measures are also σ-finite, but we would like to reserve
the term σ-finite only for infinite measures (i.e., µ(X) =∞).

Lemma 1. Let T : X → X be a continuous map on a compact space X. Then µ is
T -invariant if and only if ∫

X

fdµ =

∫
X

f ◦ T dµ

for every f ∈ C(X). (Here C(X) is the space of all continuous functions on X,
equipped with the norm ‖ ‖∞.)

Proof. Assume that µ is T -invariant and A ∈ B is some measurable set. Then∫
X

1A ◦ T dµ = µ(T−1A) = µ(A) =

∫
X

1A dµ.

A similar expression works for linear combinations of indicator sets. Now if f is con-
tinuous, and ε > 0 is arbitrary, then due to uniform continuity, there is a partition of
X into measurable sets Aj and factors aj ∈ R such that for g =

∑
j aj1Aj , we have

‖f − g‖∞ < ε. Now∣∣∣∣∫ f ◦ T dµ−
∫
f dµ

∣∣∣∣ =

∣∣∣∣∫ (f − g) ◦ T dµ−
∫
f − g dµ

+
∑
j

aj

∫
1Aj ◦ T dµ−

∑
j

aj

∫
1Aj dµ

∣∣∣∣∣
≤ 2ε
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Since ε is arbitrary,
∫
f ◦ T dµ =

∫
f dµ.

Conversely, for every closed set A and ε > 0, we can find a function f ∈ C(X) such
that f ≡ 1 on A and

∫
|f − 1A| dµ < ε as well as

∫
|f − 1A| ◦ T dµ < ε. Then

|µ(T−1A)− µ(A)| = |
∫

1A ◦ T dµ−
∫

1A dµ|

= |
∫

(f − 1A) ◦ T dµ−
∫

(f − 1A) dµ| ≤ 2ε.

Since ε is arbitrary, we get µ(T−1A) = µ(A). Because the closed sets generate the Borel
σ-algebra, this property carries over to all A ∈ B.

2 What are the invariant measures of the cat map?

The following example is called Arnol’d’s cat map.

Example: Let T : R2 → R2 be defined by

T

(
x
y

)
= M

(
x
y

)
for matrix M =

(
2 1
1 1

)
.

Note that T is a bijection of R2, with 0 as single fixed point. Therefore the Dirac
measure δ0 is T -invariant. However, also Lebesgue measure m is invariant because
(using coordinate transformation x = T−1(y))

m(T−1A) =

∫
T−1A

dm(x) =

∫
A

det(M−1)dm(y) =

∫
A

1

det(M)
dm(y) = m(A)

because det(M) = 1. This is a general fact: If T : Rn → Rn is a bijection with Jacobian
J = | det(DT )| = 1, then Lebesgue measure is preserved. However, Lebesgue measure
is not a probability measure (it is σ-finite). In the above case of the integer matrix with
determinant 1, T preserves (and is a bijection) on Z2. Therefore we can factor out over
Z2 and obtain a map on the two-torus T2 = R2/Z2:

T : T2 → T2(
x
y

)
7→M

(
x
y

)
(mod 1)

This map is called Arnol’d’s cat-map, and it preserves Lebesgue measure, which on T2

is a probability measure.

A special case of the above is:
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Proposition 1. If T : U ⊂ Rn → U is an isometry (or piecewise isometric bijection),
then T preserves Lebesgue measure.

Let M(X,T ) denote the set of T -invariant Borel1 probability measures. In general,
there are always invariant measures.

Theorem 1 (Krylov-Bogol’ubov). If T : X → X is a continuous map on a nonempty
compact metric space X, then M(X,T ) 6= ∅.

Proof. Let ν be any probability measure and define Césaro means:

νn(A) =
1

n

n−1∑
j=0

ν(T−jA),

these are all probability measures. The collection of probability measures on a compact
metric space is known to be compact in the weak∗ topology, i.e., there is limit probability
measure µ and a subsequence (ni)i∈N such that for every continuous function ψ : X → R:∫

X

ψ dνni →
∫
ψ dµ as i→∞. (1)

On a metric space, we can, for any ε > 0 and closed set A, find a continuous function
ψA : X → [0, 1] such that ψA(x) = 1 if x ∈ A and

µ(A) 6
∫
X

ψAdµ 6 µ(A) + ε and µ(T−1A) 6
∫
X

ψA ◦ T dµ 6 µ(T−1A) + ε.

Here we use outer regularity of the measure µ: µ(A) = inf{µ(G) : G ⊃ A is open}. We
take G ⊃ A so small that µ(G) − µ(A) < ε and make sure that ψA = 0 for all x /∈ G.
Note that it is important that A is closed, because if there exists a ∈ ∂A \A, then the
above property fails for µ = δa.

By Lemma 1 and the definition of µ

|µ(T−1(A))− µ(A)| 6

∣∣∣∣∫ ψA ◦ T dµ−
∫
ψA dµ

∣∣∣∣+ ε

= lim
i→∞

∣∣∣∣∫ ψA ◦ T dνni −
∫
ψA dνni

∣∣∣∣+ ε

= lim
i→∞

1

ni

∣∣∣∣∣
ni−1∑
j=0

(∫
ψA ◦ T j+1 dν −

∫
ψA ◦ T j dν

)∣∣∣∣∣+ ε

6 lim
i→∞

1

ni

∣∣∣∣∫ ψA ◦ T ni dν −
∫
ψA dν

∣∣∣∣+ ε

6 lim
i→∞

2

ni
‖ψA‖∞ + ε = ε.

1that is, sets in the σ-algebra of sets generated by the open subsets of X.
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Since ε > 0 is arbitrary, µ(T−1(A)) = µ(A). The closed sets generate the Borel sets, so
µ(T−1(A)) = µ(A) for arbitrary Borel sets too.

3 Ergodicity and unique ergodicity

Definition 2. A measure is called ergodic if T−1(A) = A (mod µ) for some A ∈ B
implies that µ(A) = 0 or µ(Ac) = 0.

Here mod µ means “up to a set of µ-measure zero. Here specifically, it means thatthe
symmetric difference has measure µ(A4T−1A) = 0.

Proposition 2. The following are equivalent:

(i) µ is ergodic;

(ii) If ψ ∈ L1(µ) is T -invariant, i.e., ψ ◦ T = ψ µ-a.e., then ψ is constant µ-a.e.

Proof. (i) ⇒ (ii): Let ψ : X → R be T -invariant µ-a.e., but not constant. Thus
there exists a ∈ R such that A := ψ−1((−∞, a]) and Ac = ψ−1((a,∞)) both have
positive measure. By T -invariance, T−1A = A (mod µ), and we have a contradiction
to ergodicity.
(ii) ⇒ (i): Let A be a set of positive measure such that T−1A = A. Let ψ = 1A be
its indicator function; it is T -invariant because A is T -invariant. By (ii), ψ is constant
µ-a.e., but as ψ(x) = 0 for x ∈ Ac, it follows that µ(Ac) = 0.

The rotation Rα : S1 → S1 is defined as Rα(x) = x+ α (mod 1).

Theorem 2 (Poincaré). If α ∈ Q, then every orbit is periodic.

If α /∈ Q, then every orbit is dense in S1. In fact, for every interval J and every x ∈ S1,
the visit frequency

v(J) := lim
n→∞

1

n
#{0 6 i < n : Ri

α(x) ∈ J} = |J |.

Proof. If α = p
q
, then clearly

Rq
α(x) = x+ qα (mod 1) = x+ q

p

q
(mod 1) = x+ p (mod 1) = x.

Conversely, if Rq
α(x) = x, then x = x+ qα (mod 1), so qα = p for some integer p, and

α = p
q
∈ Q.
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Therefore, if α /∈ Q, then x cannot be periodic, so its orbit is infinite. Let ε > 0. Since S1

is compact, there must be m < n such that 0 < δ := d(Rm
α (x), Rn

α(x)) < ε. Since Rα is

an isometry, |Rk(n−m)
α (x)−R(k+1)(n−m)

α (x)| = δ for every k ∈ Z, and {Rk(n−m)
α (x) : k ∈ Z}

is a collection of points such that every two neighbours are exactly δ apart. Since ε > δ
is arbitrary, this shows that orb(x) is dense, but we want to prove more.

Let J0
δ = [Rm

α (x), Rn
α(x)) and Jkδ = R

k(n−m)
α (Jδ). Then for K = b1/δc, {Jkδ }Kk=0 is a

cover S1 of adjacent intervals, each of length δ, and R
j(n−m)
α is an isometry from J iδ to

J i+jδ . Therefore the visit frequencies

vk = lim inf
n

1

n
#{0 6 i < n : Ri

α(x) ∈ Jkδ }

are all the same for 0 6 k 6 K, and together they add up to at most 1+ 1
K

. This shows
for example that

1

K + 1
6 vk 6 vk := lim sup

n

1

n
#{0 6 i < n : Ri

α(x) ∈ Jkδ } 6
1

K
,

and these inequalities are independent of the point x. Now an arbitrary interval J
can be covered by b|J |/δc+ 2 such adjacent Jkδ , so

v(J) 6

(
|J |
δ

+ 2

)
1

K
6 (|J |(K + 1) + 2)

1

K
6 |J |+ 3

K
.

A similar computation gives v(J) > |J | − 3
K

. Now taking ε → 0 (hence δ → 0 and
K →∞), we find that the limit v(J) indeed exists, and is equal to |J |.

Definition 3. A transformation (X,T ) is called uniquely ergodic if there is exactly
one invariant probability measure.

The above proof shows that Lebesgue measure is the only invariant measure if α /∈ Q,
so (S1, Rα) is uniquely ergodic. However, there is a missing step in the logic, in that
we didn’t show yet that Lebesgue measure is ergodic. This will be shown in Example 4
and also Theorem 10.

Questions: Does Rα preserve a σ-finite measure? Does Rα preserve a non-atomic
σ-finite measure?

Theorem 3. [Oxtoby’s Theorem] Let X be a compact space and T : X → X continuous.
A transformation (X,T ) is uniquely ergodic if and only if, for every continuous function,
the Birkhoff averages 1

n

∑n−1
i=0 f ◦ T i(x) converge uniformly to a constant function.

Remark 1. Every continuous map on a compact space has an invariant measure, as
we showed in Theorem 1. Theorem 10 later on shows that if there is only one invariant
measure, it has to be ergodic as well.
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Proof. If µ and ν were two different ergodic measures, then we can find a continuous
function f : X → R such that

∫
fdµ 6=

∫
fdν. Using the Ergodic Theorem for both

measures (with their own typical points x and y), we see that

lim
n→∞

1

n

n−1∑
k=0

f ◦ T k(x) =

∫
fdµ 6=

∫
fdν = lim

n→∞

1

n

n−1∑
k=0

f ◦ T k(y),

so there is not even convergence to a constant function.

Conversely, we know by the Ergodic Theorem that limn
1
n

∑n−1
k=0 f ◦ T k(x) =

∫
fdµ is

constant µ-a.e. But if the convergence is not uniform, then there is a sequence (yi) ⊂ X
and (ni) ⊂ N, such that B := limi

1
ni

∑ni−1
k=0 f ◦ T k(yi) 6=

∫
X
f dµ. Define probability

measures νi := 1
ni

∑ni−1
k=0 δTk(xi). This sequence (νi) has a weak accumulation points ν

which is shown to be T -invariant measures in the same way as in the proof of Theorem 1.
But ν 6= µ because

∫
f dν = B 6=

∫
f dµ. Hence (X,T ) cannot be uniquely ergodic.

4 The Ergodic Theorem

Theorem 2 is an instance of a very general fact observed in ergodic theory:

Space Average = Time Average (for typical points).

This is expressed in the

Theorem 4 (Birkhoff Ergodic Theorem). Let µ be a probability measure and ψ ∈ L1(µ).
Then the ergodic average

ψ∗(x) := lim
n→∞

1

n

n−1∑
i=0

ψ ◦ T i(x)

exists µ-a.e., and ψ∗ is T -invariant, i.e., ψ∗ ◦ T = ψ∗ µ-a.e. If in addition µ is ergodic
then

ψ∗ =

∫
X

ψ dµ µ-a.e. (2)

Remark 2. A point x ∈ X satisfying (2) is called typical for µ. To be precise, the set
of µ-typical points also depends on ψ, but for different functions ψ, ψ̃, the (µ, ψ)-typical
points and (µ, ψ̃)-typical points differ only on a null-set.

Corollary 1. Lebesgue measure is the only Rα-invariant probability measure.

Proof. Suppose Rα had two invariant measures, µ and ν. Then there must be an interval
J such that µ(J) 6= ν(J). Let ψ = 1J be the indicator function; it will belongs to L1(µ)
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and L1(ν). Apply Birkhoff’s Ergodic Theorem for some µ-typical point x and ν-typical
point y. Since their visit frequencies to J are the same, we have

µ(J) =

∫
ψ dµ = lim

n

1

n
#{0 6 i < n : Rα(x) ∈ J}

= lim
n

1

n
#{0 6 i < n : Rα(y) ∈ J} =

∫
ψ dν = ν(J),

a contradiction to µ and ν being different.

If 0.x1x2x3 . . . is the decimal expansion of some x ∈ [0, 1], you would expect that
”typically“, all digits 0, 1, . . . , 9 appear with the same frequency. In fact, so should all
blocks of N digits, that is: for every a1 . . . aN ∈ {0, 1, . . . , 9}N , the frequency

lim
n→∞

1

n
#{0 ≤ i < n : xi + 1 . . . xi+N = a1 . . . aN} = 10−N .

If a number x ∈ [0, 1] has this property, it is called a normal number; they are in way
the most random numbers with the least special structure that one can hope for. Borel
proved in 1909:

Theorem 5. Lebesgue-a.e. x ∈ [0, 1] is normal. In fact, this results holds for every
base b ∈ {2, 3, 4, . . . }.

Borel’s theorem predates Birkhoff’s theorem (1931), but this theorem gives a very short
way of proving Borel’s result.

Proof. Fix the base b ∈ {2, 3, 4, . . . } and let T : [0, 1] → [0, 1] be defined as T (x) = bx
(mod 1). It has b branches with domains denoted [a], a ∈ {0, . . . b − 1}. Lebesgue
measure µ is invariant and ergodic (we prove that somewhere else). Take a1 . . . aN ∈
{0, . . . , b−1}N arbitrary, and define the cylinder set [a1 . . . aN ] = {x ∈ [0, 1] : T k−1(x) ∈
[ak]}. That means that x ∈ [a1 . . . aN ] if its b-nary expansion starts with 0.a1 . . . aN .

The indicator function 1[a1...aN ] ∈ L1(µ), so by Theorem 4,

lim
n→∞

1

n

n−1∑
k=0

1[a1...aN ] ◦ T k(x) =

∫ 1

0

1[a1...aN ] dx = b−N

for µ-a.e. x. This concludes the proof.

Now that we know that almost every x ∈ [0, 1] is normal, it is tempting to find one
such number explicitly. That is not easy! The standard example is

x = 0.12345678910111213141516171819202122 . . .

11



This x is known as Champernowne’s number, but it doesn’t look random at all! Similar
normal numbers can be obtained by concatenating the primes 0.23571113 . . . (Copeland
& Erdös, 1946) or the squares 0.149162536 . . . (Besicovich, 1953).

Now we start with the proof of Theorem 4. The Koopman operator UT : L1(µ) →
L1(µ) is defined as UTf = f ◦ T . Clearly UT is linear and positive, i.e., f ≥ 0 implies
UTf ≥ 0. For the next result, we write the ergodic sums as

Sn = Snf =
n−1∑
k=0

f ◦ T k and quadS0 ≡ 0.

Theorem 6 (Maximal Ergodic Theorem). Let (X,T,B, µ) be a probability measure
preserving dynamical system. Take MN = max{Sn : 0 ≤ n ≤ N}. Then∫

AN

f dµ ≥ 0 for AN = {x ∈ X : MN(x) > 0}.

Proof. Clearly MN ≥ Sn for all 0 ≤ n ≤ N and by positivity of the Koopman operator,
also UTMN ≥ UTSn. Add f on both sides: UTMN + f ≥ UTSn + f = Sn+1. For
x ∈ x ∈ AN , this means

UTMN(x) + f(x) ≥ max
1≤n≤N

Sn(x)

= max
0≤n≤N

Sn(x) since S0 = 0 and MN(x) > 0

= MN(x).

Therefore f ≥MN − UTMN on AN , and∫
AN

f dµ ≥
∫
AN

MN dµ−
∫
AN

UTMN dµ

=

∫
X

MN dµ−
∫
AN

UTMN dµ because MN = 0 outside AN

=

∫
X

MN dµ−
∫
X

UTMN dµ because UTMN ≥MN ≥ 0

= 0 by T -invariance of µ.

This completes the proof.

Remark 3. In fact, the only property of UT we really need is that UT is positive and
‖UT‖ = 1. This follows by T -invariance of µ, because

‖UTf‖1 =

∫
X

|UTf | dµ =

∫
X

|f | ◦ T dµ =

∫
X

|f | dµ = ‖f‖1.
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Lemma 2. Let (X,T,B, µ) be a probability measure preserving dynamical system, and
E ⊂ X a T -invariant subset. Let Bα := {x ∈ X : supn

1
n
Sng(x) > α}. Then∫

Bα∩E g dµ ≥ αµ(Bα ∩ E).

Proof. If µ(E) = 0 then there is nothing to prove. So assume that µ(E) > 0 and let
µE = 1

µ(E)
µ|E be a new invariant (because E is a T -invariant set) probability mea-

sure. Take f = g − α, so Bα = ∪NAN with the notation of Theorem 6. Note also
that AN ⊂ AN+1 for all N . Therefore for each ε > 0 there exists N ∈ N such that∫
Bα
f dµE ≥

∫
AN

fdµE ≥ −ε. Since ε is arbitrary,
∫
Bα
f dµE ≥ 0. Adding α again we

have
∫
Bα
g dµE =

∫
Bα
f +α dµE ≥ αµE(Bα ∩E). Finally, multiply everything by µ(E)

to get the required result.

Proof of Theorem 4. Define

ψ = lim sup
n→∞

1

n
Snψ and ψ = lim inf

n→∞

1

n
Snψ.

Since |n+1
n

1
n+1

Sn+1ψ − 1
n
Snψ ◦ T | = 1

n
|f(x)| → 0 as n → ∞, we have ψ ◦ T = ψ and

similarly ψ ◦ T = ψ. We want to show that ψ = ψ µ-a.e.

Let
Eα,β = {x ∈ X : ψ∗(x) < β, α < ψ∗(x)}

Then Eα,β is T -invariant, and

{x ∈ X : ψ∗(x) < ψ∗(x)} =
⋃

α,β∈Q,β<α

Eα,β.

This is a countable union, and therefore it suffices to show that µ(Eα,β) = 0 for every
pair of rationals β < α. Write Bα := {x ∈ X : supn

1
n
Snψ(x) > α} as in Lemma 2.

Since Eα,β = Eα,β ∩Bα, this corollary gives∫
Eα,β

ψ dµ =

∫
Eα,β∩Bα

ψ dµ ≥ αµ(Eα,β ∩Bα) = αµ(Eα,β).

We repeat this argument replacing ψ, α, β by −ψ,−α,−β. Note that (−ψ)∗ = −ψ∗
and (−ψ)∗ = −ψ∗. This gives ∫

Eα,β

ψ dµ ≤ βµ(Eα,β).

Since β < α, this can only be true if µ(Eα,β) = 0. Therefore ψ = ψ = ψ∗, i.e., the
lim sup / lim inf is actually a lim µ-a.e.

The next step is to show that ψ ∈ L1(µ). Fatou’s Lemma (from Measure Theory)
states that
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If (gn)n∈N are non-negative L1(µ)-functions and g(x) = lim infn gn(x), then
g ∈ L1(µ) and

∫
X
g dµ ≤ lim infn

∫
X
gn dµ.

Here we apply this to gn = | 1
n
Snψ|, which belong to L1(µ) because (by T -invariance)∫

X
| 1
n
Snψ| dµ ≤ 1

n

∑n−1
k=0

∫
X
|ψ|◦T k dµ =

∫
|ψ| dµ <∞. Hence

∫
X
|ψ∗| dµ ≤ lim infn

∫
X
|ψ| dµ <

∞.

Next, we need to show that
∫
ψ∗ dµ =

∫
ψ dµ (so without absolute value signs). Take

Dk,n = {x ∈ X :
k

n
≤ ψ∗(x) <

k + 1

n
}.

Then Dk,n is T -invariant, and ∪k∈ZDk,n = X. For ε > 0 small, Dk,n ∩ B k
n
−ε = Dk,n.

Therefore Lemma 2 gives∫
Dk,n

ψ dµ =

∫
Dk,n∩B k

n−ε

ψ dµ ≥ (
k

n
− ε)µ(Dk,n ∩B k

n
−ε) = (

k

n
− ε)µ(Dk,n).

Since ε is arbitrary, we have k
n
µ(Dk,n) ≤

∫
Dk,n

ψ dµ. Therefore∫
Dk,n

ψ∗ dµ ≤ k + 1

n
µ(Dk,n) ≤ 1

n
µ(Dk,n) +

∫
Dk,n

ψ dµ.

Summing over all k ∈ Z, we find
∫
X
ψ∗ dµ ≤ 1

n
+
∫
X
ψ dµ, and since n ∈ N is arbitrary,∫

X
ψ∗ dµ ≤

∫
X
ψ dµ, Applying the same argument to −ψ, we find

∫
X
ψ∗ dµ ≥

∫
X
ψ dµ.

Hence
∫
X
ψ∗ =

∫
X
ψ dµ.

Finally, if µ is ergodic, the T -invariant function ψ∗ has to be constant µ-a.e., so ψ∗ =∫
ψ dµ.

Theorem 7 (The Lp Ergodic Theorem). Let (X,T,B, µ) be a probability measure pre-
serving dynamical system. If µ is ergodic, and ψ ∈ Lp(µ) for some 1 ≤ p < ∞ then
there exists ψ∗ ∈ Lp(µ) with ψ∗ ◦ T = ψ∗ µ-a.e. such that

‖ 1

n
Snψ − ψ∗‖p → 0 as n→∞.

This is a generalisation of Von Neumann’s L2 version of the Ergodic Theorem, which
predates2 Birkhoff’s Theorem, but nowadays, it is usually proved as a corollary of the
pointwise ergodic theorem, and that is also what we do in the proof below.

2named after George Birkhoff (1884–1944). There was a controversy on priority of the Ergodic
Theorem: John von Neumann was earlier in proving his L1-version, but Birkhoff delayed its publication
until after the appearance of his own paper.
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Proof. First assume that ψ is bounded (and hence in Lp(µ). By Theorem 4, there is
ψ∗ such that 1

n
Snψ(x)→ ψ∗(x) µ-a.e., and ψ∗ is bounded (and hence in Lp(µ) too). In

particular, | 1
n
Snψ(x)− ψ∗(x)|p → 0 µ-a.e. By the Bounded Convergence Theorem,

we can swap the limit and the integral:

lim
n→∞

‖ 1

n
Snψ − ψ∗‖p = lim

n→∞

(∫
X

| 1
n
Snψ(x)− ψ∗(x)|p dµ

)1/p

=

(∫
X

lim
n→∞

| 1
n
Snψ(x)− ψ∗(x)|p dµ

)1/p

= 0.

In particular, 1
n
Snψ is a Cauchy sequence in ‖ ‖p, so for every ε > 0 there is N = N(ε, ψ)

such that

‖ 1

m
Smψ −

1

n
Snψ‖p <

ε

2
(3)

for all m,n ≥ N .

Now if φ ∈ Lp(µ) is unbounded, we want to show that 1
n
Snφ is a Cauchy sequence in

‖ ‖p. Let ε > 0 be arbitrary, and take ψ bounded such that ‖φ − ψ‖p < ε/4. Note
that by T -invariance, ‖ 1

n
Snφ− 1

n
Snψ‖p ≤ ‖φ− ψ‖p for all n ≥ 1. Therefore, using the

triangle inequality and (3) above,

‖ 1

m
Smφ−

1

n
Snφ‖p ≤ ‖ 1

m
Smφ−

1

m
Smψ‖p + ‖ 1

m
Smψ −

1

n
Snψ‖p + ‖ 1

n
Snφ−

1

n
Snψ‖p

<
ε

4
+
ε

2
+
ε

4
= ε

for all m,n ≥ N(ε, ψ). Hence 1
n
Snφ is Cauchy in ‖ ‖p and thus converges to φ∗ =

limn
1
n
Snψ. Since ∣∣∣n+ 1

n

1

n+ 1
Sn+1φ(x)− 1

n
Snφ ◦ T (x)

∣∣∣ = | 1
n
φ(x)|

for all x, it follows by taking the limit n→∞ that φ∗ = φ∗ ◦ T µ-a.e.

5 Absolute continuity and invariant densities

Definition 4. A measure µ is called absolutely continuous w.r.t. the measure ν
(notation: µ� ν) if ν(A) = 0 implies µ(A) = 0. If both µ� ν and ν � µ, then µ and
ν are called equivalent.

Proposition 3. Suppose that µ� ν are both T -invariant probability measures, with a
common σ-algebra B of measurable sets. If ν is ergodic, then µ = ν.
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Proof. First we show that µ is ergodic. Indeed, otherwise there is a T -invariant set A
such that µ(A) > 0 and µ(Ac) > 0. By ergodicity of ν at least one of A or Ac must
have ν-measure 0, but this would contradict that µ� ν.

Now let A ∈ B and let Y ⊂ X be the set of ν-typical points. Then ν(Y c) = 0 and hence
µ(Y c) = 0. Applying Birkhoff’s Ergodic Theorem to µ and ν separately for ψ = 1A
and some µ-typical y ∈ Y , we get

µ(A) = lim
n

1

n

n−1∑
i=0

ψ ◦ T (y) = ν(A).

But A ∈ B was arbitrary, so µ = ν.

Theorem 8 (Radon-Nikodym). If µ is a probability measure and µ � ν then there
is a function h ∈ L1(ν) (called Radon-Nikodym derivative or density) such that
µ(A) =

∫
A
h(x) dν(x) for every measurable set A.

Sometimes we use the notation: h = dµ
dν

.

Proposition 4. Let T : U ⊂ Rn → U be (piecewise) differentiable, and µ is absolutely
continuous w.r.t. Lebesgue. Then µ is T -invariant if and only if its density h = dµ

dx

satisfies

h(x) =
∑

T (y)=x

h(y)

| detDT (y)|
(4)

for every x.

Proof. The T -invariance means that dµ(x) = dµ(T−1(x)), but we need to be aware
that T−1 is multivalued. So it is more careful to split the space U into pieces Un
such that the restrictions Tn := T |Un are diffeomorphic (onto their images) and write
yn = T−1

n (x) = T−1(x) ∩ Un. Then we obtain (using the change of coordinates)

h(x) dx = dµ(x) = dµ(T−1(x)) =
∑
n

dµ ◦ T−1
n (x)

=
∑
n

h(yn)| det(DT−1
n )(x)|dyn =

∑
n

h(yn)

det |DT (yn)|
dyn,

and the statement follows.

Conversely, if (4) holds, then the above computation gives dµ(x) = dµ ◦ T−1(x), which
is the required invariance.

Example: If T : [0, 1] → [0, 1] is (countably) piecewise linear, and each branch T :
In → [0, 1] (on which T is affine) is onto, then T preserves Lebesgue measure. Indeed,
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the intervals In have pairwise disjoint interiors, and their lengths add up to 1. If sn is the
slope of T : In → [0, 1], then sn = 1/|In|. Therefore

∑
n

1
DT (yn)

=
∑

n
1
sn

=
∑

n |In| = 1.

Example: The map T : R \ {0} → R, T (x) = x − 1
x

is called the Boole transfor-

mation. It is 2-to-1; the two preimages of x ∈ R are y± = 1
2
(x ±

√
x2 + 4). Clearly

T ′(x) = 1 + 1
x2

. A tedious computation shows that

1

|T ′(y−)|
+

1

|T ′(y+)|
= 1.

Indeed, |T ′(y±)| = 1 + 2
x2+2±x

√
x2+4

, 1/|T ′(y±)| = x2+2±x
√
x2+4

x2+4±x
√
x2+4

, and

1

|T ′(y−)|
+

1

|T ′(y+)|
=

x2 + 2− x
√
x2 + 4

x2 + 4− x
√
x2 + 4

+
x2 + 2 + x

√
x2 + 4

x2 + 4 + x
√
x2 + 4

=
(x2 + 2− x

√
x2 + 4)(x2 + 4 + x

√
x2 + 4)

(x2 + 4)2 − x2(x2 + 4)

+
(x2 + 2 + x

√
x2 + 4)(x2 + 4− x

√
x2 + 4)

(x2 + 4)2 − x2(x2 + 4)

=
(x2 + 2)2 − x2(x2 + 4) + 2(x2 + 2)− 2x

√
x2 + 4

4(x2 + 4)
+

(x2 + 2)2 − x2(x2 + 4) + 2(x2 + 2) + 2x
√
x2 + 4

4(x2 + 4)

=
4(x2 + 2) + 8

4(x2 + 4)
= 1.

Therefore h(x) ≡ 1 is an invariant density, so Lebesgue measure is preserved.

Example: The Gauß map G : (0, 1] → [0, 1) is defined as G(x) = 1
x
− b 1

x
c. It has

an invariant density h(x) = 1
log 2

1
1+x

. Here 1
log 2

is just the normalising factor (so that∫ 1

0
h(x)dx = 1).

Let In = ( 1
n+1

, 1
n
] for n = 1, 2, 3, . . . be the domains of the branches of G, and for

x ∈ (0, 1), and yn := G−1(x) ∩ In = 1
x+n

. Also G′(yn) = − 1
y2n

. Therefore

∑
n>1

h(yn)

|G′(yn)|
=

1

log 2

∑
n>1

y2
n

1 + yn
=

1

log 2

∑
n>1

1
(x+n)2

1 + 1
x+n

=
1

log 2

∑
n>1

1

x+ n

1

x+ n+ 1

=
1

log 2

∑
n>1

1

x+ n
− 1

x+ n+ 1
telescoping series

=
1

log 2

1

x+ 1
= h(x).
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Exercise 1. Show that for each integer n > 2, the interval map given by

Tn(x) =

{
nx if 0 6 x 6 1

n
,

1
x
− b 1

x
c if 1

n
< x 6 1,

has invariant density 1
log 2

1
1+x

.

Theorem 9 (Folklore Theorem). If T : S1 → S1 is a C2 expanding circle map, then it
preserves a measure µ equivalent to Lebesgue, and µ is ergodic.

Expanding here means that there is λ > 1 such that |T ′(x)| > λ for all x ∈ S1. The
above theorem can be proved in more generality, but in the stated version it conveys
the ideas more clearly.

Proof. First some estimates on derivatives. Using the Mean Value Theorem twice, we
obtain

log
|T ′(x)|
|T ′(y)|

= log(1 +
|T ′(x)| − |T ′(y)|

|T ′(y)|
) 6
|T ′(x)| − |T ′(y)|

|T ′(y)|

=
|T ′′(ξ)| · |x− y|
|T ′(y)|

=
|T ′′(ξ)|
|T ′(y)|

|Tx− Ty|
T ′(ζ)

.

Since T is expanding, the denominators are ≥ λ and since T is C2 on a compact space,
also |T ′′(ξ)| is bounded. Therefore there is some K ≤ sup |T ′′(ξ)|/λ2 such that

log
|T ′(x)|
|T ′(y)|

6 K|T (x)− T (y)|.

The chain rule then gives:

log
|DT n(x)|
|DT n(y)|

=
n−1∑
i=0

log
|T ′(T ix)|
|T ′(T iy)|

6 K

n∑
i=1

|T i(x)− T i(y)|.

Since T is a continuous expanding map of the circle, it wraps the circle d times around
itself, and for each n, there are dn pairwise disjoint intervals Zn such that T n : Zn → S1

is onto, with slope at least λn. If we take x, y above in one such Zn, then |x − y| 6
λ−n|T n(x)− T n(y)| and in fact |T i(x)− T i(y)| 6 λ−(n−i)|T n(x)− T n(y)|. Therefore we
obtain

log
|DT n(x)|
|DT n(y)|

= K

n∑
i=1

λ−(n−i)|T n(x)− T n(y)| 6 K

λ− 1
|T n(x)− T n(y)| 6 logK ′

for some K ′ ∈ (1,∞). This means that if A ⊂ Zn (so T n : A → T n(A) is a bijection),
then

1

K ′
m(A)

m(Zn)
6

m(T nA)

m(T nZn)
=
m(T nA)

m(S1)
6 K ′

m(A)

m(Zn)
, (5)
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where m is Lebesgue measure.

Now we construct the T -invariant measure µ. Take B ⊂ B arbitrary, and set µn(B) =
1
n

∑n−1
i=0 m(T−iB). Then by (5),

1

K ′
m(B) 6 µn(B) 6 K ′m(B).

We can take a weak∗ limit of the µn’s; call it µ. Then

1

K ′
m(B) 6 µ(B) 6 K ′m(B),

and therefore µ and m are equivalent. The T -invariance of µ proven in the same way
as in Theorem 1.

Now for the ergodicity of µ, we need the Lebesgue Density Theorem, which says that
if m(A) > 0, then for m-a.e. x ∈ A, the limit

lim
ε→0

m(A ∩Bε(x))

m(Bε(x))
= 1,

where Bε(x) is the ε-balls around x. Points x with this property are called (Lebesgue)
density points of A. (In fact, the above also holds, if Bε(x) is just a one-sided ε-
neighbourhood of x.)

Assume by contradiction that µ is not ergodic. Take A ∈ B a T -invariant set such that
µ(A) > 0 and µ(Ac) > 0. By equivalence of µ and m, also δ := m(Ac) > 0. Let x be
a density point of A, and Znn be a neighbourhood of x such that T n : Zn → S1 is a
bijection. As n→∞, Zn → {x}, and therefore we can choose n so large (hence Zn so
small) that

m(A ∩ Zn)

m(Zn)
> 1− δ/K ′.

Therefore m(Ac∩Zn)
m(Zn)

< δ/K ′, and using (5),

m(T n(Ac ∩ Zn))

m(T n(Zn))
6 K ′

m(Ac ∩ Zn)

m(Zn)
< K ′δ/K ′ = δ.

Since T n : Ac∩Zn → Ac is a bijection, and m(T nZn) = m(S1) = 1, we get δ = m(Ac) <
δ, a contraction. Therefore µ is ergodic.

6 The Choquet Simplex and the Ergodic Decompo-

sition

Throughout this section, let T : X → X a continuous transformation of a compact
metric space. Recall that M(X) is the collection of probability measures defined on
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X; we saw in (1) that it is compact in the weak∗ topology. In general, X carries many
T -invariant measures. The set M(X,T ) = {µ ∈ M(X) : µ is T -invariant} is called
the Choquet simplex of T . Let Merg(X,T ) be the subset of M(X,T ) of ergodic
T -invariant measures.

ClearlyM(X,T ) = {µ} if (X,T ) is uniquely ergodic. The name “simplex” just reflects
the convexity ofM(X,T ): if µ1, µ2 ∈M(X,T ), then also αµ1 + (1− α)µ2 ∈M(X,T )
for every α ∈ [0, 1].

Lemma 3. The Choquet simplex M(X,T ) is a compact subset of M(X) w.r.t. weak∗

topology.

Proof. Suppose {µn} ⊂ M(X,T ), then by the compactness of M(X), see (1), there is
µ ∈M(X) and a subsequence (ni)i such that for every continuous function f : X → R
such that

∫
fdµni →

∫
fdµ as i → ∞. It remains to show that µ is T -invariant, but

this simply follows from continuity of f ◦ T and∫
f ◦ T dµ = lim

i

∫
f ◦ T dµni = lim

i

∫
f dµni =

∫
f dµ.

Theorem 10. The ergodic measures are exactly the extremal points of the Choquet
simplex.

Proof. First assume that µ is not ergodic. Hence there is a T -invariant set A such that
0 < µ(A) < 1. Define

µ1(B) =
µ(B ∩ A)

µ(A)
and µ2(B) =

µ(B \ A)

µ(X \ A)
.

Then µ = αµ1 + (1− α)µ2 for α = µ(A) ∈ (0, 1) so µ is not an extremal point.

Conversely, suppose that µ is ergodic, and µ = αµ1 + (1 − α)µ2 for some α ∈ (0, 1)
and µ1, µ2 ∈ M(X,T ). Then µ1 � µ and also µ2 � µ. Proposition 3 implies that
µ1 = µ2 = µ, so the convex combination is trivial and µ must be extremal.

The following fundamental theorem implies that for checking the properties of any
measure µ ∈M(X,T ), it suffices to verify the properties for ergodic measures:

Theorem 11 (Ergodic Decomposition). For every µ ∈M(X,T ), there is a measure ν
on the spaces of ergodic measures such that ν(Merg(X,T )) = 1 and

µ(B) =

∫
Merg(X,T )

m(B) dν(m)

for all Borel sets B.

20



Definition 5. The simplex M(X,T ) of T -invariant probability measures is called a
Poulsen simplex if it is not degenerate, but the extremal points (i.e. Merg(X,T ) lie
dense in M(X,T ).

This definition shows what a enormous and complicated space the Choquet simplex
can be. And it is a reality for many dynamical systems, as we will demonstrate, as an
example, for the doubling map.

Proposition 5. The Choquet simplex of the doubling map T : S1 → S1, x 7→ 2x mod 1,
is a Poulsen smplex.

Proof. First note that an equidistribution on periodic orbits is an ergodic measure.
Therefore it suffices to show that the equidistributions lie dense in the Choquet simplex
M(S1, T ).

We claim that for every δ > 0, there is N ∈ N such that for every n ∈ N and x ∈ S1

there is y ∈ S1 such that

• |T k(x)− T k(y)| < δ for all 0 ≤ k < n;

• T n+N(y) = y.

To prove the claim. Take N so large that 2−N < δ and n ∈ N, x ∈ S1 arbitrary. Take y
in the same dyadic interval J of generation n+N as x, so that T n+N(y) = y. Since T n+N

maps J onto S1 this is possible. Also |T k(x)− T k(y)| ≤ |T k(J)| ≤ |T n(J)| = 2−N < δ
for all 0 ≤ k < n.

With this claim, we argue as follows. Let µ ∈ M and m ∈ N be arbitrary. Take x
a typical point for µ, i.e., for every f ∈ C(X), say with ‖f‖∞ ≤ m, limn

1
n

∑n−1
k=0 f ◦

T k(x) =
∫
X
f dµ. We can find a finite collection fj ⊂ C(X) such that for every

f ∈ C(X), ‖f‖∞, there is fj such that |
∫
X
fj dµ−

∫
X
f dµ| < 1/m.

Since fj is continuous, it is uniformly continuous on the compact space X. Hence we
can find δ > 0 such that |x − y| < δ implies |fj(x) − fj(y)| < 1/m for all j. For this
δ > 0, take N ∈ N as in the claim.

Take n > Nm so large that for each fj, | 1n
∑n−1

k=0 f ◦ T k(x)−
∫
X
f dµ| < 1

m
.

Now find the n + N -periodic point y close to x as in the claim. Let ν = νm be the
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equidistribution on the orbit of y. Then we can compute

|
∫
X

f dµ−
∫
X

f dν| ≤ | 1
n

n−1∑
k=0

f ◦ T k(x)− 1

n+N

n+N−1∑
k=0

f ◦ T k(y)|+ 1

m

≤ | 1
n

n−1∑
k=0

fj ◦ T k(x)− 1

n+N

n+N−1∑
k=0

fj ◦ T k(y)|+ 2

m

≤ 1

n
|
n−1∑
k=0

fj ◦ T k(x)− fj ◦ T k(y)|+ N

n+N
‖fj‖∞ +

3

m

≤ 1

n

n−1∑
k=0

1

m
+

3

m
=

4

m
.

In this we can produce such equidistribution νm for each m ∈ N, and the sequence (νm)
converges to µ in the weak∗ topology.

7 Poincaré Recurrence

Theorem 12 (Poincaré’s Recurrence Theorem). If (X,T, µ) is a measure preserving
system with µ(X) = 1, then for every measurable set U ⊂ X of positive measure, µ-a.e.
x ∈ U returns to U , i.e., there is n = n(x) such that T n(x) ∈ U .

Proof of Theorem 12. Let U be an arbitrary measurable set of positive measure. As µ
is invariant, µ(T−i(U)) = µ(U) > 0 for all i > 0. On the other hand, 1 = µ(X) >
µ(∪iT−i(U)), so there must be overlap in the backward iterates of U , i.e., there are
0 6 i < j such that µ(T−i(U)∩T−j(U)) > 0. Take the j-th iterate and find µ(T j−i(U)∩
U) > µ(T−i(U) ∩ T−j(U)) > 0. This means that a positive measure part of the set U
returns to itself after n := j − i iterates.

For the part U ′ of U that didn’t return after n steps, assuming U ′ has positive measure,
we repeat the argument. That is, there is n′ such that µ(T n

′
(U ′) ∩ U ′) > 0 and then

also µ(T n
′
(U ′) ∩ U) > 0.

Repeating this argument, we can exhaust the set U up to a set of measure zero, and
this proves the theorem.

Definition 6. (i) A system (X,T,B, µ) is called conservative if for every set A ∈ B
with µ(A) > 0, there is n > 1 such that µ(T n(A) ∩ A) > 0. The Poincaré Recurrence
Theorem thus states that probability measure preserving systems are conservative.
(ii) The system is called dissipative otherwise, and it is called totally dissipative if for
every set A ∈ B, µ(T n(A) ∩ A) = 0 for every n ≥ 1.
(iii) We call the transformation T recurrent w.r.t. µ if B \ ∪i∈NT−i(B) has zero
measure for every B ∈ B. In fact, this is equivalent to µ being conservative.
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Define the first return time to a set Y as

τY = min{n ≥ 1 : T n(x) ∈ Y }.

The next result quantifies the expected value of the first return time.

Lemma 4 (Kac Lemma). Let (X,T ) preserve an ergodic measure µ. Take Y ⊂ X
measurable such that 0 < µ(Y ) 6 1, and let τ = τY : Y → N be the first return time to
Y . Then ∫

τdµ =
∑
k>1

kµ(Yk) = µ(X)

for Yk := {y ∈ Y : τ(y) = k}.

Proof. First set A = {y ∈ Y : T j(y) /∈ Y for all j ≥ 1}. Then T j(A) ∩ A = ∅ for
all j ≥ 1, so by the Poincaré Recurrence Theorem if µ(X) = 1, or by the assumed
conservativity if µ is infinite, µ(A) = 0. But then also

⋃
j≥0 T

−j(A) = {x ∈ X :

T j(x) ∈ Y finitely often} has zero measure. This shows that µ-a.e. x ∈ X enters Y
infinitely often.

Next define L0 = Y , L1 = T−1(Y ) \ Y and recursively Lj+1 = T−j(Lj) \ Y . In other
words:

Lj = {x ∈ X : T j(x) ∈ Y and T k(x) /∈ Y for 0 ≤ k < j}.
Clearly all the Ljs are pairwise disjoint, and by the previous paragraph,

∑
j≥0 µ(Lj) =

µ(X).

Furthermore, T−1(Lj) is the disjoint union of Lj+1 and Yj+1 where we recall that Yj+1 =
{y ∈ Y : τ(y) = j+ 1}. By T -invariance of µ it follows that µ(Lj) = µ(Lj+1) +µ(Yj+1).
Therefore

∞∑
k=1

kµ(Yk) =
∞∑
k=0

(k + 1)µ(Yk+1) =
∞∑
k=0

(k + 1)(µ(Lk)− µ(Lk+1))

=
∞∑
k=0

µ(Lk) + kµ(Lk)− (k + 1)µ(Lk+1)︸ ︷︷ ︸
telescopes to 0

=
∞∑
k=0

µ(Lk) = µ(X).

This proves Kac’ Lemma.

7.1 Induced transformations

Kac’s Lemma effectively combines a measure preserving system (X, f) to the first return
mapped to a subset Y ⊂ X.
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Proposition 6. Let (X,B, T, µ) be a non-singular dynamical system and Y ∈ B a set
with µ(Y ) > 0. Let F = T τ be the first return map to Y .

If µ is T -invariant, then ν(A) := 1
m(Y )

µ(A ∩ Y ) is F -invariant. Conversely, if ν is
F -invariant, and

Λ =

∫
Y

τ(x)dν <∞, (6)

then

µ(A) =
1

Λ

∞∑
j=1

ν(T−j(A) ∩ {y ∈ Y : τ(y) ≥ j}) (7)

is a T -invariant probability measure. Moreover µ is ergodic for T if and only if ν is
ergodic for F .

Proof. Let A ⊂ Y be measurable. We can write T−1(A) as disjoint union F−1(A) =
tj≥1Yj ∩ T−j(A), where Yj = {y ∈ Y : τ(y) = j}. Using the notation of the previous
proof, we compute

µ(A) = µ(L0 ∩ A) = µ(L1 ∩ T−1(A)) + µ(Y1 ∩ T−1(A))

= µ(L2 ∩ T−2(A)) + µ(Y2 ∩ T−2(A)) + µ(Y1 ∩ T−1(A))

=
...

...

=
∑
j≥1

µ(Yj ∩ T−j(A)) = µ(F−1(A)).

After scaling by 1/µ(Y ), we get ν(A) = ν(F−1(A)).

Conversely, note that µ(X) = 1
Λ

∑∞
j=1 ν({y ∈ Y : τ(y) ≥ 1}) = 1

Λ

∑∞
j=1 jν({y ∈ Y :

τ(y) = j}) = 1
Λ

∫
Y
τ dν = 1. For the invariance, we compute

µ(T−1(A)) =
1

Λ

∞∑
j=1

ν(T−(j+1)(A) ∩ {τ(y) ≥ j})

=
1

Λ

∞∑
j=1

ν(T−(j+1)(A) ∩ {τ(y) ≥ j + 1}) + ν(T−(j+1)(A) ∩ {τ(y) = j})

=
1

Λ

∞∑
j=1

(
ν(T−j(A) ∩ {τ(y) ≥ j}) + ν(T−j(T−1(A)) ∩ {τ(y) = j})

)
− 1

Λ
ν(T−1(A) ∩ {τ(y) ≥ 1})

= µ(A) +
1

Λ

(
ν(F−1(T−1(A))− ν(T−1(A))

)
= µ(A),

where the last equality is by F -invariance of ν.
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Now for ergodicity, first assume that µ is ergodic and A ⊂ Y is F -invariant. Then
A′ = ∪∞j=0T

−j(A) is T -invariant, so µ(A′) ∈ {0, 1}. If µ(A′) = 0 then µ(A) = ν(A) = 0
and if µ(A′) = 1, then µ(A) = µ(Y ) and hence ν(A) = 1. Finally, if ν is ergodic, and
A′ is T -invariant, then A := A′ ∩ Y is F -invariant, and therefore ν(A) ∈ {0, 1}. Since
T is non-singular, it follows from (7) that µ(A′) ∈ {0, 1}.

As an illustration, we take the quadratic map f(x) = 4x(1 − x). It is not uniformly
expanding, so we cannot apply the Folklore Theorem 9 to find an absolutely continuous
probability measure µ. Therefore we take Y = [1 − p, p] for the fixed point p = 3

4
of

f . and consider the first return map F : Y → Y . Note that the critical point c = 1
2

(i.e., the point where the derivative is zero) never returns to Y . Indeed, f(c) = 1 and
f 2(1) = 0 is fixed under f . This is essential for F to have a chance to be uniformly
expanding.

Without proofs, we mention the properties of F :

• F is defined for Lebesgue-a.e. y ∈ Y .

• If y ∈ Y has return time τ(y) = n, then there is a neighborhood Ux of x such that
F : Ux → Y ◦ is a C∞ diffeomorphism and |F ′| ≥ 2.

• F has infinitely many branches (so it is not piecewise C2 in the strict sense), and
F ′ is not bounded. However, there is a constant C such that

|F ′′(y)|
|F ′(y)|2

≤ C wherever defined.

• The Lebesgue measure of {y ∈ Y : τ(y) = n} is exponentially small in n.

These conditions are sufficient to get the conclusion of the Folklore Theorem 9, so we
have an F -invariant measure ν and in fact, its density dν

dx
is bounded and bounded away

from zero. This means that ν({y ∈ Y : τ(y) = n}) is exponentially small in n as well, so
that the normalizing constant Λ from (6) is finite. Hence, we conclude that f preserves
an ergodic absolutely continuous measure µ, satisfying the formula (7).

For the above example, it is not essential that f is a quadratic map; any C2 unimodal
map f : [0, 1] → [0, 1] with f 2(c) = 0 fixed and f ′′(c) 6= 0 can be treated in the same
way. For the quadratic map, however, the density of µ is known precisely:

dµ

dx
=

1

π
√
x(1− x)

.
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8 The Koopman operator

Given a probability measure preserving dynamical system (X,B, µ, T ), we can take the
space of complex-valued square-integrable observables L2(µ). This is a Hilbert space,
equipped with inner product 〈f, g〉 =

∫
X
f(x) · g(x) dµ.

The Koopman operator UT : L2(µ)→ L2(µ) is defined as UTf = f ◦T . By T -invariance
of µ, it is a unitary operator. Indeed

〈UTf, UTg〉 =

∫
X

f ◦ T (x) · g ◦ T (x) dµ =

∫
X

(f · g) ◦ T (x) dµ =

∫
X

f · g dµ = 〈f, g〉,

and therefore U∗TUT = UTU
∗
T = I. This has several consequences, common to all unitary

operators. First of all, the spectrum σ(UT ) of UT is a closed subset of the unit circle.

Secondly, we can give a (continuous) decomposition of UT in orthogonal projections,
called the spectral decomposition. For a fixed eigenfunction ψ (with eigenvalue
λ ∈ S1, we let Πλ : L2(µ) → L2(µ) be the orthogonal projection onto the span of ψ.
More generally, if S ⊂ σ(UT ), we define ΠS as the orthogonal projection on the largest
closed subspace V such that UT |V has spectrum contained in S. As any orthogonal
projection, we have the properties:

• Π2
S = ΠS (ΠS is idempotent);

• Π∗S = ΠS (ΠS is self-adjoint);

• ΠSΠS′ = 0 if S ∩ S ′ = ∅;

• The kernel N (ΠS) equals the orthogonal complement, V ⊥, of V .

Theorem 13 (Spectral Decomposition of Unitary Operators). There is a measure νT
on S1 such that

UT =

∫
σ(UT )

λΠλdνT (λ),

and νT (λ) 6= 0 if and only if λ is an eigenvalue of UT . Using the above properties of
orthogonal projections, we also get

Un
T =

∫
σ(UT )

λnΠλdνT (λ).

9 The Perron-Frobenius operator

Definition 7. The Perron-Frobenius operator of a transformation T : X → X is
the dual of the Koopman operator:∫

X

PTf · g dµ =

∫
X

f · UTg dµ =

∫
X

f · g ◦ T dµ. (8)
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Note that, although UT is independent of the measure, PT is not. Often it will be
important to specify the measure explicitly, and this measure need not be invariant.

The following basic properties are straighforward to check.

Proposition 7. The Perron-Frobenius operator has the following properties:

1. PT is linear;

2. PT is positive: f ≥ 0 implies PTf ≥ 0.

3.
∫
PTf dµ =

∫
f dµ.

4. PTk = (PT )k.

Lemma 5. Let T : [0, 1] → [0, 1] be a piecewise C1 interval map. Then the Perron-
Frobenius operator PT w.r.t. Lebesgue measure λ has the pointwise formula

PTf(x) =
∑
y∈T−1

f(y)

|T ′(y)|
. (9)

Proof. Let 0 = a0 < a1 < · · · < aN = 1 be such that T is C1 monotone on each
(ai−1, ai). Let yi = T−1(x) ∩ (ai−1, ai). We obtain

(PTf)(x) =
d

dx

∫ x

0

PTf ds =
d

dx

∫ 1

0

(PTf) · 1[0,x]ds

=
d

dx

∫ 1

0

f · 1[0,x] ◦ T ds =
d

dx

∫
T−1[0,x]

f ds

=
∑

T |(ai−1,ai)
increasing

x∈T ((ai−1,ai))

d

dx

∫ yi

ai−1

f ds+
∑

T |(ai−1,ai)
decreasing

x∈T ((ai−1,ai))

d

dx

∫ ai

yi

f ds

+
∑

T ((ai−1,ai))⊂[0,x]

d

dx

∫ ai

ai−1

f ds

=
∑

T |(ai−1,ai)
increasing

x∈T ((ai−1,ai))

f(yi)

T ′(yi)
+

∑
T |(ai−1,ai)

decreasing

x∈T ((ai−1,ai))

− f(yi)

T ′(yi)
+ 0

=
∑
i

f(yi)

|T ′(yi)|
,

as required.

There is also a Perron-Frobenius operator with respect to µ � λ instead of Lebesgue
measure:
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Lemma 6. If dµ = hdλ, then the operator

PT,µf =
PT (f · h)

h
(10)

acts as the Perron-Frobenius operator on (X,B, T, µ).

Viewed differently, if h ≥ 0 is a fixed function of PT (w.r.t. Lebesgue) then dµ = h dλ
is an invariant measure. Conversely, if PT,µ is the Perron-Frobenius w.r.t. an invariant
measure, then the constant function 1 ois a fixed point of PT,µ.

Proof. Let A be any µ-measurable set and f ∈ L1([0, 1], µ). Then∫
A

PT,µfdµ =

∫
A

PT (f · h)

h
hdλ =

∫
A

PT (f · h)dλ =

∫
T−1A

f · hdλ =

∫
T−1A

f dµ.

Because A is arbitrary, this proves the lemma.

Example 1. Let T : [0, 1] → [0, 1] be given by T (x) = 1
2
x. Then PT1 = 2 · 1[0, 1

2
],

P 2
T1 = 4 · 1[0, 1

4
] and in general P n

T 1 = 2n · 1[0,2−n]. Therefore P n
T 1 tends to 0 on (0, 1]

pointwise, which leads to no probability density. (In the sense of distributions, the limit
is the Dirac measure δ0.) We see here that iterating PT is unstable if T is contracting
(hence expanding in backward direction). Conversely, expanding maps have a stabilizing
effect on the Perron-Frobenius operator. Let T : [0, 1] → [0, 1] be given by T (x) = 2x
(mod 1). Then by (9), PTf(x) = 1

2

(
f(x

2
) + f(1+x

2
)
)
, and as we iterate further P k

T f
converges uniformly to a constant function.

10 The Lasota-Yorke inquality for BV

Definition 8. Let g : [a, b]→ R. The variation of g is defined to be

Var[a,b] g = sup
n∑
i=1

|g(xi)− g(xi−1)|, (11)

where the supremum runs over all finite partitions generated by points a = x0 < x1 <
· · · < xn = b. Note that Var is a seminorm (Var f = Var(f + C) for every constant
C).

The variation measures the oscillation of a function. Obviously Var is homogeneous
and subadditive in the sense that

Var[a,b] t · g = |t|Var[a,b]g for every t ∈ R. (12)

Var[a,b] (g1 + g2) ≤ Var[a,b]g1 + Var[a,b]g2. (13)
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Furthermore
sup g − inf g ≤ Var[a,b] g, (14)

and equality is assumed for monotone functions.

Definition 9. The space

BV([a, b]) = {g : [a, b]→ R; Var[a,b]g <∞}

equipped with the norm ‖g‖BV = Var[a,b]g +
∫ b
a
|g| dx is called the space of functions of

bounded variation.

It is not hard to show that functions of bounded variation are integrable; in fact they
are even Riemann integrable. On the other hand, any C1 function on [a, b] has bounded
variation. If g2 is monotone, then Var[a,b]g1 ◦ g2 ≤ Var[inf g2,sup g2]g1. In a sense BV([a, b])
is also closed under taking products. Suppose g1 ∈ BV([a, b]) and g2 ∈ C1([a, b]). Then

Var[a,b] g1g2 ≤ sup |g2|Var[a,b]g1 +

∫ b

a

|g1(s)g′2(s)|ds. (15)

Proof of (15): Use the equality

n∑
i=1

|aibi − ai−1bi−1| =
n∑
i=1

|bi(ai − ai−1) + ai−1(bi − bi−1)|

and the Mean Value Theorem to obtain

Var[a,b]g1g2 = sup
n∑
i=1

|g1(xi)g2(xi)− g1(xi−1)g2(xi−1)|

= sup
n∑
i=1

{|g2(xi)||g1(xi)− g1(xi−1)|+ |g1(xi−1)||g2(xi)− g2(xi−1)|}

≤ sup |g2|Var[a,b]g1 + sup
n∑
i=1

|g1(xi−1)g′2(ξi)||xi − xi−1|

≤ sup |g2|Var[a,b]g1 +

∫ b

a

|g1(s)g′2(s)|ds,

because the second term is just the Riemann sum approximating the integral.

In particular, taking g1 ≡ 1, we obtain for C1 functions

Var[a,b] g ≤
∫ b

a

|g′(s)|ds. (16)

Let us now proceed to Lasota and Yorke’s result:
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Theorem 14 (Lasota-Yorke). Suppose that T : [0, 1] → [0, 1] is piecewise C2 and
piecewise expanding. Then T has an absolutely continuous invariant probability measure
whose density has bounded variation.

Proof. The main technical step is to establish the Lasota-Yorke3 inequality: there
are ρ ∈ (0, 1) and L > 0 such that

Var[0,1]PTg ≤ ρVar[0,1]g + L‖g‖L1 , (17)

for all f ∈ BV. By iteration, it follows that the sequence Var[0,1]P
n
T 1 ≤ L

1−ρ for every

n, and because
∫ 1

0
P n
T 1 = 1, the densities P n

T 1 are also bounded. This is also true for

the Césaro means { 1
N

∑N−1
n=0 P

n
T }, and by Helly’s Theorem (see e.g. [5, Theorem 2.3.9])

there must be a weak∗ accumulation point which is an invariant density with bounded
variation.

To prove (17) we need another formula on variations. If 0 ≤ a < b ≤ 1 and g ∈
BV([0, 1]), then

Var[0,1]g 1[a,b] ≤ Var[a,b]g + |g(a)|+ |g(b)|
≤ Var[a,b]g + |g(a)− g(c)|+ |g(b)− g(c)|+ 2|g(c)|
≤ 2Var[a,b]g + 2|g(c)|,

for any c ∈ [a, b]. We can choose c such that |g(c)| ≤ 1
b−a

∫ b
a
|g(s)|ds, and therefore

Var[0,1]g 1[a,b] ≤ 2Var[a,b]g +
2

b− a

∫ b

a

|g(s)|ds. (18)

Let ρ := sup 2/|T ′|. By assumption ρ ∈ (0, 2), but by taking an iterate of T we can
assume that ρ̃ < 1. Take 0 = a0 < a1 < · · · < aN = 1 such that T is C2 expanding on
each [ai−1, ai]. In particular, it follows that

|T ′′(x)|
|T ′(x)|

≤ K and

∣∣∣∣ ddx 1

T ′(x)

∣∣∣∣ ≤ K

|T ′(x)|
, (19)

for some constant K. (In the points ai this holds for the one-sided derivatives.)

Let g ∈ BV([0, 1]) be a probability density. We calculate

(PTg)(x) =
∑

z∈T−1x

g(z)

|T ′(z)|
=

N∑
i=1

g(T−1(x) ∩ [ai−1, ai])

|T ′(T−1(x) ∩ [ai−1, ai])|
,

where T−1(x)∩[ai−1, ai] indicates the appropriate branch of the inverse T−1. To compute
the variation we have to take sums of densities g

|T ′| defined on disjoint intervals [ai−1, ai].

3The attribution is correct, but was preceded by Doeblin & Fortet and Ionescu-Tulcea & Marinescu,
who used it for more general spaces than BV.
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To extend these densities to [0, 1], we need to add indicator functions. Then, using
inequality (18),

Var[0,1]PTg =
N∑
i=1

Var[0,1]
g

|T ′|
1[ai−1,ai]

≤ 2
N∑
i=1

Var[ai−1,ai]
g

|T ′|
+ 2

N∑
i=1

1

ai − ai−1

∫ ai

ai−1

|g(s|)
|T ′(s)|

ds

Using the product formulas (15) and (19) we obtain

2
N∑
i=1

Var[ai−1,ai]
g

|T ′|
≤ ρ

N∑
i=1

Var[ai−1,ai]g + 2
N∑
i=1

∫ ai

ai−1

|g(s)|
∣∣∣∣ dds 1

T ′(s)

∣∣∣∣ ds
≤ ρVar[0,1]g + 2K

N∑
i=1

∫ ai

ai−1

|g(s)|
|T ′(s)|

ds.

Therefore

Var[0,1]PTg ≤ ρVar[0,1]g + 2
N∑
i=1

[K +
1

ai − ai−1

]

∫ ai

ai−1

|g(s)|
|T ′(s)|

ds.

Taking L = ρ(K + maxi
1

ai−ai−1
), we obtain the Lasota-Yorke inequality (17).

Remark 4. The proof works exclusively with densities of bounded variation. Therefore,
the result can be extended immediately to: For any function g ∈ BV ([0, 1]), we have

1

N

N−1∑
n=0

P n
T g → g∗.

The convergence is in L1(λ) and Var[0,1]g
∗ ≤ L‖g‖1

1−ρ . By (14), g∗ is a bounded density,
and the convergence is actually uniform.

Remark 5. Lasota and Yorke [16] state that the result can be easily extended to ex-
panding maps with countably many branches T : Ii → T (Ii) where [0, 1] = ∪iIi modulo
nullsets. In the above proof this would cause L to be infinite. This can be mended by
assuming that T has the Markov property and every branch has a definite height, i.e.,
there exists η > 0 such that |T (Ii)| ≥ η for all i. Indeed, we can estimate the problematic
term ∑

i

1

|Ii|

∫
Ii

|g(s)|
|T ′(s)|

ds ≤ sup |g|
∑
i

1

|T ′(ξi)|
(for some ξi ∈ Ii)

≤ sup |g|K
∑
i

|Ii|
|T (Ii)|

≤ sup |g| K
η
,

where it is assumed that the distortion T |Ii is bounded by K for all i. We were more
precise on these extra assumptions in the Folklore Theorem 9.

31



11 Bernoulli shifts

Let (Σ, σ, µ) be a Bernoulli shift, say with alphabet A = {1, 2, . . . , N}. Here Σ = AZ

(two-sided) or Σ = AN∪{0} (one-sided), and µ is a stationary product measure with
probability vector (p1, . . . , pN). Write

Z[k+1,k+N ](a1 . . . aN) = {x ∈ Σ : xk+1 . . . xk+N = a1 . . . aN}

for the cylinder set of length N . If C = Z[k+1,k+R] and C ′ = Z[l+1,l+S] are two cylinders
fixing coordinates on disjoint integer intervals (i.e., [k + 1, k +R] ∩ [l + 1, l + S] = ∅),
then clearly µ(C ∩ C ′) = µ(C)µ(C ′). This just reflects the independence of disjoint
events in a sequence of Bernoulli trials.

Definition 10. Two measure preserving dynamical systems (X,B, T, µ) and (Y, C, S, ν)
are called isomorphic if there are X ′ ∈ B, Y ′ ∈ C and φ : Y ′ → X ′ such that

• µ(X ′) = 1, ν(Y ′) = 1;

• φ : Y ′ → X ′ is a bi-measurable bijection;

• φ is measure preserving: ν(φ−1(B)) = µ(B) for all B ∈ B.

• φ ◦ S = T ◦ φ.

Example 2. The doubling map T : [0, 1]→ [0, 1] with Lebesgue measure is isomorphic
t the one-sided (1

2
, 1

2
)-Bernoulli shift (X,B, σ, µ). The isomorphisim is the coding map

ψ : Y ′ → X ′, where Y ′ = [0, 1] \ { dyadic rationals in (0, 1)} because these dyadic
rationals map to 1

2
und some iterate of T , and at 1

2
the coding map is not well defined.

Note that X ′ = {0, 1}N \ {v10∞, v01∞ : v is a finite word in the alphabet {0, 1}}.

Example 3. Let (p1, . . . , pN) be some probability vector with all pi > 0. Then the one-
sided (p1, . . . , pN)-Bernoulli shift is isomorphic to ([0, 1],B, T, Leb) where T : [0, 1] →
[0, 1] has N linear branches of slope 1/pi. The one-sided (p1, . . . , pN)-Bernoulli shift is
also isomorphic to ([0, 1],B, S, ν) where S(x) = Nx (mod 1). But here ν is another
measure that gives [ i−1

N
, i
N

] the mass pi, and [ i−1
N

+ j−1
N2 ,

i−1
N

+ j
N2 ] the mass pipj, etc.

Clearly invertible systems cannot be isomorphic to non-invertible systems. But there
is a construction to make a non-invertible system invertible, namely by passing to the
natural extension.

Definition 11. Let (X,B, µ, T ) be a measure preserving dynamical system. A system
(Y, C, S, ν) is a natural extension of (X,B, µ, T ) if there are X ′ ∈ B, Y ′ ∈ C and
φ : Y ′ → X ′ such that

• µ(X ′) = 1, ν(Y ′) = 1;
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• S : Y ′ → Y ′ is invertible;

• φ : Y ′ → X ′ is a measurable surjection;

• φ is measure preserving: ν(φ−1(B)) = µ(B) for all B ∈ B;

• φ ◦ S = T ◦ φ.

Any two natural extensions can be shown to be isomorphic, so it makes sense to speak
of the natural extension. Sometimes natural extensions have explicit formulas (such as
the baker transformation being the natural extension of the doubling map). There is
also a general construction: Set

Y = {(xi)i>0 : T (xi+1) = xi ∈ X for all i > 0}

with S(x0, x1, . . . ) = T (x0), x0, x1, . . . . Then S is invertible (with the left shift σ = S−1)
and

ν(A0, A1, A2, . . . ) = inf
i
µ(Ai) for (A0, A1, A2 . . . ) ⊂ S,

is S-invariant. Now defining φ(x0, x1, x2, . . . ) := x0 makes the diagram commute: T ◦
φ = φ ◦ S. Also φ is measure preserving because, for each A ∈ B,

φ−1(A) = (A, T−1(A), T−2(A), T−3(A), . . . )

and clearly ν(A, T−1(A), T−2(A), T−3(A), . . . ) = µ(A) because µ(T−i(A)) = µ(A) for
every i by T -invariance of µ.

Definition 12. Let (X,B, µ, T ) be a measure preserving dynamical system.

1. If T is invertible, then the system is called Bernoulli if it is isomorphic to a
Bernoulli shift.

2. If T is non-invertible, then the system is called one-sided Bernoulli if it is
isomorphic to a one-sided Bernoulli shift.

3. If T is non-invertible, then the system is called Bernoulli if its natural extension
is isomorphic to a one-sided Bernoulli shift.

The third Bernoulli property is quite general, even though the isomorphism φ may be
very difficult to find explicitly. Expanding circle maps that satisfy the conditions of
Theorem 9 are also Bernoulli, i.e., have a Bernoulli natural extension, see [17]. Being
one-sided Bernoulli, on the other hand quite, is special. If T : [0, 1] → [0, 1] has
N linear surjective branches Ii, i = 1, . . . , N , then Lebesgue measure m is invariant,
and ([0, 1],B,m, T ) is isomorphic to the one-sided Bernoulli system with probability
vector (|I1|, . . . , |IN |). If T is piecewise C2 but not piecewise linear, then it has to be
C2-conjugate to a piecewise linear expanding map to be one-sided Bernoulli, see [7].
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12 Mixing and weak mixing

Whereas Bernoulli trials are totally independent, mixing refers to an asymptotic in-
dependence:

Definition 13. A probability measure preserving dynamical systems (X,B, µ, T ) is
mixing (or strong mixing) if

µ(T−n(A) ∩B)→ µ(A)µ(B) as n→∞ (20)

for every A,B ∈ B.

Proposition 8. A probability preserving dynamical systems (X,B, T, µ) is mixing if
and only if ∫

X

f ◦ T n(x) · g(x) dµ→
∫
X

f(x) dµ ·
∫
X

g(x) dµ as n→∞ (21)

for all f, g ∈ L2(µ), or written in the notation of the Koopman operator UTf = f ◦ T
and inner product 〈f, g〉 =

∫
X
f(x) · g(x) dµ:

〈Un
T f, g〉 → 〈f, 1〉〈1, g〉 as n→∞. (22)

Proof. The “if”-direction follows by taking indicator functions f = 1A and g = 1B. For
the “only if”-direction, general f, g ∈ L2(µ) can be approximated by linear combinations
of indicator functions.

Definition 14. A probability measure preserving dynamical systems (X,B, µ, T ) is
weak mixing if in average

1

n

n−1∑
i=0

|µ(T−i(A) ∩B)− µ(A)µ(B)| → 0 as n→∞ (23)

for every A,B ∈ B.

We can express ergodicity in analogy of (20) and (23):

Lemma 7. A probability preserving dynamical system (X,B, T, µ) is ergodic if and only
if

1

n

n−1∑
i=0

µ(T−i(A) ∩B)− µ(A)µ(B)→ 0 as n→∞,

for all A,B ∈ B. (Compared to (23), note the absence of absolute value bars.)
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Proof. Assume that T is ergodic, so by Birkhoff’s Ergodic Theorem 1
n

∑n−1
i=0 1A◦T i(x)→

µ(A) for µ-a.e. x. Multiplying by 1B gives

1

n

n−1∑
i=0

1A ◦ T i(x)1B(x)→ µ(A)1B(x) µ-a.e.

Integrating over x (using the Dominated Convergence Theorem to swap limit and in-
tegral), gives limn

1
n

∑n−1
i=0

∫
X

1A ◦ T i(x)1B(x) dµ = µ(A)µ(B).

Conversely, assume that A = T−1A and take B = A. Then we obtain µ(A) =
1
n

∑n−1
i=0 µ(T−i(A))→ µ(A)2, hence µ(A) ∈ {0, 1}.

Theorem 15. We have the implications:

Bernoulli ⇒ mixing ⇒ weak mixing ⇒ ergodic ⇒ recurrent.

None of the reverse implications holds in general.

Proof. Bernoulli⇒ mixing holds for any pair of cylinder sets C, C ′ because µ(σ−n(C)∩
C) = µ(C)µ(C ′) for n sufficiently large. The property carries over to all measurable
sets by the Kolmogorov Extension Theorem.

Mixing ⇒ weak mixing is immediate from the definition.

Weak mixing ⇒ ergodic: Let A = T−1(A) be a measurable T -invariant set. Then by
weak mixing µ(A) = 1

n

∑n−1
i=0 µ(T−i(A) ∩ A) → µ(A)µ(A) = µ(A2). This means that

µ(A) = 0 or 1.

Ergodic ⇒ recurrent. If B ∈ B has positive measure, then A := ∪i∈NT−i(B) is T -
invariant up to a set of measure 0, see the Poincaré Recurrence Theorem. By ergodicity,
µ(A) = 1, and this is the definition of recurrence, see Definition 6.

We say that a subset E ⊂ N∪{0} has density zero if limn
1
n
#(E ∩{0, . . . , n− 1}) = 0.

Lemma 8. Let (ai)i>0 be a bounded non-negative sequence of real numbers. Then
limn

1
n

∑n−1
i=0 ai = 0 if and only if there is a sequence E of zero density in N ∪ {0} such

that limE 63n→∞ an = 0.

Proof. ⇐: Assume that limE 63n→∞ an = 0 and for ε > 0, take N such that an < ε for
all E 63 n > N . Also let A = sup an. Then

0 6
1

n

n−1∑
i=0

ai =
1

n

n−1∑
E 63i=0

ai +
1

n

n−1∑
E3i=0

ai

6
NA+ (n−N)ε

n
+ A

1

n
#(E ∩ {0, . . . , n− 1})→ ε,
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as n→∞. Since ε > 0 is arbitrary, limn
1
n

∑n−1
i=0 ai = 0.

⇒: Let Em = {n : an > 1
m
}. Then clearly E1 ⊂ E2 ⊂ E3 ⊂ . . . and each Em has

density 0 because

0 = m · lim
n

1

n

n−1∑
i=0

ai > lim
n

1

n

n−1∑
i=0

1Em(i) = lim
n

1

n
#(Em ∩ {0, . . . n− 1}).

Now take 0 = N0 < N1 < N2 < . . . such that 1
n
#(Em ∩ {0, . . . , n − 1}) < 1

m
for every

n > Nm−1. Let E = ∪m (Em ∩ {Nm−1, . . . , Nm − 1}).

Then, taking m = m(n) maximal such that Nm−1 < n,

1

n
# (E ∩ {0, . . . , n− 1})

6
1

n
#(Em−1 ∩ {0, . . . , Nm−1 − 1}) +

1

n
#(Em ∩ {Nm−1, . . . , n− 1})

6
1

Nm−1

#(Em−1 ∩ {0, . . . , Nm−1 − 1}) +
1

n
#(Em ∩ {0, . . . , n− 1})

6
1

m− 1
+

1

m
→ 0

as n→∞.

Corollary 2. For a non-negative sequence (an)n>0 of real numbers, limn
1
n

∑n−1
i=0 ai = 0

if and only if limn
1
n

∑n−1
i=0 a

2
i = 0.

Proof. By the previous lemma, limn
1
n

∑n−1
i=0 ai = 0 if and only if limE 63n→∞ an = 0 for

a set E of zero density. But the latter is clearly equivalent to limE 63n→∞ a
2
n = 0 for the

same set E. Applying the lemma again, we have limn
1
n

∑n−1
i=0 a

2
i = 0.

Example 4. Let Rα : S1 → S1 be an irrational circle rotation; it preserves Lebesgue
measure. We claim that Rα is not mixing or weak mixing, but it is ergodic. To see
why Rα is not mixing, take an interval A of length 1

4
. There are infinitely many n

such that R−nα (A) ∩ A = ∅, so lim infn µ(R−n(A) ∩ A) = 0 6= (1
4
)2. However, Rα has

a non-constant eigenfunction ψ : S1 → C defined as ψ(x) = e2πix because ψ ◦ Rα(x) =
e2πi(x+α) = e2πiαψ(x). Therefore Rα is not weak mixing, see Theorem 16 below. To
prove ergodicity, we show that every T -invariant function ψ ∈ L2(m) must be constant.
Indeed, write ψ(x) =

∑
n∈Z ane

2πinx as a Fourier series. The T -invariance implies that
ane

2πinα = an for all n ∈ Z. Since α /∈ Q, this means that an = 0 for all n 6= 0, so
ψ(x) ≡ a0 is indeed constant.

Theorem 16. Let (X,B, µ, T ) be a probability measure preserving dynamical system.
Then the following are equivalent:

1. (X,B, µ, T ) is weak mixing;
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2. limn
1
n

∑n−1
i=0 |〈f ◦ T i, g〉 − 〈f, 1〉〈1, g〉| = 0 for all L2(µ) functions f, g;

3. limE 63n→∞ µ(T−nA ∩ B) = µ(A)µ(B) for all A,B ∈ B and a subset E of zero
density;

4. T × T is weak mixing;

5. T × S is ergodic on (X, Y ) for every ergodic system (Y, C, ν, S);

6. T × T is ergodic;

7. The Koopman operator UT has no measurable eigenfunctions other than constants.

Proof. 2. ⇒ 1. Take f = 1A, g = 1B.

1. ⇔ 3. Use Lemma 8 for ai = |µ(T−i(A) ∩B)− µ(A)µ(B)|.
3. ⇒ 4. For every A,B,C,D ∈ B, there are subsets E1 and E2 of N of zero density
such that

lim
E1 63n→∞

µ(T−n(A) ∩B)− µ(A)µ(B)| = lim
E2 63n→∞

µ(T−n(C) ∩D)− µ(C)µ(D)| = 0.

The union E = E1 ∪ E2 still has density 0, and

0 6 lim
E 63n→∞

| µ× µ ((T × T )−n(A× C) ∩ (B ×D))− µ× µ(A×B) · µ× µ(C ×D)|

= lim
E 63n→∞

|µ(T−n(A) ∩B) · µ(T−n(C) ∩D)− µ(A)µ(B)µ(C)µ(D)|

6 lim
E 63n→∞

µ(T−n(A) ∩B) · |µ(T−n(C) ∩D)− µ(C)µ(D)|

+ lim
E 63n→∞

µ(C)µ(D) · |µ(T−n(A) ∩B)− µ(A)µ(B)| = 0.

4. ⇒ 5. If T ×T is weakly mixing, then so is T itself. Suppose (Y, C, ν, S) is an ergodic
system, then, for A,B ∈ B and C,D ∈ C we have

1

n

n−1∑
i=0

µ (T−i(A) ∩B)ν(S−i(C) ∩D)

=
1

n

n−1∑
i=0

µ(A)µ(B)ν(S−i(C) ∩D)

+
1

n

n−1∑
i=0

(µ(T−i(A) ∩B)− µ(A)µ(B))ν(S−i(C) ∩D).

By ergodicity of S (see Lemma 7), 1
n

∑n−1
i=0 ν(S−i(C)∩D)→ µ(C)µ(D), so the first term

in the above expression tends to µ(A)µ(B)µ(C)µ(D). The second term is majorised by
1
n

∑n−1
i=0 |µ(T−i(A) ∩B)− µ(A)µ(B)|, which tends to 0 because T is weak mixing.
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5. ⇒ 6. By assumption T × S is ergodic for the trivial map S : {0} → {0}. Therefore
T itself is ergodic, and hence T × T is ergodic.

6. ⇒ 7. Suppose f is an eigenfunction with eigenvalue λ. The Koopman operator is
an isometry (by T -invariance of the measure), so 〈f, f〉 = 〈UTf, UTf〉 = 〈λf, λf〉 =
|λ|2〈f, f〉, and |λ| = 1. Write ψ(x, y) = f(x)f(y). Then

ψ ◦ (T × T )(x, y) = ψ(Tx, Ty) = f(Tx)f(Ty) = |λ|2ψ(x, y) = ψ(x, y),

so ψ is T × T -invariant. By ergodicity of T × T , ψ must be constant µ × µ-a.e. But
then also f must be constant µ-a.e.

7. ⇒ 2. This is the hardest step; it relies on spectral theory of unitary operators. If
ψ is an eigenfunction of UT , then by assumption, ψ is constant, so the eigenvalue is
1. Let V = span (ψ) and Π1 is the orthogonal projection onto V ; clearly V ⊥ = {f ∈
L2(µ) :

∫
f dµ = 0}. One can derive that the spectral measure νT cannot have any

atoms, except possibly at Π1.

Now take f ∈ V ⊥ and g ∈ L2(µ) arbitrary. Using the Spectral Theorem 13, we have

1

n

n−1∑
i=0

|〈U i
Tf, g〉|2 =

1

n

n−1∑
i=0

∣∣∣∣∫
σ(UT )

λi〈Πλf, g〉 dνT (λ)

∣∣∣∣2
=

1

n

n−1∑
i=0

∫
σ(UT )

λi〈Πλf, g〉 dνT (λ)

∫
σ(UT )

κi〈Πκf, g〉 dνT (κ)

=
1

n

n−1∑
i=0

∫ ∫
σ(UT )×σ(UT )

λiκi 〈Πλf, g〉〈Πκf, g〉 dνT (λ) dνT (κ)

=

∫ ∫
σ(UT )×σ(UT )

1

n

n−1∑
i=0

λiκi 〈Πλf, g〉〈Πκf, g〉 dνT (λ) dνT (κ)

=

∫ ∫
σ(UT )×σ(UT )

1

n

1− (λκ)n

1− λκ
〈Πλf, g〉〈Πκf, g〉 dνT (λ) dνT (κ),

where in the final line we used that the diagonal {λ = κ} has νT × νT -measure zero,
because ν is non-atomic (except possibly the atom Π1 at λ = 1, but then Π1f = 0).

Now 1
n

1−(λκ)n

1−λκ is bounded (use l’Hôpital’s rule) and tends to 0 for λ 6= κ, so by the
Bounded Convergence Theorem, we have

lim
n

1

n

n−1∑
i=0

|〈U i
Tf, g〉|2 = 0.

Using Corollary 2, we derive that also limn
1
n

∑n−1
i=0 |〈U i

Tf, g〉| = 0 (i.e., without the
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square). Finally, if f ∈ L2(µ) is arbitrary, then f − 〈f, 1〉 ∈ V ⊥. We find

0 = lim
n

1

n

n−1∑
i=0

|〈U i
T (f − 〈f, 1〉), g〉|

= lim
n

1

n

n−1∑
i=0

|〈U i
Tf − 〈f, 1〉, g〉|

= lim
n

1

n

n−1∑
i=0

|〈U i
Tf, g〉 − 〈f, 1〉〈1, g〉|

and so property 2. is verified.

13 Cutting and Stacking

The purpose of cutting and stacking is to create invertible maps of the interval
that preserve Lebesgue measure, and have further good properties such as “unique
ergodicity”, “not weak mixing”, or rather the opposite “weak mixing but not strong
mixing”. Famous examples due to Kakutani and to Chacon achieve this, and we will
present them here.

The procedure is as follows:

• Cut the unit interval into several intervals, say A,B,C, . . . (these will become the
stacks), and a remaining interval S.

• Cut each interval into parts (a fixed finite number for each stack), and also cut
of some intervals from S.

• Pile the parts of the stacks and the cut-off pieces of S on top of the stacks,
according to some fixed rule. By choosing the parts in the previous step of the
correct size, we can ensure that all intervals in each separate stack have the same
size; they can therefore be neatly aligned vertically.

• Map every point on a level of a stack directly to the level above. Then every
point has a well-defined image (except for points at the top levels in a stack and
points in the remaindeer of S), and also a well-defined preimage (except for points
at a bottom level in a stack and points in the remainder of S). Where defined,
Lebesgue measure is preserved.

• Repeat the process, now slicing vertically through whole stacks and stacking whole
stacks on top of other stacks, possibly putting some intervals of S in between.
Wherever the map was defined at a previous step, the definition remains the
same.
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• Keep repeating. Eventually, the measure of points where the map is not defined
tends to zero. In the end, assuming that the interval S will be entirely spent, there
will only be one point for each stack without image and one points in each stack
without preimage. We can take an arbitrary bijection between them to define the
map everywhere.

• The resulting transformation of the interval is invertible and preserves Lebesgue
measure. The number of stacks used is called the rank of the transformation.

Example 5 (Kakutani). Take one stack, so start with A = [0, 1]. Cut it in half and
put the right half on top of the left half. Repeat this procedure. Let us call the result
limit map T : [0, 1]→ [0, 1] the Kakutani map. The resulting formula is:

T (x) =



x+ 1
2

if x ∈ [0, 1
2
);

x− 1
4

if x ∈ [1
2
, 3

4
);

x− 3
4

+ 1
8

if x ∈ [3
4
, 7

8
);

...
...

x− (1− 1
2n

) + 1
2n+1 if x ∈ [1− 1

2n
, 1− 1

2n+1 ), n > 1,

see Figure 1. If x ∈ [0, 1) is written in base 2, i.e.,

x = 0.b1b2b3 . . . bi ∈ {0, 1}, x =
∑
i

bi2
−i,

then T acts as the adding machine or odometer: add 0.1 with carry. That is, if
k = min{i > 1 : bi = 0}, then T (0.b1b2b3 . . . ) = 0.001bk+1bk+2 . . . . If k = ∞, so
x = 0.111111 . . . , then T (x) = 0.0000 . . . .

Proposition 9. The Kakutani map T : [0, 1]→ [0, 1] of cutting and stacking is uniquely
ergodic, but not weakly mixing.

Proof. The map T permutes the dyadic intervals cyclically. For example T ((0, 1
2
)) =

(1
2
, 1)) and T ((1

2
, 1)) = (0, 1

2
). Therefore, f(x) = 1(0, 1

2
) − 1( 1

2
,1) is an eigenfunction for

eigenvalue −1. Using four intervals, we can construct (complex-valued) eigenfunctions
for eigenvalues ±i. In generality, all the numbers e2πim/2n , m,n ∈ N are eigenvalues,
and the corresponding eigenfunctions span L2(m). This property is called pure point
spectrum. In any case, T is not weakly mixing.

Now for unique ergodicity, we use the fact again that T permutes the dyadic intervals
cyclically. Call these intervals Dj,N = [ j

2N
, j+1

2N
) for N ∈ N and j = {0, 1, . . . , 2N − 1},

and if x ∈ [0, 1), we indicate the dyadic interval containing it by Dj,N(x). Let{
fN(x) = supt∈Dj,N (x) f(t),

f
N

(x) = inft∈Dj,N (x) f(t),
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Figure 1: The Kakutani map T : [0, 1]→ [0, 1] resulting from cutting and stacking.

be step-functions that we can use to compute the Riemann integral of f . That is:∫
fN(s)ds :=

1

2N

2N−1∑
j=0

sup
t∈Dj,N

f(t) >
∫
f(s)ds >

∫
f
N

(s)ds :=
1

2N

2N−1∑
j=0

inf
t∈Dj,N

f(t).

For continuous (or more generally Riemann integrable) functions,
∫
fNdx−

∫
f
N
dx→ 0

as N →∞, and their common limit is called the Riemann integral of f .

According to Theorem 3, we need to show that 1
n

∑N−1
i=0 f ◦ T i(x) converges uniformly

to a constant (for each continuous function f) to show that T is uniquely ergodic, i.e.,
Lebesgue measure is the unique invariant measure.

Let f : [0, 1] → R be continuous and ε > 0 be given. By uniform continuity, we can
find N such that maxj(supt∈Dj,N f(t) − inft∈Dj,N f(t)) < ε. Write n = m2N + r. Any
orbit x will visit all intervals Dj,N cyclically before returning close to itself, and hence
visit each Dj,N exactly m times in the first m2N iterates. Therefore

1

n

n−1∑
i=0

f ◦ T i(x) 6
1

m2N + r

2N−1∑
j=0

m sup
t∈Dj,N

f(t) + r‖f‖∞


6

1

2N

2N−1∑
j=0

sup
t∈Dj,N

f(t) +
r‖f‖∞
m2N + r

=

∫
fN(s)ds+

r‖f‖∞
m2N + r

→
∫
fN(s)ds,

as m → ∞. A similar computation gives 1
n

∑n−1
i=0 f ◦ T i(x) >

∫
f
N

(x)dx. As ε → 0

(and hence N →∞), we get convergence to the integral
∫
f(s)ds, independently of the

initial point x.
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Example 6 (Chacon). Take one stack and one stack: A0 = [0, 2
9
) and S = [2

3
, 1). Cut

A0 is three equal parts and cut [2
3
, 8

9
) from S. Pile the middle interval [2

9
, 4

9
) on the left,

then the cut-off piece [2
3
, 8

9
) of S, and then remaining interval [4

9
, 2

3
). The stack can now

be coded upward as A1 = A0A0SA0.

Repeat this procedure: cut the stack vertically in three stacks (of width 2
27

), cut an
interval [8

9
, 26

27
) from S, and pile them on top of one another: middle stack on left, then

the cut-off piece of S, and then the remaining third of the stack. The stack can now be
coded upward as A2 = A1A1SA1.
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Figure 2: The Chacon map T : [0, 1]→ [0, 1] resulting from cutting and stacking.

Proposition 10. The Chacon map T : [0, 1]→ [0, 1] of cutting and stacking is uniquely
ergodic, weakly mixing but not strongly mixing.

Sketch of Proof. First some observations on the symbolic pattern that emerges of the
Chacon cutting and stacking. When stacking intervals, their labels follow the following
pattern

A0A0SA0︸ ︷︷ ︸
A1

A0A0SA0︸ ︷︷ ︸
A1

S A0A0SA0︸ ︷︷ ︸
A1︸ ︷︷ ︸

A2

A0A0SA0︸ ︷︷ ︸
A1

A0A0SA0︸ ︷︷ ︸
A1

S A0A0SA0︸ ︷︷ ︸
A1︸ ︷︷ ︸

A2

S A0A0SA0︸ ︷︷ ︸
A1

A0A0SA0︸ ︷︷ ︸
A1

S A0A0SA0︸ ︷︷ ︸
A1︸ ︷︷ ︸

A2︸ ︷︷ ︸
A3

This pattern is the same at every level; we could have started with An, grouped together
as An+1 = AnAnSAn, etc. At step n in the construction of the tower, the width of the
stack is wn = 2

3
(3−(n+1) and the length of the the word An is ln = 1

2
(3n+1 − 1).

The frequency of each block σk(An) is almost the same in every block huge block B,
regardless where taken in the infinite string. This observation leads to unique ergodicity
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(similar although a bit more involved as in the case of the Kakutani map), but we will
skip the details.

Instead, we focus on the weak mixing. Clearly the word An appears in triples, and
also as AnAnAnSAnAnAn. To explain the idea behind the proof, pretend that an
eigenfunction (with eigenvalue e2πiλ) were constant on any set E whose code is An (or
σkAn for some 0 6 k < ln, where σ denotes the left-shift). Such sets E are intervals of
width wn. Then

f ◦ T ln|E = e2πiλlnf |E and f ◦ T 2ln+1|E = e2πiλlnf |E.

This gives 1 = e2πiλln = e2πiλ(2ln+1), so λ = 0, and the eigenvalue is 1 after all.

The rigorous argument is as follows. Suppose that f(x) = e2πiϑ(x) were an eigenfunction
for eigenvalue e2πiλ and a measurable function ϑ : S1 → R. By Lusin’s Theorem, we can
find a subset F ⊂ S1 of Lebesgue measure > 1− ε such that ϑ is uniformly continuous
on F . Choose ε > 0 arbitrary, and take N so large that the variation of ϑ is less
that ε on any set of the form E ∩ F , where points in E have code starting as σk(AN),
0 6 k < lN . Sets of this type fill a set E∗ with mass at least half of the unit interval.

Because of the frequent occurrence of ANANANSANANAN , a definite proportion of E∗

is covered by set E with the property that such that T 2lN+1 ∩ T lNE ∩ E 6= ∅, because
they have codes of length lN that reappear after both lN and 2lN + 1 shifts. For x in
this intersection,{

ϑ ◦ T 2lN+1(x) = (lN + 1)λ+ ϑ ◦ T lN (x) (mod 1)

ϑ ◦ T lN (x) = lNλ+ ϑ(x) (mod 1)

where all three point x, T lN (x), T 2lN+1(x) belong to the same copy E. Subtracting the
two equations gives

λ mod 1 = ϑ ◦ T 2lN+1(x)− ϑ ◦ T lN (x) + ϑ(x)− ϑ ◦ T lN (x) 6 2ε.

But ε is arbitrary, so λ = 0 mod 1 and the eigenvalue is 1.

Now for the strong mixing, consider once more the sets E = Ek,n of points whose
codes starts as the k-th cyclic permutation of An for some 0 6 k < ln, that is: the
first ln symbols of σk(AnAn). Their measure is µ(E) = wn, and for different k, they
are disjoint. Furthermore, the only ln-block appearing are cyclic permutations of An
or cyclic permutations with pieces of S inserted somewhere. At least half of these
appearances are of the first type, so µ(∪ln−1

k=0 Ek,n) > 1
2

for each n.

The basic idea is that µ(E∩T−lnE) > 1
3
µ(E) because at least a third of the appearances

of An is followed by another An. But 1
3
µ(E)� µ(E)2, as one would expect for mixing.

Of course, mixing only says that liml µ(Y ∩ T−l(E)) = µ(Y )2 only for sets Y not
depending on l.
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However, let Ym = [m/8, (m+ 1)/8] ⊂ [0, 1], m = 0, . . . , 7 be the eight dyadic intervals
of length 1/8. For each n, at least one Ym is covered for at least half by sets E of the
above type, say a set Z ⊂ Ym of measure µ(Z) > 1

2
µ(Ym)) such that Z ⊂ ∪kEk,n. That

means that

µ(Ym ∩ T−ln(Ym)) > µ(Z ∩ T−ln(Z)) >
1

3
µ(Z) >

1

6
µ(Ym) > µ(Ym)2.

Let Y be one of the Ym’s for which the above holds for infinitely many n. Then
lim supn µ(Ym ∩ T−ln(Ym)) > µ(Y )2, contradicting strong mixing.

14 Toral automorphisms

The best known example of a toral automorphism (that is, an invertible linear map on
the torus Tn = S1×· · ·×S1) is the Arnol’d cat map. This map TC : T2 → T2 is defined
as

TC(x, y) = C

(
x

y

)
(mod 1) for the matrix C =

(
2 1
1 1

)
.

The name come from the illustration in Arnol’d’s book [3] showing how the head of a
cat, drawn on a torus, is distorted by the action of the map4. Properties of TC are:

• C preserves the integer lattice, so TC is well-defined an continuous.

• det(C) = 1, so Lebesgue measure m is preserved (both by C and TC). Also C
and TC are invertible, and C−1 is still an integer matrix.

• The eigenvalues of C are λ± = (3 ±
√

5)/2, and the corresponding eigenspaces
E± are spanned (−1, (

√
5 + 1)/2)T and (1, (

√
5 − 1)/2)T . These are orthogonal

(naturally, since C is symmetric), and have irrational slopes, so they wrap densely
in the torus.

• Every rational point in T2 is periodic under T (as their denominators cannot
increase, so T acts here as an invertible map on a finite set). This gives many
invaraint measures: the equidistribution on each periodic orbit. Therefore TC is
not uniquely ergodic.

The properties are common to all maps TA, provided they satisfy the following defini-
tion.

Definition 15. A toral automorphism T : Td → Td is an invertible linear map on the
(d-dimensional) torus Td. Each such T is of the form TA(x) = Ax (mod 1), where the
matrix A satisfies:

4Arnol’d didn’t seem to like cats, but see the applet https://www.jasondavies.com/catmap/ how
the cat survives
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• A is an integer matrix with det(A) = ±1;

• the eigenvalues of A are not on the unit circle; this property is called hyperbol-
icity.

Somewhat easier to treat that the cat map is TA for A =
(

1 1
1 0

)
, which is an orientation

reversing matrix with A2 = C. The map TA has a Markov partition, that is a
partition {Ri}Ni=1 for sets such that

1. The Ri have disjoint interiors and ∪iRi = Td;

2. If TA(Ri) ∩ Rj 6= ∅, then TA(Ri) stretches across Rj in the unstable direction
(i.e., the direction spanned by the unstable eigenspaces of A).

3. If T−1
A (Ri) ∩ Rj 6= ∅, then T−1

A (Ri) stretches across Rj in the stable direction
(i.e., the direction spanned by the stable eigenspaces of A).

In fact, every hyperbolic toral automorphism has a Markov partition, but in general
they are fiendishly difficult to find explicitly. In the case of A, a Markov partition of
three rectangles Ri for i = 1, 2, 3 can be constructed, see Figure 3.
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Figure 3: The Markov partition for the toral automorphism TA. The arrows indicate
the stable and unstable directions at (0, 0).

The corresponding transition matrix is

B =

0 1 1
1 0 1
0 1 0

 where Bij =

{
1 if TA(Ri) ∩Rj 6= ∅
0 if TA(Ri) ∩Rj = ∅.

Note that the characteristic polynomial of B is

det(B − λI) = −λ3 + 2λ+ 1 = −(λ+ 1)(λ2 − λ− 1) = −(λ+ 1) det(A− λI).
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so B has the eigenvalues of A (no coincidence!), together with λ = −1. The transition
matrix B generates a subshift of finite type:

ΣB = {(xi)i∈Z : xi ∈ {1, 2, 3}, Bxixi+1
= 1 ∀ i ∈ Z},

equipped with the left-shift σ. That is, ΣB contains only sequences in which each xixi+1

indicate transitions from Markov partition elements that are allowed by the map TA.

It can be shown that (Td,B, T, Leb) is isomorphic to the shift space (ΣB, C, σ, µ) where

µ([xkxk+1 . . . xn]) = mxkΠxkxk+1
Πxk+1xk+2

. . .Πxn−1xn ,

for mi = Leb(Ri), i = 1, . . . , d}, and weighted transition matrix Π where

Πij =
Leb(TA(Ri) ∩Rj)

Leb(Ri)
is the relative mass that TA transports from Ri to Rj.

Finally C the σ-algebra of set generated by allowed cylinder sets.

Theorem 17. For every hyperbolic toral automorphism, Lebesgue measure is ergodic
and mixing.

Proof. We only give the proof for dimension 2. The higher dimensional case goes
similarly. Consider the Fourier modes (also called characters)

χ(m,n) : T2 → C, χ(m,n)(x, y) = e2πi(mx+ny).

These form an orthogonal system (w.r.t. 〈ϕ, ψ〉 =
∫
ϕψdλ), spanning L2(λ) for Lebesgue

measure λ. We have

UTAχ(m,n)(x, y) = χ(m,n)◦TA(x, y) = χm,n(x, y) = e2πi(am+cn)x+(bm+dn)y) = χAt(m,n)(x, y).

In other words, UTA maps the character with index (m,n) to the character with index
At(m,n), where At is the transpose matrix.

For the proof of ergodicity, assume that ϕ is a TA-invariant L2-function. Write it as
Fourier series:

ϕ(x, y) =
∑
m,n∈Z

ϕ(m,n)χ(m,n)(x, y),

where the Fourier coefficients ϕm,n → 0 as |m|+ |n| → ∞ By TA-invariance, we have

ϕ(x, y) = ϕ ◦ TA(x, y) =
∑
m,n∈Z

ϕ(m,n)χAt(m,n)(x, y),

and hence ϕ(m,n) = ϕAt(m,n) for all m,n. For (m,n) = (0, 0) this is not a problem, but
this only produces constant functions. If (m,n) 6= (0, 0), then the At-orbit of (m,n), so
infinitely many equal Fourier coefficients

ϕ(m,n) = ϕAt(m,n) = ϕ(At)2(m,n) = ϕ(At)3(m,n) = ϕ(At)4(m,n) . . .
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As the Fourier coefficients converge to zero as |m| + |n| → ∞, they all must be equal
to zero, and hence ϕ is a constant function. This proves ergodicity.

For the proof of mixing, we need a lemma, which we give without proof.

Lemma 9. A transformation (X,T, µ) is mixing if and only if for all ϕ, ψ in a complete
orthogonal system spanning L2(µ), we have∫

X

ϕ ◦ TN(x)ψ(x) dµ→
∫
X

ϕ(x) dµ ·
∫
X

ψ(x) dµ

as N →∞.

To use this lemma on ϕ = χ(m,n) and ψ = χ(k,l), we compute∫
X

χ(m,n) ◦ TN(x)χ(k,l)(x) dλ =

∫
X

χ(At)N (m,n)χ(k,l)(x) dλ.

If (m,n) = (0, 0), then (At)N(m,n) = (0, 0) = (m,n) for all N . Hence, the integral
is non-zero only if (k, l) = (0, 0), but then the integral equals 1, which is the same
as
∫
X
χ(0,0) dλ

∫
X
χ(0,0)(x) dλ. If (k, l) = (0, 0), then the integral is zero, but so is∫

X
χ(0,0) dλ

∫
X
χ(0,0)(x) dλ.

If (m,n) 6= (0, 0), then, regardless what (k, l) is, there is N such that (At)M(m,n) 6=
(k, l) for all M > N . Therefore∫

X

χ(m,n) ◦ TM(x)χ(k,l)(x) dλ = 0 =

∫
X

χ(m,n) dλ

∫
X

χ(k,l)(x) dλ.

The lemma therefore guarantees mixing.

15 Topological entropy and topological pressure

Topological entropy was first defined in 1965 by Adler et al. [1], but the form that
Bowen [4] and Dinaburg [10] redressed it in is commonly used nowadays.

We will start by start giving the original definition, because the idea of joints of covers
easily relates to joints of partitions as used in measure-theoretic entropy. After that, we
will give Bowen’s approach, since it readily generalises to topological pressure as well.

15.1 The original definition

Let (X, d, T ) be a continuous map on compact metric space (X, d). We say that U =
{Ui} is an open ε-cover if all Ui are open sets of diamter 6 ε and X ⊂

⋃
i Ui. Naturally,
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compactness of X guarantees that for every open cover, we can select a finite subcover.
Thus, let N (U) the the minimal possible cardinality of subcovers of U . We say that
U refines V (notation U � V) if evey U ∈ U is contained in a V ∈ V . If U � V then
N (U) ≥ N (V).

Given two cover U and V , the joint

U ∨ V := {U ∩ V : U ∈ U , V ∈ V}

is an open cover again, and one can verify that N (U ∨ V) 6 N (U)N (V). Since T is
continuous, T−1(U) is an open cover as well, although in this case it need not be an
ε-cover; However, U ∨ T−1(U) is an ε-cover, and it refines T−1(U).

Define the topological entropy as

htop(T ) = lim
ε→0

sup
U

lim
n

1

n
logN (Un) for Un :=

n−1∨
i=0

T−i(U), (24)

where the supremum is taken over all open ε-covers U . BecauseN (U∨V) 6 N (U)N (V),
the sequence logN (Un) is subadditive, so the limit limn

1
n

logN (Un) exists. We have
the following properties:

Lemma 10. • htop(T k) = khtop(T ) for k > 0. If T is invertible, then also htop(T
−1) =

htop(T ).

• If (Y, S) is semiconjugate to (X,T ), then htop(S) 6 htop(T ). In particular, conju-
gate systems (on compact spaces!) have the same entropy.

Proof.

15.2 Topological entropy of interval maps

If X = [0, 1] with the usual Euclidean metric, then there are various shortcuts to
compute the entropy of a continuous map T : [0, 1] → [0, 1]. Let us call any maximal
interval on which T is monotone a lap; the number of laps is denoted as `(T ). Also, the
variation of T is defined as

V ar(T ) = sup
06x0<... xN6N

N∑
i=1

|T (xi)− T (xi−1)|,

where the supremum runs over all finite collections of points in [0, 1]. The following
result is due to Misurewicz & Szlenk [19].
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Proposition 11. Let T : [0, 1]→ [0, 1] have finitely many laps. Then

htop(T ) = lim
n→∞

1

n
log `(T n)

= lim sup
n→∞

1

n
log #{clusters of n-periodic points}

= max{0, lim
n→∞

1

n
log Var(T n)}.

where two n-periodic points are in the same cluster if they belong to the same lap of T n.

Remark 6. The identity map has one branch, consisting of (uncountaly many) fixed
point, that form one cluster. The map x 7→ x + (x/10)2 sin(π/x) mod 1 has also one
branch, but with countably many fixed point, forming one cluster. For an expanding
map, every branch can contain only one fixed point.

Proof. Since the variation of a monotone function is given by supT − inf T , and due to
the definition of “cluster” of n-periodic points, the inequalities

#{clusters of n-periodic points},Var(T n) 6 `(T n)

are immediate. For a lap I of T n, let γ := |T n(I)| be its height. We state without proof
(cf. [6, Chapter 9]):

For every δ > 0, there is γ > 0 such that
#{J : J is a lap of T n, |T n(J)| > γ} ≥ 1− δ)n`(Tn).

(25)

This means that V ar(T n) > γ(1− δ)n`(T n), and therefore

−2δ + lim
n

1

n
log `(T n) 6 lim

n

1

n
log Var(T n) 6 lim

n

1

n
log `(T n).

Since δ is arbitrary, both above quantities are all equal.

Making the further assumption (without proof5) that there is K = K(γ) such that
∪Ki=0T

i(J) = X for every interval of length |J | > γ, we also find that

#{clusters of n+ i-periodic points, 0 6 i 6 K} > (1− δ)n`(T n).

This implies that

−2δ + lim
n

1

n
log `(T n) 6 lim sup

n

1

n
max

06i6K
log #{clusters of n+ i-periodic points}

so also limn
1
n

log `(T n) = lim supn→∞
1
n

log #{clusters of n-periodic points}

If ε > 0 is so small that the width of every lap is greater than 2ε, then for every ε-
cover U , every subcover of Un has at least one element in each lap of T n. Therefore
`(T n) 6 N (Un) for every ε-cover, so limn

1
n

log `(T n) 6 htop(T ).
5In fact, it is not entirely true if T has an invariant subset attracting an open neighbourhood.

But it suffices to restrict T to its nonwandering set, that is, the set Ω(T ) = {x ∈ X : x ∈
∪n>1T

n(U)) for every neighbourhood U 3 x}, because htop(T ) = htop(T |Ω(T )).
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15.3 Bowen’s approach

Let T be map of a compact metric space (X, d). If my eyesight is not so good, I cannot
distinguish two points x, y ∈ X if they are at a distance d(x, y) < ε from one another. I
may still be able to distinguish there orbits, if d(T kx, T ky) > ε for some k > 0. Hence,
if I’m willing to wait n− 1 iterations, I can distinguish x and y if

dn(x, y) := max{d(T kx, T ky) : 0 6 k < n} > ε.

If this holds, then x and y are said to be (n, ε)-separated. Among all the subsets of
X of which all points are mutually (n, ε)-separated, choose one, say En(ε), of maximal
cardinality. Then sn(ε) := #En(ε) is the maximal number of n-orbits I can distinguish
with ε-poor eyesight.

The topological entropy is defined as the limit (as ε→ 0) of the exponential growth-
rate of sn(ε):

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε). (26)

Note that sn(ε1) > sn(ε2) if ε1 6 ε2, so lim supn
1
n

log sn(ε) is a decreasing function in
ε, and the limit as ε→ 0 indeed exists.

Instead of (n, ε)-separated sets, we can also work with (n, ε)-spanning sets, that is,
sets that contain, for every x ∈ X, a y such that dn(x, y) 6 ε. Note that, due to its
maximality, En(ε) is always (n, ε)-spanning, and no proper subset of En(ε) is (n, ε)-
spanning. Each y ∈ En(ε) must have a point of an (n, ε/2)-spanning set within an
ε/2-ball (in dn-metric) around it, and by the triangle inequality, this ε/2-ball is disjoint
from ε/2-ball centred around all other points in En(ε). Therefore, if rn(ε) denotes the
minimal cardinality among all (n, ε)-spanning sets, then

rn(ε) 6 sn(ε) 6 rn(ε/2). (27)

Thus we can equally well define

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log rn(ε). (28)

Examples: Consider the β-transformation Tβ : [0, ) → [0, 1), x 7→ βx (mod 1) for
some β > 1. Take ε < 1/(2β2), and Gn = { k

βn
: 0 6 k < βn}. Then Gn is (n, ε)-

separating, so sn(ε) > βn. On the other hand, G′n = {2kε
βn

: 0 6 k < βn/(2ε)} is

(n, ε)-spanning, so rn(ε) 6 βn/(2ε). Therefore

log β = lim sup
n

1

n
log βn 6 htop(Tβ) 6 lim sup

n
log βn/(2ε) = log β.

Circle rotations, or in general isometries, T have zero topological entropy. Indeed,
if E(ε) is an ε-separated set (or ε-spanning set), it will also be (n, ε)-separated (or
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(n, ε)-spanning) for every n > 1. Hence sn(ε) and rn(ε) are bounded in n, and their
exponential growth rates are equal to zero.

Finally, let (X, σ) be the full shifts on N symbols. Let ε > 0 be arbitrary, and take m
such that 2−m < ε. If we select a point from each n + m-cylinder, this gives an (n, ε)-
spanning set, whereas selecting a point from each n-cylinder gives an (n, ε)-separated
set. Therefore

logN = lim sup
n

1

n
logNn 6 lim sup

n

1

n
log sn(ε) 6 htop(Tβ)

6 lim sup
n

1

n
log rn(ε) 6 lim sup

n
logNn+m = logN.

Proposition 12. For a continuous map T on a compact metric space (X, d), the three
definitions (24), (26) and (28) give the same outcome.

Proof. The equality of the limits (26) and (28) follows directly from (27).

If U is an ε-cover, every A ∈ Un can contain at most one point in an (n, ε)-separated
set, so s(n, ε) < N (Un), whence lim supn

1
n

log s(n, ε) 6 limn
1
n

logN (Un).

Finally, in a compact metric space, every open cover U has a number (called its Lebesgue
number) such that for every x ∈ X, there is U ∈ U such that Bδ(x) ⊂ U . Clearly δ < ε
if U is an ε-cover. Now if an open ε-cover U has Lebesgue number δ, and E is an
(n, δ)-spanning set of cardinality #E = r(n, δ), then X ⊂ ∪x∈E ∩n−1

i=0 T−i(Bδ(T
ix)).

Since each Bδ(T
i(x)) is contained in some U ∈ U , we have N (Un) 6 r(n, δ). Since

δ → 0 as ε→ 0, also

lim
ε→0

lim
n

1

n
logN (Un) 6 lim

δ→0
lim sup

n

1

n
log r(n, δ).

15.4 Topological pressure

The topological pressure Ptop(T, ψ) combines entropy with a potential function ψ : X →
R. By definition, htop(T ) = Ptop(T, ψ) if ψ(x) ≡ 0. Denote the n-th ergodic sum of ψ
by

Snψ(x) =
n−1∑
k=0

ψ ◦ T k(x).

Next set {
Kn(T, ψ, ε) = sup{

∑
x∈E e

Snψ(x) : E is (n, ε)-separated},
Ln(T, ψ, ε) = inf{

∑
x∈E e

Snψ(x) : E is (n, ε)-spanning}.
(29)
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For reasonable choices of potentials, the quantities limε→0 lim supn→∞
1
n

logKn(T, ψ, ε)
and limε→0 lim supn→∞

1
n

logLn(T, ψ, ε) are the same, and this quantity is called the
topological pressure. To give an example of an unreasonable potential, take X0 be
a dense T -invariant subset of X such that X \X0 is also dense. Let

ψ(x) =

{
100 if x ∈ X0,
0 if x /∈ X0.

Then Ln(T, ψ, ε) = rn(ε) whilst Kn(T, ψ, ε) = e100nsn(ε), and their exponential growth
rates differ by a factor 100. Hence, some amount of continuity of ψ is necessary to make
it work.

Lemma 11. If ε > 0 is such that d(x, y) < ε implies that |ψ(x)− ψ(y)| < δ/2, then

e−nδKn(T, ψ, ε) 6 Ln(T, ψ, ε/2) 6 Kn(T, ψ, ε/2).

Exercise 2. Prove Lemma 11. In fact, the second inequality holds regardless of what
ψ is.

Theorem 18. If T : X → X and ψ : X → R are continuous on a compact metric
space, then the topological pressure is well-defined by

Ptop(T, ψ) := lim
ε→0

lim sup
n→∞

1

n
logKn(T, ψ, ε) = lim

ε→0
lim sup
n→∞

1

n
logLn(T, ψ, ε).

Exercise 3. Show that Ptop(T
R, SRψ) = R · Ptop(T, ψ).

16 Measure-theoretic entropy

Entropy is a measure for the complexity of a dynamical system (X,T ). In the previous
sections, we related this (or rather topological entropy) to the exponential growth rate
of the cardinality of Pn =

∨n−1
k=0 T

−kP for some partition of the space X. In this
section, we look at the measure theoretic entropy hµ(T ) of an T -invariant measure µ,
and this amounts to, instead of just counting Pn, taking a particular weighted sum of the
elements Zn ∈ Pn. However, if the mass of µ is equally distributed over the all the Zn ∈
Pn, then the outcome of this sum is largest; then µ would be the measure of maximal
entropy. In “good” systems (X,T ) is indeed the supremum over the measure theoretic
entropies of all the T -invariant probability measures. This is called the Variational
Principle:

htop(T ) = sup{hµ(T ) : µ is T -invariant probability measure}. (30)

In this section, rather than presenting more philosophy what entropy should signify, let
us first give the mathematical definition.
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Define
ϕ : [0, 1]→ R ϕ(x) = −x log x

with ϕ(0) := limx↓0 ϕ(x) = 0. Clearly ϕ′(x) = −(1+log x) so ϕ(x) assume its maximum
at 1/e and ϕ(1/e) = 1/e. Also ϕ′′(x) = −1/x < 0, so that ϕ is strictly concave:

αϕ(x) + βϕ(y) 6 ϕ(αx+ βy) for all α + β = 1, α, β > 0, (31)

with equality if and only if x = y.

Theorem 19 (Jensen’s Inequality). For every strictly concave function f : [0,∞)→ R,
and all αi > 0,

∑n
i=1 αi = 1 and xi ∈ [0,∞) we have

n∑
i=1

αif(xi) 6 f(
n∑
i=1

αixi), (32)

with equality if and only if all the xi are the same.

Proof. We prove this by induction on n. For n = 2 it is simply (31). So assume that
(32) holds for some n, and we treat the case n + 1. Assume αi > 0 and

∑n+1
i=1 αi = 1

and write B =
∑n

i=1 αi.

f(
n+1∑
i=1

αixi) = f(B
n∑
i=1

αi
B
xi + αn+1xn+1)

> Bf(
n∑
i=1

αi
B
xi) + αn+1f(xn+1) by (31)

> B
n∑
i=1

αi
B
f(xi) + αn+1f(xn+1) by (32) for n

=
n+1∑
i=1

αif(xi)

as required. Equality also carries over by induction, because if xi are all equal for
1 6 i 6 n, (31) only preserves equality if xn+1 =

∑n
i=1

αi
B
xi = x1.

Applying Jensen’s inequality to ϕ(x) = −x log x, we obtain:

Corollary 3. For p1 + · · · + pn = 1, pi > 0, then
∑n

i=1 ϕ(pi) 6 log n with equality if
and only if all pi are equal, i.e., pi ≡ 1

n
.

Proof. Take αi = 1
n
, then by Theorem 19,

1

n

n∑
i=1

ϕ(pi) =
n∑
i=1

αiϕ(pi) 6 ϕ(
n∑
i=1

1

n
pi) = ϕ(

1

n
) =

1

n
log n.

Now multiply by n.
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Corollary 4. For real numbers ai and p1 + · · ·+ pn = 1, pi > 0,
∑n

i=1 pi(ai − log pi) 6
log
∑n

i=1 e
ai with equality if and only if pi = eai/

∑n
i=1 e

ai for each i.

Proof. Write Z =
∑n

i=1 e
ai . Put αi = eai/Z (so

∑n
i=1 αi = 1) and xi = piZ/eai (so∑n

i=1 αixi = 1) in Theorem 19. Then

n∑
i=1

pi(ai − logZ − log pi) = −
n∑
i=1

eai

Z

(
piZ
eai

log
piZ
eai

)
6 −

n∑
i=1

eai

Z
piZ
eai

log
n∑
i=1

eai

Z
piZ
eai

= ϕ(1) = 0.

Rearranging gives
∑n

i=1 pi(ai − log pi) 6 logZ, with equality only if xi = piZ/eai are
all the same. But as

∑n
i=1 αixi = 1 and also

∑n
i=1 αi = 1, this means that xi = 1, i.e.,

pi = eai/Z.

Exercise 4. Reprove Corollaries 3 and 4 using Lagrange multipliers.

Given a finite partition P of a probability space (X,µ), let

Hµ(P) =
∑
P∈P

ϕ(µ(P )) = −
∑
P∈P

µ(P ) log(µ(P )), (33)

where we can ignore the partition elements with µ(P ) = 0 because ϕ(0) = 0. For a
T -invariant probability measure µ on (X,B, T ), and a partition P , define the entropy
of µ w.r.t. P as

hµ(T,P) = lim
n→∞

1

n
Hµ(

n−1∨
k=0

T−kP). (34)

Finally, the measure theoretic entropy of µ is

hµ(T ) = sup{hµ(T,P) : P is a finite partition of X}. (35)

Naturally, this raises the questions:

Does the limit exist in (34)?
How can one possibly consider all partitions of X?

We come to this later; first we want to argue that entropy is a characteristic of a
measure preserving system. That is, two measure preserving systems (X,B, T, µ) and
(Y, C, S, ν) that are isomorphic, i.e., there are full-measured sets X0 ⊂ X, Y0 ⊂ Y and
a bi-measurable invertible measure-preserving map π : X0 → Y0 (called isomorphism)
such that the diagram

(X0,B, µ)
T−→ (X0,B, µ)

π ↓ ↓ π

(Y0, C, ν)
S−→ (Y0, C, ν)
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commutes, then hµ(T ) = hν(S). This holds, because the bi-measurable measure-
preserving map π preserves all the quantities involved in (33)-(35), including the class
of partitions for both systems.

A major class of systems where this is very important are the Bernoulli shifts. These
are the standard probability space to measure a sequence of i.i.d. events each with
outcomes in {0, . . . , N − 1} with probabilities p0, . . . , pN−1 respectively. That is: X =
{0, . . . , N − 1}N0 or {0, . . . , N − 1}Z, σ is the left-shift, and µ the Bernoulli measure
that assigns to every cylinder set [xm . . . xn] the mass

µ([xm . . . xn]) =
n∏

k=m

ρ(xk) where ρ(xk) = pi if xk = i.

For such a Bernoulli shift, the entropy is

hµ(σ) = −
∑
i

pi log pi, (36)

so two Bernoulli shifts (X, p, µp) and (X ′, p′, µp′) can only be isomorphic if−
∑

i pi log pi =
−
∑

i p
′
i log(p′i). The famous theorem of Ornstein showed that entropy is a complete in-

variant for Bernoulli shifts:

Theorem 20 (Ornstein 1974 [21], cf. page 105 of [24]). Two two-sided Bernoulli shifts
(X, p, µp) and (X ′, p′, µp′) are isomorphic if and only if −

∑
i pi log pi = −

∑
i p
′
i log p′i.

The isomorphism between these Bernoulli shifts is usually extremely complicated. A
more (although still complicated) way of constructing these isomorphisms was given by
Keane & Smorodinski in 1979, see [13].

Exercise 5. Conclude that the Bernoulli shift µ( 1
4
, 1
4
, 1
4
, 1
4

) is isomorphic to µ( 1
8
, 1
8
, 1
8
, 1
8
, 1
2

),
but that no Bernoulli measure on four symbols can be isomorhic to µ( 1

5
, 1
5
, 1
5
, 1
5
, 1
5

)

For one-sided Bernoulli shifts, Ornstein’s theorem does not hold. If the number of sym-
bols are different, then the one-sided Bernoulli shifts can definitely not be isomorphic.

Let us go back to the definition of entropy, and try to answer the outstanding questions.

Definition 16. We call a real sequence (an)n>1 subadditive if

am+n 6 am + an for all m,n ∈ N.

Theorem 21. If (an)n>1 is subadditive, then limn
an
n

= infr>1
ar
r

.

Proof. Every integer n can be written uniquely as n = i · r+ j for 0 6 j < r. Therefore

lim sup
n→∞

an
n

= lim sup
i→∞

ai·r+j
i · r + j

6 lim sup
i→∞

iar + aj
i · r + j

=
ar
r
.
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This holds for all r ∈ N, so we obtain

inf
r

ar
r

6 lim inf
n

an
n

6 lim sup
n

an
n

6 inf
r

ar
r
,

as required.

16.1 Conditional Entropy

Definition 17. Motivated by the conditional measure µ(P |Q) = µ(P∩Q)
µ(Q)

, we define
conditional entropy of a measure µ as

Hµ(P|Q) = −
∑
j

µ(Qj)
∑
i

µ(Pi ∩Qj)

µ(Qj)
log

µ(Pi ∩Qj)

µ(Qj)
, (37)

where i runs over all elements Pi ∈ P and j runs over all elements Qj ∈ Q.

Before trying to interpret this notion, let us first list some properties that follow directly
from the definition and Jensen’s inequality:

Proposition 13. Given measures µ, µi and two partitions P and Q, we have

1. Hµ(P ∨Q) 6 Hµ(P) +Hµ(Q);

2. Hµ(Q) = Hµ(P) +Hµ(Q | P), whence hµ(T,Q) = hµ(T,P) +Hµ(Q | P).

3.
∑n

i=1 piHµi(P) 6 H∑n
i=1 piµi

(P) whenever
∑n

i=1 p1 = 1, pi > 0,

Proof. Direct computation gives

Hµ(P ∨Q) = −
∑
P∈P

∑
Q∈Q

µ(P ∩Q) log µ(P ∩Q)

= −
∑
P∈P

∑
Q∈Q

µ(P ∩Q) log
µ(P ∩Q)

µ(P )
−
∑
P∈P

∑
Q∈Q

µ(P ∩Q) log µ(P )

= Hµ(Q | P)−
∑
P∈P

µ(P ) log µ(P ) = Hµ(Q | P) +Hµ(P),

and this proves the first part of 2. The second part of 2. then follows from the definition.
Using Jensen’s inequality, we get

Hµ(Q | P) = −
∑
P∈P

∑
Q∈Q

µ(P )
µ(P ∩Q)

µ(P )
log

µ(P ∩Q)

µ(P )

=
∑
Q∈Q

∑
P∈P

µ(P )ϕ(
µ(P ∩Q)

µ(P )
)

≤
∑
Q∈Q

ϕ(
∑
P∈P

µ(P )
µ(P ∩Q)

µ(P )
) =

∑
Q∈Q

ϕ(µ(Q)) = Hµ(Q).
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Together with 2. we obtain Hµ(P ∨Q) 6 Hµ(P) +Hµ(Q).

Subadditivity is the key to the convergence in (34). Call an = Hµ(
∨n−1
k=0 T

−kP). Then

am+n = Hµ(
m+n−1∨
k=0

T−kP) use Proposition 13, part 1.

6 Hµ(
m−1∨
k=0

T−kP) +Hµ(
m+n−1∨
k=m

T−kP) use T -invariance of µ

= Hµ(
m−1∨
k=0

T−kP) +Hµ(
n−1∨
k=0

T−kP)

= am + an.

ThereforeHµ(
∨n−1
k=0 T

−kP) is subadditive, and the existence of the limit of 1
n
Hµ(

∨n−1
k=0 T

−kP)
follows.

Proposition 14. Entropy has the following properties:

1. The identity map has entropy 0;

2. hµ(TR) = R · hµ(T ) and for invertible systems hµ(T−R) = R · hµ(T ).

Proof. Statement 1. follows simply because
∨n−1
k=0 T

−kP = P if T is the identity map,
so the cardinality of

∨n−1
k=0 T

−kP doesn’t increase with n.

For statement 2. set Q =
∨R−1
j=0 T

−jP . Then for R > 1,

R · hµ(T,P) = lim
n→∞

R · 1

nR
Hµ(

nR−1∨
j=0

T−jP)

= lim
n→∞

1

n
Hµ(

n−1∨
j=0

(TR)−jQ)

= hµ(TR,Q).

Taking the supremum over all P or Q has the same effect.

To give some more intuition about condition entropies, observe that for some arbitrary
partition P of X, the definition of condition entropy (37) gives

H(P|{∅, X}) = H(P) and H(P|P) = 0.

In general, the finer the partition w.r.t. which we take conditional entropy, the smaller
the entropy. That is, if P and Q,Q′ are partitions of X such that Q refines Q′, then

H(Q|P) ≥ H(Q′|P) but H(P|Q) ≤ H(P|Q′).
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Corollary 5. If P is a finite (or countable) partition, then limn→∞H(P|
∨n−1
j=1 T

−jP) =
h(P , T ).

Proof. Using Proposition 13 part 2. and invariance of the measure repeatedly, we find

Hµ(
n−1∨
j=0

T−jP) = Hµ(
n−1∨
j=1

T−jP ∨ P) = Hµ(P|
n−1∨
j=1

T−jP) +Hµ(
n−1∨
j=1

T−jP)

= Hµ(P|
n−1∨
j=1

T−jP) +Hµ(
n−2∨
j=0

T−jP)

= Hµ(P|
n−1∨
j=1

T−jP) +Hµ(P|
n−2∨
j=1

T−jP) +Hµ(
n−3∨
j=0

T−jP)

...
...

=
n−1∑
k=0

Hµ(P|
k∨
j=1

T−jP).

Since
∨k
j=1P refines

∨k′

j=1P if k ≥ k′, the summands Hµ(P|
∨k−1
j=1 T

−jP) are decreasing
in k. Now divide by n and take n→∞:

h(P , T ) = lim
n→∞

1

n
Hµ(

n−1∨
j=0

T−jP) = lim
n→∞

1

n

n−1∑
k=0

Hµ(P|
k−1∨
j=1

T−jP) = lim
n→∞

Hµ(P|
n−1∨
j=1

T−jP)

as required.

Also, if P and Q are almost the same, in the sense that the measures of the symmetric
difference µ(P4Q) is small for all P ∈ P , Q ∈ Q, then H(P|Q) is small too. The
following lemma quantifies this.

Lemma 12. For every ε > 0 there is δ > 0 such that if P = {P1, . . . , Pr} and Q =
{Q1, . . . , Qr} are two finite partitions with

∑r
i=1 µ(Pi4Qi) < δ, then H(P|Q) < ε/2

and H(Q|P) < ε/2 (so that H(P|Q) +H(Q|P) < ε/2).

Proof. Let ε > 0 be arbitrary and choose δ ∈ (0, 1
4
) such that −r(r − 1)δ log δ − (1 −

δ) log(1 − δ) < ε
2
. Let A = {Pi ∩ Qj}i 6=j ∪ (∪ri=1Pi ∩ Qi). Then P ∨ Q = Q ∨ A and

Pi ∩Qj ⊂ ∪rk=1Pk4Qk. Therefore (using the assumption of the lemma)

µ(Pi ∩Qj) < δ i 6= j and µ(∪ri=1Pi ∩Qi) > 1− δ.

We compute H(A) = −r(r − 1)δ log δ − (1 − δ) log(1 − δ) < ε/2. Finally, H(Q) +
H(P|Q) = H(P ∨ Q) = H(Q ∨ A) ≤ H(Q) + H(A) so that H(P|Q) ≤ ε/2. The
symmetric statement H(Q|P) ≤ ε/2 follows likewise.
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16.2 Generators and the Kolmogorov-Sinăı Theorem

The next theorem is the key to really computing entropy, as it shows that a single
well-chosen partition P suffices to compute the entropy as hµ(T ) = hµ(T,P).

Theorem 22 (Kolmogorov-Sinăı). Let (X,B, T, µ) be a measure-preserving dynamical
system. If partition P is such that{ ∨∞

j=0 T
−kP generates B if T is non-invertible,∨∞

j=−∞ T
−kP generates B if T is invertible,

then hµ(T ) = hµ(T,P).

We haven’t explained properly what “generates B means, but the idea you should
have in mind is that (up to measure 0), every two points in X should be in different
elements of

∨n−1
k=0 T

−kP (if T is non-invertible), or of
∨n−1
k=−n T

−kP (if T is invertible)
for some sufficiently large n. The partition B = {X} fails miserably here, because∨n
j=−n T

−kP = P for all n and no two points are ever separated in P . A more subtle

example can be created for the doubling map T2 : S1 → S1, T2(x) = 2x (mod 1). The
partition P = {[0, 1

2
), [1

2
, 1)}. is separating every two points, because if x 6= y, say

2−(n+1) < |x− y| 6 2−n, then there is k 6 n such that T k2 x and T k2 y belong to different
partition elements.

On the other hand, Q = {[1
4
, 3

4
), [0, 1

4
) ∪ [3

4
, 1)} does not separate points. Indeed, if

y = 1−x, then T k2 (y) = 1−T k2 (x) for all k > 0, so x and y belong to the same partition
element, T k2 (y) and T k2 (x) will also belong to the same partition element!

In this case, P can be used to compute hµ(T ), while Q in principle cannot (although
here, for all Bernoulli measure µ = µp,1−p, we have hµ(T2) = hµ(T,P) = hµ(T,Q)).

The existence of finite generating partition is guaranteed by a theorem due to Krieger
[15].

Theorem 23. Let (X,B, µ) be a Lebesgue space (i.e., it is isomorphic to ([0, 1], Leb) t
countable set). If T is an invertible measure-preserving transformation, then there is a
finite generator A = {A1, . . . , An} and ehµ(T ) ≤ n ≤ ehµ(T ) + 1.

We will not prove Krieger’s Theorem here, but we will prove Theorem 22.

Proof of Theorem 22. Let A be the generating partition. Then hµ(T,A) 6 hµ(T ) be-
cause the right hand side is the supremum over all partitions. For the other inequality,
take an arbitrary finite partition P . By Proposition 13, part 2, we have

hµ(T,P) ≤ hµ(T,
k−1∨
i=−k

T−iA) +H(P |
k−1∨
i=−k

T−iA).
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Since T is invertible and preserves µ we have

hµ(T,
k−1∨
i=−k

T−iA) = hµ(T,
2k−1∨
i=0

T−iA)

= lim
n→∞

1

n
Hµ(

n−1∨
j=0

T−j(
k−1∨
i=−k

T−iA))

= lim
n→∞

1

n
Hµ(

n+2k−1∨
j=0

T−jA)

= lim
n→∞

n+ 2k

n
lim
n→∞

1

n+ 2k
Hµ(

n+2k−1∨
j=0

T−jA) = hµ(T,A).

Since P = {P1, . . . , Pr} is finite and A is generating, for any ε >, we can choose k
sufficiently large and a finite partition {A1, . . . , Ar} ⊂

∨k−1
i=−k T

−iA such that Lemma 12
applies. This togther gives

hµ(T,P) ≤ hµ(T,A) + ε/2.

Since ε was arbitrary, we have the required inequality hµ(T,P) ≤ hµ(T,A) and the
theorem follows.

We finish this section with computing the entropy for a Bernoulli shift on two symbols,
i.e., we will prove (36) for two-letter alphabets and any probability µ([0]) =: p ∈ [0, 1].
The space is thus X = {0, 1}N0 and each x ∈ X represents an infinite sequence of
coin-flips with an unfair coin that gives head probability p (if head has the symbol 0).
Recall from probability theory

P(k heads in n flips) =

(
n

k

)
pk(1− p)n−k,

so by full probability:
n∑
k=0

(
n

k

)
pk(1− p)n−k = 1.

Here
(
n
k

)
= n!

k!(n−k)!
are the binomial coefficients, and we can compute{
k
(
n
k

)
= n!

(k−1)!(n−k)!
= n (n−1)!

(k−1)!(n−k)!
= n

(
n−1
k−1

)
(n− k)

(
n
k

)
= n!

(k)!(n−k−1)!
= n (n−1)!

k!(n−k−1)!
= n

(
n−1
k

) (38)
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This gives all the ingredients necessary for the computation.

Hµ(
n−1∨
k=0

σ−kP) = −
1∑

x0,...,xn−1=0

µ([x0, . . . , xn−1]) log µ([x0, . . . , xn−1])

= −
1∑

x0,...,xn−1=0

n−1∏
j=0

ρ(xj) log
n−1∏
j=0

ρ(xj)

= −
n∑
k=0

(
n

k

)
pk(1− p)n−k log

(
pk(1− p)n−k

)
= −

n∑
k=0

(
n

k

)
pk(1− p)n−kk log p

−
n∑
k=0

(
n

k

)
pk(1− p)n−k(n− k) log(1− p)

In the first sum, the term k = 0 gives zero, as does the term k = n for the second sum.
Thus we leave out these terms and rearrange by (38):

= −p log p
n∑
k=1

k

(
n− 1

k

)
pk−1(1− p)n−k

−(1− p) log(1− p)
n−1∑
k=0

(n− k)

(
n

k

)
pk(1− p)n−k−1

= −p log p
n∑
k=1

n

(
n− 1

k − 1

)
pk−1(1− p)n−k

−(1− p) log(1− p)
n−1∑
k=0

n

(
n− 1

k

)
pk(1− p)n−k−1

= n (−p log p− (1− p) log(1− p)) .

The partition P = {[0], [1]} is generating, so by Theorem 22,

hµ(σ) = hµ(σ,P) = lim
n

1

n
Hµ(

n−1∨
k=0

σ−kP) = −p log p− (1− p) log(1− p)

as required.

17 The Variational Principle

The Variational Principle claims that topological entropy (or pressure) is achieved by
taking the supremum of the measure-theoretic entropies over all invariant probability
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measures. But in the course of these notes, topological entropy has seen various defini-
tions. Even sup{hµ(T ) : µ is a T -invariant probability measure} is sometimes used as
definition of topological entropy. So it is time to be more definite.

We will do this by immediately passing to topological pressure, which we will base on
the definition in terms of (n, δ)-spanning sets and/or (n, ε)-separated sets. Topological
entropy then simply emerges as htop(T ) = Ptop(T, 0).

Theorem 24 (The Variational Principle). Let (X, d) be a compact metric space, T :
X → X a continuous map and ψ : X → R as continuous potential. Then

Ptop(T, ψ) = sup{hµ(T ) +

∫
X

ψ dµ : µ is a T -invariant probability measure}. (39)

Remark 7. By the ergodic decomposition, every T -invariant probability measure can
be written as convex combination (sometimes in the form of an integral) of ergodic
T -invariant probability measures. Therefore, it suffices to take the supremum over all
ergodic T -invariant probability measures.

Proof. First we show that for every T -invariant probability measure, hµ(T )+
∫
X
ψ dµ 6

Ptop(T, ψ). Let P = {P0, . . . , PN−1} be an arbitrary partition with N > 2 (if P = {X},
then hµ(T,P) = 0 and there is not much to prove). Let η > 0 be arbitrary, and choose
ε > 0 so that εN logN < η.

By “regularity of µ”, there are compact sets Qi ⊂ Pi such that µ(Pi \Qi) < ε for each
0 6 i < N . Take QN = X \ ∪N−1

i=0 Qi. Then Q = {Q0, . . . , QN} is a new partition of X,
with µ(QN) 6 Nε. Furthermore

µ(Pi ∩Qj)

µ(Qj)
=

{
0 if i 6= j < N,
1 if i = j < N.

whereas
∑N−1

i=0
µ(Pi∩QN )
µ(QN )

= 1. Therefore the conditional entropy

Hµ(P|Q) =
N∑
j=0

N−1∑
i=0

µ(Qj)ϕ

(
µ(Pi ∩Qj)

µ(Qj)

)
︸ ︷︷ ︸

= 0 if j<N

= −µ(QN)
N−1∑
i=0

µ(Pi ∩QN)

µ(QN)
log(

µ(Pi ∩QN)

µ(QN)
)

6 µ(QN) logN by Corollary 3

6 εN logN < η.

Choose 0 < δ < 1
2

min06i<j<N d(Qi, Qj) so that

d(x, y) < δ implies |ψ(x)− ψ(y)| < ε. (40)
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Here we use uniform continuity of ψ on the compact space X. Fix n and let En(δ) be an
(n, δ)-spanning set. For Z ∈ Qn :=

∨n−1
k=0 T

−kQ, let α(Z) = sup{Snψ(x) : x ∈ Z}. For
each such Z, also choose xZ ∈ Z such that Snψ(xZ) = α(Z) (again we use continuity
of ψ here), and yZ ∈ En(δ) such that dn(xZ , yZ) < δ. Hence

α(Z)− nε 6 Snψ(yZ) 6 α(Z) + nε.

This gives

Hµ(Qn) +

∫
X

Snψ dµ 6
∑
Z∈Qn

µ(Z)(α(Z)− log µ(Z)) 6 log
∑
Z∈Qn

eα(Z) (41)

by Corollary 4.

Each δ-ball intersects the closure of at most two elements of Q. Hence, for each y ∈
En(δ), the cardinality #{Z ∈ Qn : yZ = y} 6 2n. Therefore∑

Z∈Qn

eα(Z)−nε 6
∑
Z∈Qn

eSnψ(yZ) 6 2n
∑

y∈En(δ)

eSnψ(y).

Take the logarithm and rearrange to

log
∑
Z∈Qn

eα(Z) 6 n(ε+ log 2) + log
∑

y∈En(δ)

eSnϕ(y).

By T -invariance of µ we have
∫
Snψ dµ = n

∫
ψ dµ. Therefore

1

n
Hµ(Qn) +

∫
X

ψ dµ 6
1

n
Hµ(Qn) +

1

n

∫
X

Snψ dµ

6
1

n
log

∑
Z∈Qn

eα(Z)

6 ε+ log 2 +
1

n
log

∑
y∈En(δ)

eSnϕ(y).

Taking the limit n → ∞ and recalling that En(δ) is an arbitrary (n, δ)-spanning set,
gives

Hµ(T,Q) +

∫
X

ψ dµ 6 ε+ log 2 + Ptop(T, ψ).

By Proposition 13, part 2., and recalling that ε < η, we get

hµ(T,P) +

∫
X

ψ dµ = Hµ(T,Q) +Hµ(P|Q) +

∫
X

ψ dµ 6 2η + log 2 + Ptop(T, ψ).

We can apply the same reasoning to TR and SRψ instead of T and ψ. This gives

R ·
(
hµ(T,P) +

∫
X

ψ dµ

)
= hµ(TR,P) +

∫
X

SRψ dµ

6 2η + log 2 + Ptop(T
R, SRψ)

= 2η + log 2 +R · Ptop(T, ψ).
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Divide by R and take R → ∞ to find hµ(T,P) +
∫
X
ψ dµ 6 Ptop(T, ψ). Finally take

the supremum over all partitions P .

Now the other direction, we will work with (n, ε)-separated sets. After choosing ε > 0
arbitrary, we need to find a T -invariant probability measure µ such that

hµ(T ) +

∫
X

ψ dµ > lim sup
n→∞

1

n
logKn(T, ψ, ε) := P (T, ψ, ε).

Let En(ε) be an (n, ε)-separated set such that

log
∑

y∈En(ε)

eSnψ(y) > logKn(T, ψ, ε)− 1. (42)

Define ∆n as weighted sum of Dirac measures:

∆n =
1

Z
∑

y∈En(ε)

eSnψ(y)δy,

where Zn =
∑

y∈En(ε) e
Snψ(y) is the normalising constant. Take a new probability mea-

sure

µn =
1

n

n−1∑
k=0

∆n ◦ T−k.

Therefore∫
X

ψ dµn =
1

n

n−1∑
k=0

∫
X

ψ d(∆n ◦ T−k) =
1

n

n−1∑
k=0

∑
y∈En(ε)

ψ ◦ T k(y)
1

Z
eSnψ(y)

=
1

n

∑
y∈En(ε)

Snψ(y)
1

Z
eSnψ(y) =

1

n

∫
X

Snψ d∆n. (43)

Since the space of probability measures on X is compact in the weak∗ topology, we can
find a sequence (nj)j>1 such that for every continuous function f : X → R∫

X

f dµnj →
∫
X

f dµ as j →∞.

Choose a partition P = {P0, . . . , PN−1} with diam(Pi) < ε and µ(∂Pi) = 0 for all
0 6 i < N . Since Z ∈ Pn :=

∨n−1
k=0 T

−kP contains at most one element of an (n, ε)-
separated set, we have

H∆n(Pn) +

∫
X

Snψ d∆n =
∑

y∈En(ε)

∆n({y}) (Snψ(y)− log ∆n({y}))

= log
∑

y∈En(ε)

eSnψ(y) = logZn.
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by Corollary 4 (the part that gives equality).

Take 0 < q < n arbitrary, and for 0 6 j < q, let we split

n−1∨
k=0

T−kP =

(
aj−1∨
r=0

q−1∨
i=0

T−(rq+j+i)P

)
∨
∨
l∈Vj

T−lP

=

(
aj−1∨
r=0

T−(rq+j)

q−1∨
i=0

T−iP

)
∨
∨
l∈Vj

T−lP ,

where Vj := {0, 1, . . . , j− 1}∪ {ajq+ j, ajq+ j+ 1, . . . , n− 1} has at most 2q elements.
Therefore, for j fixed, and using Proposition 13, part 2.,

logZn = H∆n(Pn) +

∫
X

Snψ d∆n

6
aj−1∑
r=0

H∆n(T−(rq+j)

q−1∨
i=0

T−iP) +H∆n(
∨
l∈Vj

T−lP) +

∫
X

Snψ d∆n

6
aj−1∑
r=0

H∆n◦T−(rq+j)(

q−1∨
i=0

T−iP) + 2q logN +

∫
X

Snψ d∆n,

because
∨
l∈Vj T

−lP has at most N2q elements and using Corollary 3. Summing the
above inequality over j = 0, . . . , q − 1, gives

q logZn ≤
q−1∑
j=0

aj−1∑
r=0

H∆n◦T−rq+j(

q−1∨
i=0

T−iP) + 2q2 logN + q

∫
X

Snψ d∆n

6 n
n−1∑
k=0

1

n
H∆n◦T−k(

q−1∨
i=0

T−iP) + 2q2 logN + q

∫
X

Snψ d∆n.

Proposition 13, part 3., allows us to swap the weighted average and the operation H:

q logZn 6 nHµn(

q−1∨
i=0

T−iP) + 2q2 logN + q

∫
X

Snψ d∆n.

Dividing by n and recalling (42) for the left hand side, and (43) to replace ∆n by µn,
we find

q

n
logKn(T, ψ, ε)− q

n
6 Hµn(

q−1∨
i=0

T−iP) +
2q2

n
logN + q

∫
X

ψ dµn.

Because µ(∂Pi) = 0 for all i, we can replace n by nj and take the weak limit as j →∞.
This gives

qP (T, ψ, ε) 6 Hµ(

q−1∨
i=0

T−iP) + q

∫
X

ψ dµ.
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Finally divide by q and let q →∞:

P (T, ψ, ε) 6 hµ(T ) +

∫
X

ψ dµ.

This concludes the proof.

18 Measures of maximal entropy

As we remarked before, the variational principle applied to ψ = 0 gives

htop(f) = sup{hµ(f) : µ is an ergodic f -invariant probability measure}.

If hµ(f) = htop(f), then we call µ a measure of maximal entropy, and if there is
a unique measure of maximal entropy, then we call the system (X, f) intrinsically
ergodic. Clearly, uniquely ergodic systems of finite entropy are intrinsically ergodic.
In fact, intrinsic ergodicity is very common. Every β-transformation is intrinsically
ergodic; more generally, every piecewise monotone piecewise continuous topologically
transitive interval map is. We will not prove this in these notes, but in the rest of this
section, we discuss the situationofor subshifts of finite type.

18.1 Subshifts of finite type

To each directed graph (G,→), say with vertices {1, . . . , N} one can assign a transition
matrix A = (ai,j)

N
i,j=1 where for each i, j, Ai,j counts the number of edges from vertex

i to vertex j. We call G irreducible if there exists a path (of some length) from each
vertex to each vertex. It is called aperiodic if for each i, j there is m ∈ N such that
there is a path from i to j of length n for every n > m. In terms of the transmatrix,
this translates to: A is irreducible if for every i, j there is n such that Ani,j > 0, and A
is aperiodic if in addition there is n such that Ani,j > 0 for all i, j.

The set of (bi)infinite strings

ΣA = {(xi)i∈Z : xi ∈ {1, . . . , N}, Axi,xi+1
> 0 for all i ∈ Z}

is shift-invariant and closed in the standard product topology of {1, . . . , N}Z. Hence it
is a subshift. It is called subshift of finite type (SFT) because of the finite collection of
fobidden words (namely the pairs ij such that Ai,j = 0) that fully determines ΣA.

It is easy to see that the word-complexity

pn(ΣA) := #{x0 . . . xn−1 subword appearing in ΣA}
= #{paths of length n− 1 in G} =

∑
i,j

Ani,j.
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Because the partition into n-cylinders forms an open 2−n-cover of ΣA, we can derive

htop(σ|ΣA) = lim
n→∞

1

n
log pn(ΣA) = log λ,

where λ is the leading eigenvalue of the transition matrix A. That A has a unique,
positive, leading eigenvalue follows from the following theorem.

Theorem 25 (Perron-Frobenius). Let A be a nonnegative N × N-matrix such that
An > 0 for some m ∈ N. Then A has a unique (up to scaling) eigenvector with all
entries > 0. The corresponding eigenvalue is positive, has multiplicity one, and is
larger than the absolute value of every other eigenvalues of A.

Proof. Let C = RN
>0 be the one-sided cone of nonegative vectors. Since A is nonegative,

AC ⊂ C, and because Am > 0, AmC ⊂ Co ∪ {0}, by which we mean that every
nonzero vector in C is mapped into the interior of C by Am. Define the simplex
S = {x ∈ C : ‖x‖ = 1} spanned by the unit vectors e1, and let the map f : S → S be
defined by f(x) = Ax/‖Ax‖. Since An > 0, it is impossible that Ax = 0 for x ∈ S, so f
is well-defined. Although nonlinear, the map f is convex, meaning that it sends convex
subsets of S to convex subsets, and extremal points to extremal points. Applying this
to Πn := ∩nk=0f

k(S), we conclude that (Πn)n≥0 is a nested sequence of convex sets with
fn(ei), i = 1, . . . N as extremal points. This carries over to the limit Π :=

⋂
n Πn as

well; note that Π is contained in the interior of S because An > 0. We can select a
subsequence (nj) such that fnj(ei) → pi are the extremal points of Π. This is a finite
set, invariant under f , so there is M such that each pi is fixed by fM and therefore
an eigenvector of AM associated to a positive eigenvalue. By reordering the pi, we can
assume that the corresponding eigenvalues of AM are λ1 > λ2 > . . . > λN .

1. If λ2 = λ1 and p1 6= p2, then we can find v = α1p1 + α2p2 ∈ ∂C. This is also an
eigenvector of AM , so AkMv ∈ ∂C for all k, but this contradicts that AmC ∈ Co.

2. If λ2 < λ1, then take v = p2 − εp1 ∈ C (for ε > 0 sufficiently small), and note
that AkMv = λk2p2 − ελk1p1 cannot be contained in C for all k. This contradicts
again the invariance of C. Hence, all pi coincide, and it is the unique fixed point
of f .

3. To show that λ1 has multiplicity one, assume by contradiction that there is a
generalised eigenvector v ∈ S with Amv = λm1 v + p1. Then also AkMv = λkv +

kλ
(k−1)
1 p1. Take w = p1 − εv ∈ C for some small ε > 0. Then AkMw = λk−1

1 (λ1 −
εk)p1 − ελk1v which cannot be contained in C for large k. This again contradicts
that AmC ⊂ C for all m.

4. Finally, suppose that µ is some eigenvalue, not necessarily associated with an
eigenvector in S, such that |µ| > λ1. There is a AM -invariant subspace V (possibly
of dimension two if µ ∈ C \ R) such that AM : V → V is the composition of an
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isometry and a dilatation by a factor |µ|. In particular, there is a subsequence (kj)
such that |µ|−kjAkjMv → v for every v ∈ V . Take v ∈ V so that w := v+p1 ∈ ∂C.
If |µ| = λ1, then |µ|−kjAkjMw → w, contradicting that AmC ⊂ Co for al m. If
|µ| = λ1, then |µ|−kjAkjMw → v, again contradicting that AmC ⊂ Co ∪ {0}.
Hence all other eigenvectors of AM are strictly smaller than λ1.

The proof now follows by taking λ = λ
1/M
1 .

18.2 Parry measure

For the full shift (Σ, σ) with Σ = {0, . . . , N − 1}N0 or Σ = {0, . . . , N − 1}Z, we have
htop(σ) = logN , and the ( 1

N
, . . . , 1

N
)-Bernoulli measure µ indeed achieves this maxi-

mum: hµ(σ) = htop(σ). Hence µ is a (and in this case unique) measure of maximal
entropy. The intuition to have here is that for a measure to achieve maximal entropy,
it should distribute its mass as evenly over the space as possible. But how does this
work for subshifts, where it is not immediately obvious how to distribute mass evenly?

For subshifts of finite type, Parry [22] demonstrated how to construct the measure of
maximal entropy, which is now called after him. Let (ΣA, σ) be a subshift of finite type
on alphabet {0, . . . , N − 1} with transition matrix A = (Ai,j)

N−1
i,j=0, so x = (xn) ∈ Σn if

and only if Axn,xn+1 = 1 for all n. Let us assume that A is aperiodic and irreducible.
Then by the Perron-Frobenius Theorem for matrices, there is a unique real eigenvalue,
of multiplicity one, which is larger in absolute value than every other eigenvalue, and
htop(σ) = log λ. Furthermore, by irreducibility of A, the left and right eigenvectors u =
(u0, . . . , uN−1) and v = (v0, . . . , vN−1)T associated to λ are unique up to a multiplicative
factor, and they can be chosen to be strictly positive. We will scale them such that

N−1∑
i=0

uivi = 1.

Now define the Parry measure by

pi := uivi = µ([i]),

pi,j :=
Ai,jvj
λvi

= µ([ij] | [i]),

so pi,j indicates the conditional probability that xn+1 = j knowing that xn = i. There-
fore µ([ij]) = µ([i])µ([ij] | [i]) = pipi,j. It is stationary (i.e., shift-invariant) but not
quite a product measure: µ([im . . . in]) = pim · pim,im+1 · · · pin−1,in .

Theorem 26. The Parry measure µ is the unique measure of maximal entropy for a
subshift of finite type with aperiodic irreducible transition matrix.
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Proof. In this proof, we will only show that hµ(σ) = htop(σ) = log λ, and skip the (more
complicated) uniqueness part.

The definitions of the masses of 1-cylinders and 2-cylinders are compatible, because
(since v is a right eigenvector)

N−1∑
j=0

µ([ij]) =
N−1∑
j=0

pipi,j = pi

N−1∑
j=0

Ai,jvj
λvi

= pi
λvi
λvi

= pi = µ([i]).

Summing over i, we get
∑N−1

i=0 µ([i]) =
∑N−1

i=0 uivi = 1, due to our scaling.

To show that µ is shift-invariant, we take any cylinder set Z = [im . . . in] and compute

µ(σ−1Z) =
N−1∑
i=0

µ([iim . . . in]) =
N−1∑
i=0

pipi,im
pim

µ([im . . . in])

= µ([im . . . in])
N−1∑
i=0

uivi Ai,imvim
λvi uimvim

= µ(Z)
N−1∑
i=0

uiAi,im
λuim

= µ(Z)
λuim
λuim

= µ(Z).

This invariance carries over to all sets in the σ-algebra B generated by the cylinder sets.

Based on the interpretation of conditional probabilities, the identity

N−1∑
im+1,...,in=0

Aik,ik+1
=1

pimpim,im+1 · · · pin−1,in = pim and
N−1∑

im,...,in−1=0

Aik,ik+1
=1

pimpim,im+1 · · · pin−1,in = pin (44)

follows because the left hand side indicates the total probability of starting in state im
and reach some state after n−m steps, respectively start at some state and reach state
n after n−m steps.

To compute hµ(σ), we will confine ourselves to the partition P of 1-cylinder sets; this
partition is generating, so this restriction is justified by Theorem 22.

Hµ(
n−1∨
k=0

σ−kP) = −
N−1∑

i0,...,in−1=0

Aik,ik+1
=1

µ([i0 . . . in−1]) log µ([i0 . . . in−1])

= −
N−1∑

i0,...,in−1=0

Aik,ik+1
=1

pi0pi0,i1 · · · pin−1,in

(
log pi0 + log pi0,i1 + · · ·+ log pin−2,in−1

)

= −
N−1∑
i0=0

pi0 log pi0 − (n− 1)
N−1∑
i,j=0

pipi,j log pi,j,
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by (44) used repeatedly. Hence

hµ(σ) = lim
n→∞

1

n
Hµ(

n−1∨
k=0

σ−kP)

= −
N−1∑
i,j=0

pipi,j log pi,j

= −
N−1∑
i,j=0

uiAi,jvj
λ

(logAi,j + log vj − log vi − log λ) .

The first term in the brackets is zero because Ai,j ∈ {0, 1}. The second term (summing
first over i) simplifies to

−
N−1∑
j=0

λujvj
λ

log vj = −
N−1∑
j=0

ujvj log vj,

whereas the third term (summing first over j) simplifies to

N−1∑
i=0

uiλvi
λ

log vi =
N−1∑
i=0

uivi log vi.

Hence these two terms cancel each other. The remaining term is

N−1∑
i,j=0

uiAi,jvj
λ

log λ =
N−1∑
i=0

uiλvi
λ

log λ =
N−1∑
i=0

uivi log λ = log λ.

Remark 8. There are systems without maximising measure, for example among the
“shifts of finite type” on infinite alphabets. To give an example (without proof, see [8]),
if N is the alphabet, and the infinite transition matrix A = (Ai,j)i,j∈N is given by

Ai,j =

{
1 if j > i− 1,
0 if j < i− 1,

then htop(σ) = log 4, but there is no measure of maximal entropy.

Exercise 6. Find the maximal measure for the Fibonacci subshift of finite type. What
is the limit frequency of the symbol zero in µ-typical sequences x?
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19 The Shannon-McMillan-Breiman Theorem

Before starting with this theorem, we make a small digression into conditional expec-
tations. Given a measure preserving system (X,B, µ, T ), some measurable function
f : X → R and some σ-algebra C (possibly C = B, possibly C coarser than B), we can
define the conditional expectation Eµ(f |C) as the unique C-measurable function f̄
such that ∫

C

f̄ dµ =

∫
C

f dµ

for all C ∈ C. Recall that C-measurable means that f̄−1([t,∞)) ∈ C for all t ∈ R,
and therefore f̄ must be constant on all atoms of C, i.e., on all sets A ∈ C such that
A′ ∈ C can only be a subset of A if µ(A′) = 0 or µ(A \ A′) = 0. Note that conditional
expectation is a function, and (unlike expectation or conditional probability) not a
number. It is the function f̄ such that for each atom A,

f̄(x) =
1

µ(A)

∫
A

f dµ for µ-a.e. x ∈ A. (45)

The finer the σ-algebra C, the more f̄ looks like f . This is expressed in the following
version of the

Theorem 27 (Martingale Convergence Theorem). If (C)n is a sequence of σ-algebras
such that Cn+1 refines Cn and C = limn→∞ Cn :=

∨∞
n=1 Cn, then

Eµ(f |Cn)→ Eµ(f |C) µ-a.e. as n→∞.

Proof. For the proof of this, see e.g. [?]

The main result of this section says that, given a partition P , the n-cylinder of µ-a.e.
point x scales as µ(Pn(x)) ∼ e−nh(P,T ).

Theorem 28 (Shannon-McMillan-Breiman). Let (X,B, µ, T ) be a measure-preserving
transformation and P a (countable or finite) partition with H(P) < ∞ Let Pn =∨n−1
j=0 T

−j(P) and Pn(x) the element of Pn containing x. Then

− lim
n→∞

1

n
log µ(Pn(x)) = h(P , T ) µ-a.e.

Before we start with the proof, we recall the information function

IP(x) := − log µ(P(x)) = −
∑
P∈P

1P (x) log µ(P ),

71



with respect to which we have H(P) = E(IP). Inserting this in the definition of the
entropy, we obtain

h(P , T ) = lim
n→∞

1

n
H(Pn) = lim

n→∞

1

n

∫
X

IPn(x) dµ. (46)

The Shannon-McMillan-Breiman Theorem says that in fact the integrand converges to
h(P , T ) µ-a.e.

Similarly to conditional entropy, we define the conditional information function

IP|Q(x) := −
∑
P∈P

∑
Q∈Q

1P∩Q(x) log
µ(P ∩Q)

µ(Q)
.

Comparing this to the definition of conditional entropy, we get∫
X

IP|Q dµ = −
∑
P∈P

∑
Q∈Q

µ(P ∩Q) log
µ(P ∩Q)

µ(Q)
= Hµ(P|Q). (47)

One can check (using Proposition 13 and the definition) that

IP∨Q = IP + IQ|P . (48)

Because of (45) and 1P1Q = 1P∩Q we have

− logEµ(1P(x)|Q) = − logEµ(
∑
P∈P

1P |Q) = − log
∑
Q∈Q

1

µ(Q)

∫
Q

∑
P∈P

1P dµ

= − log
∑
P∈P

∑
Q∈Q

1P∩Q
µ(P ∩Q)

µ(Q)

∫
Q

1P dµ = IP|Q(x).

Proof of Theorem 28. Write gk(x) = IP|∨k−1
j=1T

−jP(x) for k ≥ 2 and g1(x) = IP . Then by

(48)

I∨n−1
j=0 T

−jP(x) = I∨n−1
j=1 T

−jP(x) + IP|∨n−1
j=1 T

−jP(x)

= I∨n−2
j=0 T

−jP(Tx) + gn(x)

= I∨n−2
j=1 T

−jP(Tx) + IP|∨n−2
j=1 T

−jP(Tx) + gn(x)

= I∨n−3
j=0 T

−jP(T 2x) + gn−1(Tx) + gn(x)

...
...

...

= g1(T n−1(x)) + · · ·+ gn−1(T (x)) + gn(x) =
n−1∑
j=0

gn−j(T
jx).
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Let g = limn→∞ gn, which exists µ-a.e. and belongs to L1(µ) because of the Martingale
Convergence Theorem. We write the previous equality as

1

n
I∨n−1

j=0 T
−jP(x) =

1

n

n−1∑
j=0

g(T jx) +
1

n

n−1∑
j=0

(gn−j − g)(T jx).

Since µ is ergodic, the first sum converges µ-a.e. to
∫
X
g dµ, which is equal to Hµ(P|∨∞j=1

T−jP) by (47), which in turn is equal to h(P , T ) by Corollary 5.

For the second sum, we define

GN = sup
k≥n
|gk − g| and g∗ = sup

n≥1
gn.

Then 0 ≤ GN ≤ g + g∗ and g + g∗ ∈ L1(µ); this is because
∫
gn dµ = Hµ(P|

∨n−1
j=1 P) is

decreasing in n. Moreover, GN → 0 µ-a.e., so by the Dominated Convergence Theorem,
limN→∞

∫
X
GN dµ =

∫
X

limN→∞GN dµ = 0. Now for any N ≥ 1 and n ≥ N we split
the second sum:

1

n

n−1∑
j=0

(gn−j − g)(T jx) =
1

n

n−N−1∑
j=0

(gn−j − g)(T jx) +
1

n

n−1∑
j=n−N

(gn−j − g)(T jx)

≤ 1

n

n−N−1∑
k=0

GN(T kx) +
1

n

n−1∑
j=n−N

(gn−j − g)(T jx).

First take the limit n → ∞. The the second sum tends to zero, and by the Ergodic
Theorem, the first sum tends to

∫
X
GN dµ. Finally, taking N →∞ gives 1

n

∑n−1
j=0 (gn−j−

g)(T jx)→ 0, and hence I∨n−1
j=0 T

−jP(x)→ h(P , T ) µ-a.e., as required.

20 Equilibrium states and Gibbs measures

20.1 Introductory example of the Ising model

This extended example is meant to give a feel for many of the ingredients in thermody-
namic formalism. It is centred around a simplified Ising model, which can be computed
completely.

We take the configuration space Ω = {−1,+1}Z, that is the space of all bi-infinite
sequences of +1’s and −1’s. This give a rough model of ferro-magnetic atoms arranged
on a line, having spin either upwards (+1) or downwards (−1). If all spins are upwards
(or all downwards), then the material is fully magnetized, but usually the heat in the
material means that atom rotate directing their spin in all directions over time, which
we discretize to either up or down.
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Of course, infinitely many atoms is unrealistic, and hence a configuration space {−1,+1}[−n,n]

would be better (where [−n, n] is our notation of the integer interval {−n,−n+1, . . . , n−
1, n}), but for simplicity, let us look at the infinite line for the moment.

A probability measure µ indicates how likely it is to find a particular configuration,
or rather a particular ensemble of configurations. For example, the fully magnetized
states are expressed by the measures:

δ+(A) =

{
1 if A 3 (. . . ,+1,+1,+1,+1, . . . )
0 if A 63 (. . . ,+1,+1,+1,+1, . . . )

and δ− with the analogous definition. For these two measures, only one configuration
is likely to occur. Usually a single configuration occurs with probability zero, and we
have to look at ensembles instead. Define cylinder sets

Cm,n(ω) = {ω′ ∈ Ω : ω′i = ωi for i ∈ [m,n]}

as the set of all configurations that agree with configuration ω on sites i for m 6 i 6 n.
Its length is n−m+ 1. Another notation would be Cm,n(ω) = [ωmωm+1 . . . ωn].

The Bernoulli measure (stationary product measure) µp is defined as6

µp([ωmωm+1 . . . ωn]) =
n∏

i=m

p(ωi), where p(+1) = p and p(−1) = 1− p.

There is a Bernoulli measure µp for each p ∈ [0, 1] and µ1 = δ+, µ0 = δ−. However,
for p ∈ (0, 1), every single configuration has measure 0. The Law of Large Numbers
implies that the set of configurations in which the frequency of +1’s is anything else
than p has zero measure.

Since physical problem is translation invariant. Define the left-shift as

σ(ω)i = ωi+1.

Translation invariance of a measure then means shift-invariance: µ(A) = µ(σ(A)) for
each ensemble A ⊂ Ω. Many probability measures on Ω are not translation invariant,
but fortunately, the examples µp above are.

Another example of shift-invariant measures are the Gibbs measures, associated to some
potential function ψ : Ω → R; the integral

∫
Ω
ψ dµ is called the (potential) energy of

µ.

Definition 18. A measure µ is a Gibbs measure w.r.t. potential function ψ : Ω→ R
if there are constants C > 0 and P ∈ R such that for all cylinder sets Cm,n and all
ω ∈ Cm,n,

1

C
6

µ(Cm,n)

exp
∑n

i=m(ψ ◦ σi(ω)− P )
6 C. (49)

6This measure extends uniquely to all measurable sets by Kolmogorov’s Extension Theorem.
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The number P is called the pressure; in this setting it is a sort of normalizing constant,
adjusting the exponential decrease of the denominator to the exponential decrease of the
numerator7

If we choose the potential to be

ψ(ω) =

{
log p if ω0 = +1

log 1− p if ω0 = −1
,

then the Bernoulli measure µp is actually a Gibbs measure, with pressure P = 0 and
“distortion constant” C = 1. Indeed,

µ(Cm,n(ω)) =
n∏

i=m

p(ωi) =
n∏

i=m

eψ(σi(ω)) = exp(
n∑

i=m

ψ(σi(ω))),

and (49) follows.

The next ingredient is entropy. We postpone the precise definition, except for to say
that there are different kinds. The system itself can have topological entropy htop(σ)
which is independent of the measure, while each shift-invariant measure µ has its metric
entropy or rather measure theoretical entropy hµ(σ). For the Bernoulli measure
µp, the measure theoretical entropy is

hµp(σ) = −(p log p+ (1− p) log(1− p))

is the minus the expectation of ψ.

Exercise 7. For ϕ : [0, 1] → R defined as ϕ(x) = − (x log x+ (1− x) log(1− x)), we
can write hµp(σ) = ϕ(p). Compute the limits limx→0 ϕ(x) and limx→1 ϕ(x). Conclude
that δ+ and δ− have zero entropy. (This agrees with the idea that entropy is suppose to
measure disorder.) Where does ϕ assume its maximum? What does this suggest about
the measure of maximal entropy?

Exercise 8. Compute its first and second derivative. Is ϕ (strictly) concave?

Let us fix the potential

ψ(ω) =

{
0 if ω0 = +1
1 if ω0 = −1.

(50)

The potential energy E(µ) =
∫

Ω
ψ dµ becomes smaller for measures that favours con-

figurations ω where many entries are +1. We can think of ψ as representing a fixed
external magnetic field; the better the atoms align themselves to this field, the smaller
the potential energy of their configuration. In extremo, E(δ+) = 0, but the entropy of
δ+ is zero, so we don’t maximise entropy with this choice.

7This is the definition for one-dimensional lattices. For a d-dimensional lattice, we need to add an
extra factor (n−m+ 1)d−1 in the lower and upper bounds in (49).
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Pressure can also be defined by the Variational Principle. We introduce a weighing
parameter β ∈ R between energy and entropy content of the measure. The physical
interpretation of β = 1/T , where T stands for the absolute temperature (i.e., degrees
Kelvin normalised in some way), and thus it makes only physical sense to take β ∈
(0,∞), but we will frequently look at limit case β → 0 and β →∞.

Now let the (Variational) Pressure be

P (β) = sup{hµ(σ)− β
∫
ψ dµ : µ is a shift-invariant probability measure} (51)

A shift-invariant probability measure µ is called equilibrium state or equilibrium
measure, if it assume the pressure in (51).

For the limit case T → ∞, i.e., β → 0, the potential energy plays no role, and we are
just maximising entropy. For the limit case T → 0, i.e., β → ∞, the potential energy
becomes all important, so in our example we expect δ+ to be the limit equilibrium state.
The physical interpretation of this statement is: as the temperature decreases to zero
for some fixed external magnetic field (and also as the external magnetic field grows to
infinity), the material becomes totally magnetized.

The question is now: do we find total magnetization (i.e., the measure δ+ as equilibrium
state) also for some positive temperature (or finite external magnetic field)?

For each fixed measure, the function β 7→ hµ(σ) + β
∫
ψ dµ is a straight line with slope

−
∫
ψ dµ (non-positive because our potential ψ is non-negative) and abscissa hµ(σ). If

we look at (51) again, we can view the pressure function β 7→ P (β) as the envelope of
all these straight lines. From this it follows immediately that β 7→ P (β) is continuous
and convex (and non-increasing due to ψ being non-negative).

Once full magnetization is obtained, increasing β further will not change the equilibrium
state anymore. Indeed, there is no measure that favours ωi = +1 more than δ+. So if
there is a finite β0 such that δ+ is equilibrium state, then P (β) = 0 for all β > β0. We
can call this a freezing phase transition, because at this parameter, the equilibrium
state doesn’t change anymore (as if the system is frozen in one configuration). The
right-hand slope of the pressure function at β0 is 0; how abrupt this phase transition
is depends also on the left slope at β0 which might be different from 0, but always > 0
because of convexity.

Let us now do the computation if there really is a phase transition at a finite β0.
For simplicity (and without justification at the moment) we will only compute the
supremum in (51) over the Bernoulli measures µp. So then (51) simplifies to

P (β) = sup
p∈[0,1]

− (p log p+ (1− p) log(1− p))− β(1− p) =: sup
p∈[0,1]

F (µp, β)

The quantity F (µp, β) is called the free energy of the measure µp. In our simplified
case, it is a smooth curve in p, so to find the supremum (= maximum), we simply
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compute the derivative and put it equal to 0:

0 =
∂

∂p
F (µp, β) = −(log p− log(1− p)) + β.

This is equivalent to log p
1−p = β, i.e.,

p =
eβ

1 + eβ
, 1− p =

1

1 + eβ

Substituting in P (β), we find that the pressure is

P (β) = −
(

eβ

1 + eβ
log

eβ

1 + eβ
+

1

1 + eβ
log

1

1 + eβ

)
− β 1

1 + eβ

= −

(
eβ + 1

1 + eβ
log

eβ

1 + eβ︸ ︷︷ ︸+
1

1 + eβ
log

1

1 + eβ
− 1

1 + eβ
log

eβ

1 + eβ︸ ︷︷ ︸
)
− β 1

1 + eβ

= −
(

log
eβ

1 + eβ
− β

1 + eβ

)
− β

1 + eβ

= log(1 + e−β)


→ 0 as β →∞
= log 2 if β = 0
∼ −β as β → −∞

So the pressure function is smooth (even real analytic) and never reaches the line β ≡ 0
for any finite β. Hence, there is no phase transition.

Exercise 9. Verify that for potential (50), µp is indeed a Gibbs measure. For which
value of the pressure? Here it is important to incorporate the factor −β in the potential,
so ψβ(ω) = 0 if ω0 = 1 and ψβ(ω) = −β if ω0 = −1.

In the proper Ising model, the potential also contains also a local interaction term
between nearest neighbors:

ψ(ω) =
∑
i

Jωiωi+1 + ψext(ω),

where J < 0, so neighboring atomic magnets with the same spin have lower joint en-
ergy than neighboring atoms with opposite spin. The term ψext(ω) still stands for the
external magnetic field, and can be taken as ψ in (50). This gives a problem for the
infinite lattice, because here all configurations have a divergent sum

∑
i Jωiωi+1. Ising’s

solution to this problem lies in first dealing with a large lattice [−n, n], so the configu-
ration space is {−1,+1}[−n,n], and considering the Gibbs measures and/or equilibrium
states projected to fixed finite lattice [−m,m] (these projections are called marginal
measures), and then letting n tend to infinity. Such limits are called thermodynamic
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limits. If there is no external magnetic field (i.e., ψext ≡ 0), then as β →∞, n→∞,
there are two ergodic thermodynamic limits, namely δ+ and δ−. There is no preference
from one over the other; this preference would arise if the is an external magnetic field
of definite direction. However, no such magnetization takes place for a finite β. For this
reason, Ising dismissed the model as a good explanation for magnetization of iron (and
other substances). However, as was found much later, on higher dimensional lattices,
the Ising model does produce phase transitions and magnetization at finite values of β
(i.e., positive temperature).

20.2 The Griffith-Ruelle Theorem

Let (Σ, σ) now be a one-sided or two-sided subshift of finite type. Throughout we will
assume that the transition matrix is aperiodic and irreducible, so the Perron-Frobenius
Theorem applies in its full force. Let ψ : Σ→ R be a potential function, which we will
assume to be Hölder continuous, i.e., there is C > 0 and ϑ ∈ (0, 1) such that if xk and
yk agree for |k| < n, then |ψ(x)−ψ(y)| 6 Cϑn. The Hölder property can be applied to
ergodic sums on n-cylinders Z:

sup{Snψ(x) : x ∈ Z} > inf{Snψ(x) : x ∈ Z}

> sup{Snψ(x) : x ∈ Z} −
n−1∑
k=0

Cϑk︸ ︷︷ ︸
=C 1−ϑn

1−ϑ < C
1−ϑ

(52)

Definition 19. We say that a shift-invariant probability measure µ satisfies the Gibbs
property if there are constants C2 > C1 > 0 such that for all n, all n-cylinders Z and
all x ∈ Z,

C1 6
µ(Z)

eSnψ(x)−Pn 6 C2. (53)

Here P is some constant, which, as we will see later, coincides with the topological
pressure of the system. It is the number by which we need to translate the potential such
that the measure of an n-cylinder scales as eSn(ψ−P ).

The main theorem of this section is sometimes called, in physics the Griffith-Ruelle
Theorem (which actually also include analyticity of the pressure function):

Theorem 29. If ψ is Hölder continuous potential function on an aperiodic irreducible
subshift of finite type, then there is a unique Gibbs measure µ; this measure is the unique
equilibrium state for (Σ, σ, ψ).

We will prove this theorem in various steps. We start by a trick to reduce the potentially
two-sided shift space to a one-sided shift.
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Definition 20. Two potential functions ψ and χ on Σ are called cohomologous if
there is a function u such that

ψ = χ+ u− u ◦ σ. (54)

From this definition, the following consequence are immediate for σ-invariant measure:

Snψ(x) = Snχ(x) + u(x)− u ◦ σn(x),

lim
n→∞

1

n
Snψ(x) = lim

n→∞

1

n
Snχ(x) µ-a.e.,∫

ψ dµ =

∫
χ dµ.

From this it is easy to derive that cohomologous potentials have the same equilibrium
states. This will be used, in the next proposition, to reduce our task from two-sided
shifts spaces to one-sided shift spaces.

Proposition 15. If (Σ, σ) is a two-sided subshift of finite type and ψ a Hölder potential,
then there is a potential χ which is also Hölder continuous but depending only on forward
coordinates (xk)k>0 of x ∈ Σ, such that ψ and χ are cohomologous.

Proof. For each symbol b ∈ {0, . . . , N − 1} pick a fix sequence eb ∈ Σ such that the
zeroeth symbol eb0 = n. For x ∈ Σ, let x∗ be the sequence with x∗k = xk if k > 0 and
x∗k = ebk if k < 0 and x0 = b. Next choose

u(x) =
∞∑
j=0

ψ ◦ σj(x)− ψ ◦ σj(x∗).

Note that |ψ ◦ σj(x)− ψ ◦ σj(x∗)| < Cϑj, so the sum u(x) converges and is continuous
in x. Let n be arbitrary and set m = bn/2c. If xk and yk coincide for all |k| < n, then

|u(x)− u(y)| 6
m∑
j=0

(
|ψ ◦ σj(x)− ψ ◦ σj(y)|+ |ψ ◦ σj(x∗)− ψ ◦ σj(y∗)|

)
+
∑
j>m

(
|ψ ◦ σj(x)− ψ ◦ σj(x∗)|+ |ψ ◦ σj(y)− ψ ◦ σj(y∗)|

)
6 2

m∑
j=0

Cϑn−j + 2
∑
j>m

Cϑj 6 4C
ϑm

1− ϑ
≤ C

1− ϑ
√
ϑ
n
.

Hence u is Hölder continuous with Hölder exponent
√
ϑ instead of ϑ.
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Now for χ = ψ − u+ u ◦ σ, which is also Hölder, we have

χ(x) = ψ(x)−
∞∑
j=0

ψ ◦ σj(x)− ψ ◦ σj(x∗)︸ ︷︷ ︸
separate term j=0

+
∞∑
j=0

ψ ◦ σj(σx)− ψ ◦ σj((σx)∗)

= ψ(x∗)−
∞∑
j=1

ψ ◦ σj(x)− ψ ◦ σj(x∗) +
∞∑
j=0

ψ ◦ σj(σx)− ψ ◦ σj((σx)∗)

= ψ(x∗) +
∞∑
j=0

ψ ◦ σj((σx)∗)− ψ ◦ σj+1(x∗).

This depends only on the forward coordinates of x.

Now that we can work on one-sided shift spaces, it is instructive to see why:

Proposition 16. Gibbs measures of Hölder potentials are equilibrium states (i.e., mea-
sures that achieve the supremum in the Variational Principle).

Proof. Let P is the partition into 1-cylinders, and recall that Pn =
∨n−1
k=0 σ

−kP is the
partition into n-cylinders. Write

Zn =
∑
Z∈Pn

esup{Snψ(x) : x∈Z}.

be the n-th partition function. For Hölder continuous ψ, due to (52), whether we

choose sup or inf, the result only changes by a multiplicative factor e
C

1−ϑ , independently
of n.

Now suppose that µ satisfies the Gibbs property (53). Summing over all n-cylinders
gives

C1
Zn
ePn

6
∑
Z∈Pn

µ(Z) = 1 6 C2
Zn
ePn

.

therefore P = limn
1
n

logZn. Combining this with (41) in the proof of the Variational
Principle, with Pn instead of Qn, we can write

Hµ(Pn) +

∫
Σ

Snψ dµ 6 logZn

Now we divide by n and take the limit n→∞ to obtain hµ(σ) +
∫
ψ dµ 6 P .

For any x in an n-cylinder Z, we have

−µ(Z) log µ(Z) +

∫
Z

Snψ dµ > −µ(Z)

[
log µ(Z)− Snψ(x) +

C

1− ϑ

]
> −µ(Z)

[
logC2e

−Pn+Snψ(x) − Snψ(x) +
C

1− ϑ

]
= µ(Z)

[
Pn− logC2 −

C

1− ϑ

]
.
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Summing over all n-cylinders Z ∈ Pn gives

Hµ(Pn) +

∫
Σ

Snψ dµ >
∑
Z∈Pn

µ(Z)

[
Pn− logC2 −

C

1− ϑ

]
= Pn− logC2 −

C

1− ϑ
.

Dividing by n and letting n → ∞, we find hµ(σ) +
∫

Σ
ψ dµ > P . Therefore we have

equality hµ(σ) +
∫

Σ
ψ dµ = P .

To show that P = Ptop(σ, ψ), take ε > 0 arbitrary and M such that 2−(M+1) 6 ε < 2−M .
Taking a point x in each n+M -cylinder then produces an (n, ε)-separated set En(ε) of
maximal cardinality. Therefore, as in (29), we find

Zn+M = sup

{∑
x∈E

eSnψ(x) : E is (n, ε)-separated

}
=: Pn(σ, ψ, ε).

The ε-dependence on the left hand side is only in the choice of M . This dependence
disappears when we take the limit limn

1
n

logZn = limn
1
n

logPn(σ, ψ, ε), and therefore
taking the limit ε→ 0 gives

P = lim
n→∞

1

n
logZn = lim

ε→0
lim
n→∞

1

n
logPn(σ, ψ, ε) = Ptop(σ, ψ).

This completes the proof.

Next we give somewhat abstract results from functional analysis to find a candidate
Gibbs measure as the combination of the eigenfunction and eigenmeasure of a particular
operator and its dual.

Definition 21. The Ruelle-Perron-Frobenius operator acting on functions f : Σ → R
is defined as

Lψf(x) =
∑
σy=x

eψ(y)f(y). (55)

The dual operator L∗ψ acts on measures:
∫
f d(L∗ψν) =

∫
Lψf dν for all f ∈ L1(ν).

This operator describes how densities are transformed by the dynamics. For instance, if
instead of σ we had a differentiable transformation T : [0, 1]→ [0, 1] and ψ = − log |T ′|,
then Lψf(x) =

∑
Ty=x

1
|T ′(y)|f(y) which, when integrated over [0, 1], we can recognise

as the integral formula for a change of coordinates x = T (y).

The following theorem can be seen as the operator-version of the Perron-Frobenius
Theorem for matrices:
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Theorem 30. If (Σ, σ) is a one-sided subshift of finite type, with aperiodic irreducible
transition matrix, then there is a unique λ > 0 and continuous positive (or more pre-
cisely: bounded away from zero) function h and a probability measure ν such that

Lψh = λ h L∗ψν = λ ν.

The Ruelle-Perron-Frobenius operator has the properties:

1. Lψ is positive: f > 0 implies Lψf > 0.

2. Lnψf(x) =
∑

σny=x e
Snψ(y)f(y).

3. ν is in general not σ-invariant. Instead it satisfies

ν(σA) = λ

∫
A

e−ψ dν (56)

whenever σ : A → σ(A) is one-to-one and A is measurable. Measures with this
property are called λe−ψ-conformal.

4. Instead, the measure dµ = h dν is σ-invariant. We can always scale h such that
µ is a probability measure too.

5. We will see later that λ = eP where P is the topological pressure.

Proof. Property 1. is obvious, since eψ(y) is always positive. Property 2. follows by
direct computation. For Property 3., we have

λ

∫
A

e−ψ dν = λ

∫
Σ

e−ψ1IA dν =

∫
Σ

e−ψ1IA d(λν)

=

∫
Σ

e−ψ(x)1IA(x) d(L∗ψν) =

∫
Σ

Lψ(e−ψ(x)1IA(x)) dν

=

∫
Σ

∑
σy=x

eψ(y)e−ψ(y)1IA(y) dν =

∫
Σ

∑
σy=x

1IA(y) dν

Since σ : A → σ(A) is one-to-one,
∑

σy=x 1IA(y) = 1 if x ∈ σ(A) and = 0 otherwise.

Hence the integral
∫ ∑

σy=x 1IA(y) dν = ν(σA) as required.

For Property 4., first check that

Lψg(x) · f(x) =
∑
σy=x

eψ(y)g(y)f(x) =
∑
σy=x

eψ(y)g(y)f(σy) = Lψ(g · f ◦ σ)(x).
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This gives ∫
Σ

f dµ =

∫
Σ

f · h dν =
1

λ

∫
Σ

f · Lψh dν

=
1

λ

∫
Σ

Lψ(h · f ◦ σ) dν =
1

λ

∫
Σ

h · f ◦ σ d(L∗ψν)

=

∫
Σ

f ◦ σ · h dν =

∫
Σ

f ◦ σ dµ

Property 5. will follow from the next proposition.

Proposition 17. For Hölder potential ψ, the measure dµ = h dν satisfies the Gibbs
property with P = log λ.

Proof. For each z ∈ Σ and n-cylinder Z, there is at most one y ∈ Z with σny = z.
Take x ∈ Z arbitrary. Then

Lnψ(h · 1IZ) =
∑
σny=z

eSnψ(y)h(y)1IZ(y) 6 e
C

1−ϑ‖h‖∞︸ ︷︷ ︸
C2

eSnψ(x).

Hence

µ(Z) =

∫
Z

h dν =

∫
Σ

h · 1IZ dν = λ−n
∫

Σ

h · 1IZ d(L∗nψ ν)

= λ−n
∫

Σ

Lnψ(h · 1IZ) dν 6 C2λ
−neSnψ(x). (57)

On the other hand, since the subshift of finite type is irreducible, there is some uniform
integer M and y ∈ Z such that σn+M(y) = z. Therefore

Lnψ(h · 1IZ) > eSn+Mψ(y)h(y) > e−M‖ψ‖∞e−
C

1−ϑ · inf h︸ ︷︷ ︸
C1

eSnψ(x).

Integrating over Z gives us µ(Z) > C1λ
−neSnψ(x) by the same reasoning as in (57).

Therefore

C1 6
µ(Z)

λ−neSnψ(x)
6 C2,

for all n-cylinders and thus if we choose eP = λ, we obtain the Gibbs property.

Lemma 13. The Gibbs measure is unique.

Proof. If both µ and µ′ satisfy (53) for some constants C1, C2, P and C ′1, C
′
2, P

′ then we
can first take (53) for µ′ and sum over all n-cylinders. This gives

C ′1e
−P ′n

∑
Z∈Pn

eSnψ(x) 6 1 6 C ′2e
−P ′n

∑
Z∈Pn

eSnψ(x),
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so that P ′ = limn
1
n

log
∑

Z∈Pn e
Snψ(x), independently of µ′. Therefore P ′ = P .

Now divide (53) for µ′ by the same expression for µ. This gives

C ′1
C2

6
µ′(Z)

µ(Z)
6
C ′2
C1

independently of Z. Therefore µ′ and µ are equivalent: they have the same null-sets.
In particular, for each continuous f , the set of points x ∈ Σ for which the Birkhoff
Ergodic Theorem holds for µ′ and µ differs by at most a nullset. For any point which
is typical for both, we find

∫
f dµ′ = limn

1
n
Snf(x) =

∫
f dµ. Therefore µ = µ′.

20.3 Upper semicontinuity of entropy

For a continuous potential ψ : X → R, and a sequence of measures (µn)n∈N such that
µn → µ in the weak∗ topology, we always have

∫
ψ dµn →

∫
ψ dµ, simply because that

is the definition of weak∗ convergence. However, entropy isn’t continuous in this sense.
For example, if (Σ, σ) is the full shift on two symbols, then the 1

2
-1

2
Bernoulli measure

µ is the measure of maximal entropy log 2. If x ∈ Σ is a typical point (in the sense of
the Birkhoff Ergodic Theorem), then we can create a sequence of measure µn by

µn =
1

n

n−1∑
j=0

δσjy

where y = x0x1 . . . xn−1 is the n-periodic point in the same n-cylinder as x. For these
measure µn → µ in the weak∗ topology, but since µn is supported on a single periodic
orbit, the entropy hµn(σ) = 0 for every n. Therefore

lim
n→∞

hµn(σ) = 0 < log 2 = hµ(σ).

Lacking continuity, the best we can hope for is upper semicontinuity (USC) of the
entropy function, i.e.,

µn → µ implies lim sup
n→∞

hµn(σ) 6 hµ(σ).

In other words, the value of h can make a jump upwards at the limit measure, but not
downwards. Fortunately, the entropy function µ 7→ hµ(σ) is indeed USC for subshifts
on a finite alphabet, and USC is enough to guarantee the existence of equilibrium states.

Proposition 18. Let (X,T ) be a continuous dynamical system on a compact metric
space X. Assume that potential ψ : X → R is continuous. If the entropy function is
USC, then there is an equilibrium state,
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Proof. We use the Variation Principle

P (ψ) = sup{hν(T ) +

∫
ψ dν : ν is T -invariant probability measure}. (58)

Hence there exists a sequence (µn)n∈N such that P (ψ) = limn hµn(T )+
∫
ψ dµn. Passing

to a subsequence (nk) if necessary, we can assume that µnk → µ as k →∞ in the weak∗

topology, and therefore
∫
ψ dµnk →

∫
ψ dµ as k →∞. Due to upper semicontinuity,

P (ψ) = lim sup
k→∞

hµnk (T ) +

∫
ψ dµnk 6 hµ(T ) +

∫
ψ dµ,

but also hµ(T ) +
∫
ψ dµ 6 P (ψ) by (58). Hence µ is an equilibrium state.

The following corollary follows in the same way.

Corollary 6. Let (X,T ) be a continuous dynamical system on a compact metric space
X, and suppose that the entropy function is USC. Let ψβ be a family (continuous in β)
of continuous potentials and β → β∗. If µβ are equilibrium states for ψβ and µβ → µβ∗
in the weak∗ topology as β → β∗, then µβ∗ is an equilibrium state for ψβ∗.

In particular, the important case β 7→ P (β · ψ) is a continuous function. Upper semi-
continuity of entropy also gives us another way of characterizing entropy:

Lemma 14 (Dual Variational Principle). Let (X,T ) be a continuous dynamical system
on a compact metric space. Assume that the entropy function is upper semi-continuous
and that P (0) <∞. Then

hµ(T ) = inf{P (ψ)−
∫
ψ dµ : ψ : X → R continuous}.

Proof. See [14, Theorem 4.2.9] or [24, Theorem 9.12].

20.4 Smoothness of the pressure function

In Section 20.2 we have given conditions under which a Gibbs measure is unique. Gibbs
measures are equilibrium states, but that doesn’t prove uniqueness of equilibrium states.
There could in principle be equilibrium states that are not Gibbs measures. In this
section we will connect uniqueness of equilibrium states of a parametrised family ψβ of
potentials to smoothness of the pressure function β 7→ P (ψβ). In fact, the remaining
part of the Griffith-Ruelle Theorem is about smoothness, more precisely analyticity, of
pressure function when ψβ = β · ψ, for inverse temperature β ∈ R.
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Theorem 31 (Griffith-Ruelle Theorem (continued)). If ψ is Hölder continuous poten-
tial function on an aperiodic irreducible subshift of finite type, then the pressure function

β 7→ P (β · ψ)

is real analytic.

We will not prove analyticity here (which depends on perturbation theory of operators),
but rather focus on how differentiability of β 7→ P (ψβ) is related to equilibrium states.
In the simplest case when ψβ = β · ψ, then the graph of

β 7→ P (β · ψ) := sup{hν(T ) + β

∫
ψ dν : ν is T -invariant probability measure}

is the envelope of straight lines β 7→ hν(T ) + β
∫
ψ dν, and therefore continuous. We

think of ψ (or at least
∫
ψ dν) as non-positive, so that maximising P (β) corresponds

to maximising entropy and minimising energy in agreement with the Laws of Ther-
modynamics. Hence the graph β 7→ P (β), as the envelop of non-increasing lines, is
non-increasing and convex.

Furthermore, if µ0 is an equilibrium state for β0, and β 7→ P (β) is differentiable at
β = β0, then P ′(β0) =

∫
ψ dµ0. Hence if µ0 and µ′0 are two different equilibrium states

for β0 with
∫
ψ dµ0 6=

∫
ψ dµ′0, then β 7→ P (β) cannot be differentiable at β = β0.

Definition 22. Given a continuous potential ψ : X → R, we say that:

• a measure µ on X is a tangent measure if

P (ψ + φ) > P (ψ) +

∫
φ dµ for all continuous φ : X → R. (59)

• P is differentiable at ψ if P (ψ) <∞ and there is a unique tangent measure.

It would be more correct to speak of tangent functional since a priori, we just have
ν ∈ C∗(X), but in all cases ν turns out to be indeed an “unsigned” probability measure.

So, compared to differentiability of β 7→ P (β · ψ), differentiability in the above sense
requires (59) not just for φ = (β−1) ·ψ (which follows from convexity of β 7→ P (β ·ψ)),
but for all continuous φ : X → R.

Theorem 32. Let (X,T ) be a continuous dynamical system on a compact metric space
X, and suppose that the entropy function is USC. Let ψ : X → R be a continuous
potential. Then P is differentiable at ψ with derivative µ if and only if

lim
ε→0

P (ψ + εφ)− P (ψ)

ε
=

∫
φ dµ (60)

for all continuous φ : X → R. In this case, µ is the unique equilibrium state for ψ.
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Proof. We start by proving that the tangent measures are exactly the equilibrium states.
Assume that µ is an equilibrium state for ψ. Then

P (ψ + φ) = sup
ν
{hν(T ) +

∫
ψ dν +

∫
φ dν}

> hµ(T ) +

∫
ψ dµ+

∫
φ dµ = P (ψ) +

∫
φ dµ

for all continuous φ : X → R, so µ is a tangent measure.

For the converse, assume that µ satisfies (59). Since µ satisfies (59), we have{
P (ψ) + 1 = P (ψ + 1) > P (ψ) +

∫
dµ,

P (ψ)− 1 = P (ψ − 1) > P (ψ)−
∫
dµ,

so
∫
dµ = 1 follows. Furthermore, if φ > 0, we have

P (ψ) > P (ψ − φ) > P (ψ)−
∫
φ dµ,

so
∫
φ dµ > 0. This shows that µ is an “unsigned” probability measure. To prove

T -invariance, recall about cohomologous functions that

P (ψ) = P (ψ + η · (φ ◦ T − φ)) > P (ψ) + η

∫
φ ◦ T − φ dµ,

hence 0 > η
∫
φ ◦ T − φ dµ. Since η can be both positive or negative, there is only one

possibility: 0 =
∫
φ ◦ T − φ dµ, and so µ is indeed T -invariant.

Since ψ : X → R is continuous on a compact space, so inf ψ > −∞. We have P (0) +
inf ψ 6 P (ψ) <∞ by assumption, so also P (0) 6 P (ψ)− inf ψ <∞. Therefore we can
apply Lemma 14, and obtain

hµ(T ) = inf{P (ψ + φ)−
∫
ψ + φ dµ : φ : X → R continuous}

> inf{P (ψ) +

∫
φ dµ−

∫
ψ + φ dµ : φ : X → R continuous}

= P (ψ)−
∫
φ dµ > hµ(T ).

Therefore µ is indeed an equilibrium state.

Now for the second half of the proof, assume that P is differentiable at ψ with derivative
µ, so µ is the only tangent measure, and therefore only equilibrium state. We need to
establish (60). For ε 6= 0 and given φ, let µε be an equilibrium state for ψ + εφ. Then
µε → µ as ε→ 0 by Corollary 6. Since µ is a tangent measure

P (ψ + εφ)− P (ψ) > ε

∫
φ dµ,
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and since µε are also tangent measures,

− (P (ψ + εφ)− P (ψ)) = P (ψ + εφ− εφ)− P (ψ + εφ) > −ε
∫
φ dµε.

Combining the two, we find∫
φ dµ 6

P (ψ + εφ)− P (ψ)

ε
6
∫
φ dµε

if ε > 0 or with reversed inequalities if ε < 0. Now
∫
φ dµε →

∫
ψ dµ as ε→ 0, so (60)

follows.

Conversely, assume that (60) holds for µ and all continuous φ : X → R. If ν is
an arbitrary tangent measure (which we know exists, because an equilibrium measure
exists by Proposition 18 and we just proved that and equilibrium measures are tangent
measures), then ∫

φ dµ = lim
ε↘0

P (ψ + εφ)− P (ψ)

ε
>
∫
φ dν,

and also ∫
φ dµ = lim

ε↗0

P (ψ + εφ)− P (ψ)

ε
6
∫
φ dν.

Hence
∫
φ dµ =

∫
φ dν for all continuous φ : X → R, whence µ = ν, and P is indeed

differentiable with single tangent measure as derivative.

In view of the Griffith-Ruelle Theorem, this motivates the definition:

Definition 23. The system (X,T ) with potential ψ : X → R undergoes a phase
transition at parameter β0 if β 7→ P (β · ψ) fails to be analytic at β0.

It is where pressure fails to be analytic, that equilibrium states may be non-existent
(possible, if the potential is non-continuous), non-unique (possible, if the potential is
non-Hölder) and/or discontinuous under change of parameters.

20.5 Phase transitions for non-Hölder potentials

The analyticity of the pressure function may fail if ψ is not Hölder continous. Hofbauer
[12] gave the first such example for the full shift and a piecewise constant potential, and
we will discuss this example later on. First we present a very much related example
on the interval, namely the Pomeau-Manneville map f = fα : [0, 1] → [0, 1] for
parameter α ∈ (0,∞), defined as

f(x) =

{
x(1 + (2x)α) x ∈ [0, 1

2
], α ∈ (0,∞)

2x− 1 x ∈ (1
2
, 1].
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Figure 4: The Pomeau-Manneville map Tα with α = 1, and the corresponding first
return map F .

This map is non-uniformly expanding: the neutral fixed point at 0 prevents it from
being uniformly expanding, and this changes the behaviour entirely. Here the potential
of interest is − log |T ′(x)| = − log(1 + (1 + α)(2x)α) ≈ (1 + α)(2x)α for x close to 0.

Theorem 33. The Pomeau-Manneville map has an invariant probability measure µ�
Leb if and only if α ∈ (0, 1). This measure is also an equilibrium measure, and the Dirac
measure δ0 is an equilibrium measure as well. If α ≥ 1, and µ � Leb is f -invariant,
then µ is σ-finite and infinite, and δ0 is the unique equilibrium state.

Sketch of Proof. Since f is not uniformly expanding, we will use the first return map
F = f τ : Y → Y to the set Y = (1

2
, 1]. Here τ(x) = min{n ≥ 1 : fn(x) ∈ Y is the first

return time to Y . Define recursively

y0 = 1, y1 =
1

2
, yn = f−1(yn−1) ∩ [0,

1

2
).

It can be computed (see [9] and [23, Appendix B]) that yn = 1
2(αn)1/α

. Let Zn =

(yn, yn−1) and Z̃n = f−1(Zn) ∩ (1
2
, 1]. It is not hard to check that Zn = {y ∈ Y :

τ(y) = n} and F : Z̃n → (1
2
, 1] is a diffeomorphism. Without proof, we say that

F : Z̃n → (1
2
, 1] has uniform distortion bounds, and that therefore a version of the

Folklore Theorem 9 applies. Therefore we have an F -invariant measure ν equivalent to
Lebesgue, and h(x) = dν(x)

dx
is bounded and bounded away from zero.

Similar to Proposition 6, we obtain an f -invariant measure by the formula

µ(A) =
∑
k≥0

ν(f−k ∩ {y ∈ Y : τ(y) > k}); (61)

it is σ-finite and can be normalised to a probability measure by dividing by Λ = Eν(τ) =∑
n≥1 nν({y ∈ Y : τ(y) = n}) provided Λ < ∞. Since {y ∈ Y : τ(y) = n} = Z̃n is an

interval of measure

ν(Z̃n) ∼
h(1

2
)

4α1/α

(
1

n1/α
− 1

(n+ 1)1/α

)
∼

h(1
2
)

4α1/α

1

n1+1/α
,
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we find Λ ∼
∑

n≥1

h( 1
2

)

2α1/α
1

n1/α < ∞ precisely if α < 1. Hence µ is finite if and only if
α ∈ (0, 1).

Let us look at the induced map F once more, for α < 1, so Λ < ∞. It has countably
many branches F : Z̃n → [1

2
, 1] on which F is C2 expanding and onto. One can show

that
F ′(x)

F ′(y)
≤ K for all n and all x, y ∈ Z̃n.

Therefore, any k-cylinder J w.r.t. the partition {JZ̃n}n∈N satisfies

ν(J) =

∫
J

h(x) dx ≈ 2|J | = 2|F k(J)|
DF k(ξ)

≈ 1

DF k(x)

for all x ∈ J . Here we used the Mean Value Theorem in the second step, and we used
≈ in the sense of: a ≈ b if the is a uniform constant C > 0 such that 1

C
≤ a

b
≤ C. If we

compute the induced potential

Ψ(x) :=

τ(x)−1∑
k=1

− log T ′(T k(x)),

then we get Ψ(x) = − logF ′(x) by the Chain Rule. Combining with the above gives a
constant C > 0 such that

1

C
≤ ν(J)

eSkΨ(x)
≤ C for all x, y ∈ J and all k-cylinders J.

In other words, ν is a Gibbs measure with pressure P = P (Ψ) = 0. Since the Gibbs
measures coincide with the equilibrium states, we conclude that ν is the equilibrium
state of (Y, F,Ψ), and it is unique because the Gibbs measure is unique.

One can show that for ψ = − log T ′, and µ as in (61), but normalized by dividing by
Λ <∞ {

hµ(T ) = 1
Λ
hν(F ) (this is Abramov’s formula),∫

ψ dµ = 1
Λ

∫
Ψ dν,

(62)

and therefore hµ(T ) +
∫
ψ dµ = 0. If there was another measure µ̃ 6= δ0 such that

hµ̃(T ) +
∫
ψ dµ̃ ≥ 0, then there would be a ν̃ (related to µ̃ by (61) and (62), then

therefore hν̃(F ) +
∫
ψ dν̃ ≥ 0, contradicting that ν is the unique equilibrium state for

(Y, F,Ψ).

It follows that µ is an equilibrium state, but not the unique one because the Dirac
measure δ0 is another one, but δ0 doesn’t “lift” to an F -invariant measure.

Symbolically, this can be interpreted as the full shift (Σ, σ) with the Hofbauer po-
tential

ψ(e) =

{
− γ
n

e ∈ [0n−11]

0 e = 0∞
γ =

1 + α

2α
h(

1

2
)
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corresponds to the Pomeau-Manneville map above. Therefore, for e ∈ [0n−11],

|ψ(e)− ψ(0∞)| = γ

n
6< Cϑn

for large n, so ψ fails to be Hölder continuous. For (Σ, σ, ψ), the Dirac measure δ0 = δ0∞

has hδ0(σ) +
∫
ψdδ0 = 0, and in fact hδ0(σ) + β

∫
ψdδ0 = 0 for all β = 0. It follows that

the pressure function must be non-negative. It was shown (cf. [18]) that

P (βψ)

{
> 0 β < 1 and is a unique fully supported equilibrium state,

= 0 β ≥ 1 and δ0 is an equilibrium state (unique if β > 1),

and for β = 1, δ0 is the unique equilibrium state if and only if α ≥ 1. Furthermore,
β → P (βψ) is only C0 at β = 1 if α < 1 and C1 if α ≥ 1, but in either case β → P (βψ)
is not real anlytic, so there is a phase transtion at β = 1.

21 Hausdorff Dimension of Repellors

Let f : D ⊂ [0, 1] → [0, 1] be defined on a domain D = ∪N−1
k=0 Dk, where each Dk

is a closed interval and f : Dk → [0, 1] is surjective, C2-smooth and expanding, i.e.,
inf{|f ′(x)| : x ∈ D} > 1. Recall that fn = f ◦ · · · ◦ f is the n-fold composition of a
map and define

X = {x ∈ [0, 1] : fn(x) ∈ D for all n > 0}.
This set X is sometimes called the repellor of f , and is usually a Cantor set, i.e.,
compact, totally disconnected and without isolated points.

Example 7. If

f(x) =

{
3x if x ∈ [0, 1

3
] = D0,

3x− 2 if x ∈ [2
3
, 1] = D1,

then X becomes the middle third Cantor set.

Example 8. The full tent-map is defined as

T (x) =

{
2x if x ∈ [0, 1

2
] = D0,

2(1− x) if x ∈ [1
2
, 1] = D1.

Here X = [0, 1], so not a Cantor set. (In this case, D0 and D1 overlap at one point,
and that explains the difference.)

Definition 24. Given some set A, an (open) ε-cover U = {Uj}j∈N of A is a collection
of open sets such that A ⊂ ∪jUj and the diameters diam(Uj) < ε for all j.8

8We can include Uj = ∅ for some j, so finite covers {Uj}Rj=1 can always be extended to countable
covers {Uj}j∈N if necessary.
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The δ-dimensional Hausdorff measure is defined as

µδ(A) = lim
ε→0

inf{
∑
j

(diam(Uj))
δ : U is an open ε-cover of A}.

It turns out that there is a unique δ0 such that

µδ(A) =

{
∞ if δ < δ0,

0 if δ > δ0.

This δ0 is called the Hausdorff dimension of A, and it is denoted as dimH(A).

Lebesgue measure on the unit cube [0, 1]n coincides, up to a multiplicative constant,
with n-dimensional Hausdorff measure. However, for “fractal” sets such as the middle
third Cantor sets, the “correct” value of δ0 can be non-integer, as we will argue in the
next example.

Example 9. Let X be the middle third Cantor set. For each n, we can cover X with
2n closed intervals of length 3−n, namely

[0, 3−n] ∪ [2 · 3−n, 3 · 3−n] ∪ [6 · 3−n, 7 · 3−n] ∪ [8 · 3−n, 9 · 3−n] ∪ · · · ∪ [(3n − 1) · 3−n, 1].

We can make this into an open cover Uε (with ε = 3−n(1 + 2 · 3−n)) by thickening these
intervals a little bit, i.e., replacing [m · 3−n, (m+ 1) · 3−n] by (m · 3−n − 3−2n, (m+ 1) ·
3−n + 3−2n). Then

µδ(X) 6 2n · (3−n + 2 · 3−2n)δ = 2n · 3−δn · (1 + 2 · 3−n)δ =: En.

Then

lim
n→∞

En =


∞ if δ < log 2

log 3
,

1 if δ = log 2
log 3

,

0 if δ > log 2
log 3

.

This shows that dimH(X) 6 log 2
log 3

. In fact, dimH(X) = log 2
log 3

, but showing that covers Uε
are “optimal” is a bit messy, and we will skip this part.

Coming back to our expanding interval map f , we choose the potential

ψβ(x) = −β log |f ′(x)|,

which is C1-smooth on each Dk, and negative for β > 0. The ergodic sum

Snψβ(x) = −β
n−1∑
k=0

log |f ′ ◦ fk(x)|

= −β log
n−1∏
k=0

|f ′ ◦ fk(x)| = log |(fn)′(x)|−β (63)

by the Chain Rule.
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Theorem 34. Let ([0, 1], f) with repellor

X = {x ∈ [0, 1] : fn(x) ∈ D = ∪kDk for all n > 0}

and potential ψβ = −β log |f ′| be as above. Then there is a unique β0 at which the
pressure P (ψβ) vanishes, and dimH(X) = β0.

Sketch of Proof. We use symbolic dynamics on X by setting

e(x) = y0y1y2 . . . with yn = k ∈ {0, . . . , N − 1} if fn(x) ∈ Dk.

This uniquely associates a code y ∈ Σ := {0, . . . , N − 1}N0 to x provided the Dk’s don’t
overlap, as in Example 8. If some Dk’s overlap at one point, this affects only countably
many points, and therefore we can neglect them. Conversely, since f is expanding, each
code y ∈ Σ is associated to no more than one x ∈ X.

To each n-cylinder set [y0y1 . . . yn−1] = Z ⊂ Σ, we can associate a closed interval J such
that fk(J) ⊂ Dyk for 0 6 k < n, and in fact fn−1(J) = Dyn−1 and fn(J) = [0, 1].

The C2-smoothness of f guarantees that ψβ transfers to a Hölder potential ψ̃β(y) :=
ψβ ◦ e−1(y) on Σ, and therefore, for each β, we can apply the Griffith-Ruelle Theorem
and obtain a unique equilibrium state which is also a Gibbs measure. Use the coding
map e : X → Σ to transfer this to (X, f, ψβ): For each β ∈ R, there is a unique
equilibrium state µβ which is also a Gibbs measure, for ψβ.

Therefore, there are C1, C2 > 0 depending only on f and β, such that for all n, all
interval J associated to n-cylinders and all x ∈ J ∩X,

C1 6
µβ(J ∩X)

eSn(ψβ(x)−P )
6 C2, (64)

where P = P (ψβ) is the pressure.

Recall from (63) that eSn(ψβ(x)−P ) = e−nP |(fn)′(x)|−β for x ∈ J ∩ X; in fact the same
holds for all x ∈ J . By the Mean Value Theorem, and since fn(J) = [0, 1], there is
xJ ∈ J such that |(fn)′(xJ)| = 1/diam(J). Now we don’t know if xJ ∈ X, but we use
a distortion argument9 to rewrite (64) to

µβ(J)

C2

6 e−Pndiam(J)β 6
µβ(J)

C1

and summing over all cylinder sets, we arrive at

1

C2

6 e−Pn
∑
J

diam(J)β 6
1

C1

. (65)

9which we will sweep under the carpet
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Now for β = 0, this gives 1
C2

6 e−Pn#{ intervals J} 6 1
C1

, and since there are Nn

intervals, we get P (ψ0) = limn
1
n

logNn = logN > 0, which is indeed the topological
entropy of the map f .

We have
∑

J diam(J) 6 1, and therefore, for β > 1,
∑

J diam(J)β → 0 exponentially
in n. Hence (65) implies that P (ψβ) < 0 for all β > 1. Now since β 7→ P (ψβ) is
non-increasing and convex, this means that there is a unique β0 such that P (ψβ) = 0
for β = β0.

For this β0, we find
1

C2

6
∑
J

diam(J)β0 6
1

C1

.

The sets J can be thickened a bit to produce an open ε-cover Uε (with ε < 2(inf |f ′|)−n)→
0 as n → ∞). This gives dimH(X) 6 β0. To show that also dimH(X) > β0, we need
a similar argument that covers Uε are “optimal” that we skipped in Example 9, and
which we will omit here as well.

Exercise 10. Assume that ∪kDk = [0, 1] as in Example 8. Show that β0 = 1 and that
the unique equilibrium state µ1 is equivalent to Lebesgue measure.

22 Gibbs distributions and large deviations - an ex-

ample

The following is an adaptation of Example 1.2.1. from Keller’s book [14]. Assume first
that the entire system consists of a single particle that can assume states in alphabet
A = {0, . . . , N−1}, with energies −βψ0(a) (where parameter β ∈ R denotes the inverse
temperature). We call

P(x = a) = qβ(a) :=
e−βψ0(a)∑

a′∈A e
−βψ0(a′)

(66)

a Gibbs distribution. (The Gibbs distribution in this section should not be confused
with a Gibbs measure that satisfies the Gibbs property (49).) Note that a Gibbs
distribution isn’t a fixed state the particle is in, it is a probability distribution indicating
(presumably) what proportion of time the particle assumes state a ∈ A.

In this simple case, the configuration space A and as there is no dynamics, entropy is
just

H(qβ) = −
∑
p∈P

qβ(p) log qβ(p)

with respect to the only sensible partition, namely into single symbols: P = {ω = a}a∈A.
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We know from Corollary 4 that

H(qβ)− β
∫
ψ0 dqβ > H(π)− β

∫
ψ0 dπ

for every probability measure π on A with equality if and only if π = qβ. Hence the
Gibbs measure is the equilibrium state for ψ0. We take this as inspiration to measure
how far π is from the “optimal” measure qβ by defining

dβ(π) =

(
H(qβ)− β

∫
ψ0 dqβ

)
−
(
H(π)− β

∫
ψ0 dπ

)
. (67)

Let us now replace the single site by a finite lattice or any finite collection G of sites, say
n = #G, with particles at every site assuming states in A. Thus now the configuration
space is Σ = AG of cardinality #Σ = Nn, where we think of n as huge (number of
Avogadro or like).

Assume that the energy ψ(ω) of configuration ω ∈ Σ is just the sum of the energies
of the separate particles: ψ(ω) =

∑
g∈G ψ0(ωg). So there is no interaction between

particles whatsoever; no coherence in the set G.

We can still define the Gibbs measure (and hence equilibrium state for ψ) as before; it
becomes the product measure of the Gibbs measures at each site:

µβ(ω) =
e−βψ(ω)∑

ω′∈Σ e
−βψ(ω′)

=
∏
g∈G

e−βψ0(ωg)∑
a′∈A e

−βψ0(a′)
.

It is convenient to denote the denominator, i.e., partition function, as Z(β) =∑
ω′∈Σ e

−βψ(ω′).

The measures µβ(ω) for each singular configuration are minute, even if ω minimises
energy. Note however, that for small temperature (large β), configurations with minimal
energies are extremely more likely to occur than those with large energies. For high
temperature (small β), this relative difference is much smaller. As argued by Boltzmann,
see the Ehrenfest paper [11], the vast majority of configurations (measure by µβ) has
the property that if you count proportions at which states a ∈ A occur, i.e.,

πω(a) =
1

n
#{g ∈ G : ωg = a}

you find that πω is extremely close to qβ. So without interactions, the effect of many
particles averages out to qβ.

We can quantify “large majority” using distance dβ of (67). Write

Uβ,r = {ω ∈ Σ : dβ(πω) < r}

as the collection of configurations whose emperical distributions πω (i.e., frequencies of
particles taking the respective states in A) are r-close to qβ.
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Theorem 35. For 0 < r < H(qβ)− β
∫
ψ0 dqβ, we have

lim
n→∞

1

n
log µβ(Σ \ Uβ,r) = −r,

so µβ(Σ \ Uβ,r) ∼ e−nr as n = #G grows large.

Proof. It is an exercise to check that H(µβ) = nH(qβ). Next, for some configuration
ω ∈ Σ, we have

log µβ(ω) = −β
∑
g∈G

ψ0(ωg)− logZ(β) rewrite Z(β) by Corollary 4

= −βn
∫
ψ0 dπω −

(
H(µβ)− β

∫
ψ dµβ

)
= −βn

∫
ψ0 dπω − n

(
H(qβ)− β

∫
ψ0 dqβ

)
= −n

(
(H(qβ)− β

∫
ψ0 dqβ)− (H(πω)− β

∫
ψ0 dπω)

)
− nH(πω)

= ndβ(πω)− nH(πω).

Every πω represents a way to choose n = #G times from N = #A boxes. The order
of choosing is not important, only how many are drawn from each box. This can be
indicated by a non-negative integer vector v = (va)a∈A where

∑
a∈A va = n. In fact, v

n

indicates the same probability distribution on A as πω. We can compute

M(v) := #{ω ∈ Σ : πω leads to v} =
n!∏

a∈A va!
.

Stirling’s formula gives n! ∼
√

2πn nne−n, neglecting an error factor that tends to 1 as
n→∞. Thus

M(v) ∼
√

2πn nne−n∏
a∈A
√

2πva vvaa e
−va
∼
√

2πn∏
a∈A 2πva

∏
a∈A

(va
n

)−va
,

and

logM(v) ∼ 1

2
log

2πn∏
a∈A 2πva

+ n
∑
a∈A

−va
n

log
va
n
.

Note that va
n

= πω(x = a), so the dominating term in logM(v) is just nH(πω)! The
remaining terms, including the one we neglected in our version of Stirling’s formula,
are O(log n).
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Therefore

1

n
log µβ(Σ \ Uβ,r) =

1

n
log

∑
ω∈Σ\Uβ,r

µβ(ω) =
1

n
log

∑
ω∈Σ\Uβ,r

e−ndβ(πω)−nH(πω)

6
1

n
log

∑
v=(va)a∈A

M(v) · e−nr−nH( v
n

)

=
1

n
log

∑
v=(va)a∈A

enH( v
n

)+O(logn) · e−nr−nH( v
n

)

=
1

n
log

∑
v=(va)a∈A

e−nr+O(logn) 6
1

n
log nNe−nr+O(logn) → −r

as n → ∞, where we used in the last line that there are no more than nN ways of
choosing non-negative integer vectors v = (va)a∈A with

∑
a∈A va = n.

Now for the lower bound, take r′ > r. For sufficiently large n, we can find some vector
v = (va)a∈A such that r < dβ( v

n
) < r′. Therefore

1

n
log µβ(Σ \ Uβ,r) >

1

n
log

∑
ω,πω= v

n

µβ(ω) =
1

n
log

∑
ω,πω= v

n

e−ndβ(πω)−nH(πω)

>
1

n
log
(
M(v) · e−nr′−nH( v

n
)
)

>
1

n

(
nH(

v

n
) +O(log n)− nr′ − nH(

v

n
)
)
→ −r′

as n→∞. Since r′ > r is arbitrary, limn
1
n

log µβ(Σ \ Uβ,r) = −r as claimed.
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